Section 2.5 156. f(x) = x Inx, f(l) = 0 Implicit Differentiation 145 3 f'(x) = I + Inx, f(l) = I 1 r(x) = -, x r(1) = I -,~. -1 = f(l) + f'(l)(X - 1) = x - 1, PI(l) = 0 Pl(X) P2(x)= f(1) + f'(l)(x - 1) + ~r(l)(X - 1)2 1 = (x- 1)+ 2(x - 1)2, P2(l) = 0 PI'(x) = 1, PI'(l) = 1 P/(x) = 1 + (x - I) = x, P/(l) = 1 P/'(x) = x, P2"(1)= 1 The values off, PI, P2' and their first derivatives agree at x offandP2 agree atx = 1. 157. False. Ify = (1 - X)I/2,theny' =!(l - X)-1/2(_I). = 1.The values of the second derivatives = sin22x, thenf'(x) = 2(sin 2x)(2 cos 2x). 158. False. Iff(x) 159. True Section 2.5 1. r + Implicit Differentiation T = 16 2. 2x + 2yy' = 0 -x y'=y 3. y2 = 16 X y'= y Xl/2 + yl/2 = 9 4. x3+y3=8 3r + 3y2y' = 0 r y'= _X-l/2 = - y-l/2 -V;Ii x3-xy+y2=4 y' ry + y2x = - 2 ry' (2y- x)y' = y - 3r y'=- = - y2 6. 3r - xy'- y + 2yy'= 0 7. - 2x - 2yy' = 0 I 1 -X-l/2 + _y-l/2y' = 0 2 2 5. X2 y - 3r 2y- x xeY- lOx+ 3y = 0 xeY-dy + eY - 10 + 3 -dy = 0 dx dx dy (xeY+ 3) = 10 - eY dx dy_lO-eY dx-xeY+3 T + 2yxy' = 0 (r + 2xy)y'= _(y2+ 2xy) + 2xy + , -y(y + 2x) y = x(x + 2y) 8. eXY+r-y2= (x: + y)eXY+ 2x - 2y: 10 =0 dy dx (xeXY- 2y) = -yeXY- 2x dy= dx yeXY+2x xeXY- 2y 146 Chapter 2 Differentiation x3 - 2x2y+ 3xy2= 38 9. 10. 3x2 - 2x2y' - 4xy + 6xyy' + 3y2 = 0 2x(3y - 2 sinxcosy 2[sin x( - sin y)y' + COgy(cos x)] = 0 x)y' = 4xy - 3x2 - 3y2 , cosxcosy y = sinxsiny y' = 4xy - 3X2 -3y2 2x(3y - x) 11. sin x + 2cos 2y cosx - 4(sin2y)y' =I =0 =I ==cot x coty 12. (sin TTX + COg 7Ty)2 2(sin 7TX + COS7TY)[7T COg TTX cosx y'=4sin2y 7T COg TTX - 7T(sin7Ty)y1 = 2 = 0 - 7T(sin7TY)y'= 0 COg TTX y' = sin TTY 14. 13. sinx = x(l + tany) COgx = X(sec2y)y' + (l + tany)(l) , y coty=x-y (-csc2y)y' = I - y' I y'=I-csc2y cosx-tany-I = xsec2y =~ -cot2 Y = -tan2Y 15. y = sin(xy) I 16. x=,secy y' = [xy' + y] cos(xy) y' I I = --sec-tany2 y y' - xcos(xy)y' = ycos(xy) , - y cos(xy) y - I - x cos(xy) 17. x3y3_y_X=0 I Y y' = sec(l/~~~(l/y) 18. = _y2 cos(~)cot(~) (xy)1/2- X + 2y =0 I ~xy)-1/2(xy' + y) - I + 2y' = 0 2 3x3yZy'+ 3x2l - y' - I = 0 (3x3y2- l)y' = I - 3x2y3 , - I - 3x2l y-3x3y2-I -2-y' 2Fxy + -L- - I + 2y' = 0 2Fxy xy' + Y - 2Fxy + 4Fxyy' = 0 , 2Fxy - y y = 4Fxy + x 19. 20. x2 - 3 In y + y2 = 10 3dy 2x---+2y-=0 ydx dy dx 2x = In(xy)+ 5x = 30 Inx + Iny + 5x = 30 : (~ - 2Y) dy2x - 2xy dx - (3/y) - 2y - 3 - 2y2 -1 + --I dy + x ydx 5 = 0 I dy --=---5 ydx I x dy = _lx - 5y = dx y + 5XY ( x ) Section 2.5 21. xy =4 22. xy' + y(I) = 0 xl-y3=O 2x - 3y2y' = 0 xy' = -y y'= 2x y' = 3y2 -y X At(-4,-1): 2 At (1,1): y' = 3" 1 -4' y'= xl - 9 y2 = xl + 9 23. Implicit Differentiation 24. (x + y)3 = x3 + y3 x3 + 3x2y + 3xy2 + y3 2 ' - yy - + 9)(2x) - (xl - 9)2x (X2 = x3 + y3 3x2y + 3xy2 = 0 (xl + 9)2 , 18x y = (X2+ 9)2y x2y + xy2 = 0 x2y' + 2xy + 2.xyy' + y2 = 0 At (3, 0): y' is undefined. (xl + 2xy)y' = _(y2 + 2xy) , y(y + 2x) y = - x(x + 2y) At(-l, 25. y2/3 =5 2 + ::;y-1/3y' 3 =0 X2/3 2 -X-I/3 3 + 26. - - y-I/3 - (3y2- 2x)y' = 2y - 3xl ~~ 3 Y , 2y - 3xl y = 3y2- 2x 1 At (8,1): y' = -2:" 27. x3+y3_2xy=0 3xl + 3y2y' - 2.xy'- 2y = 0 -X-I/3 y' = - 1): y'=-1. At (1, 1): y' = -1. 28. tan(x + y) = x xcosy = 1 x[-y' sin y] + cosy (I + y~ sec2(x+ y) = 1 , 1 - sec2(x+ y) Y = sec2(X+ y) cosy y'= xsiny - -tan2(x + y) - tan2(x+ y) + 1 xl --xl+1 1 =-cotyx At (2,~): y' = 2~' At (0, 0): y' = O. 29. 2eX}' - x = 0, (2,0) 30. y2 = Inx, 2eX}'xy'= I - 2yeX)' , - 1 - 2yex)' y 2xeX)' I (e,l) I 2eX}'[xy'+ y] - 1 = 0 At (2,0): y'=4' =0 2yy' = ~ 1 y' = 2xy I At(e,1): y'=2e' - cot Y x 147 148 Chapter 2 31. Differentiation Jx+Jy=3 2-- x-I Y - X2 + 1 32. 1 1 -x-1/2 + -y-1/2y' =0 2 2 , 2yy (x2 + 1)(1) - (x - I)(2x) = (1/2)X-1/2 Jy (1/2)y-1/2 = - Jx y' = x2+1-2r+2x (x2 + 1)2 1 At (4, 1): y' = -2" 1+2x-x2 y' = 2Y(X2+ 1)2 Tangent line: y - 1= (x2+ 1)2 y"S 1 --(x 2 , 1+4-4 -~ : y = [(2y"S)/S](4+ 1)2- 1Oy"S. ( ) At 2, 5 - 4) Tangent line: 1 y = --x2 + 3 y"S y - - S 1 1Oy"S = -(x - 2) x + 2y - 6 = 0 lOy"Sy - 10 = x - 2 5 x - lOy"Sy + 8 = 0 ~ -2~7 1 ~ -1 -11I~=r -1 33. (X2 (X2 + 4)y = 8 (4 - X)y2 = X3 34. + 4)y' + y(2x) = 0 (4 - x)(2yy~ + y2(_I) = 3x2 3X2+y2 y' = 2y(4 - x) '- -2xy y-x2+4 At (2,2): y'= 2. - _2x[8/(X2 + 4)] x2+4 -16x = (x2 + 4)2 At (2,1): y' = -32 1 M = -2. (or, you could just solve for y: y = X2~ 4) 35. (x2 + y2)2 = 4x2y 2(x2 + y2)(2x + 2yy~ = 4x2y' + y(8x) 36. X3+y3_6xy=O 3X2+ 3y2y' - 6xy' - 6y = 0 4X3+ 4x2yy' + 4xy2 + 4yV = 4x2y' + 8xy y'(3y2 - 6x) = 6y - 3x2 4x2yy' + 4yV - 4x2y' = 8xy - 4x3 - 4xy2 4y'(x2y + y3 - X2) = 4(2xy- x3 - xy2) ,_2xy-x3-xy2 Y - x2y+y3-x2 At (1,1): y' = O. y'- - (16/9) 32 4 (3' 3): y , = (16/3) (64/9) - (8/3) = 40 = S. 4 8 At 6y -3x2 2y -x2 - 3y2 - 6x - y2 - 2x Section 2.5 Implicit Differentiation (c) Explicitly: 37. (a) x2 + y2 = 16 y2 = 16 - r dy dx y = :t~16 - r = :tl.(16 2 - (b) - r)-1/2(-2x) +=x - - x - ~16 - X2- :t~16 - r = -x y (d) Implicitly: 2x+2yy'=O -6 x -;; y'= 38. (a) (X2- 4x + 4) + (y2 + 6y + 9) = -9 + 4 + 9 (x - 2)2 + (y + 3)2 = 4 (Circle) (y + 3)2= 4 - (x - 2)2 (c) Explicitly: dy dx 1 = :t¥4 - (x - 2)2]-1/2(-2)(x - 2) +=(x- 2) (~4 - (x - 2)2 Y = -3:t--/4 - (x - 2)2 (b) -(x - 2) :t~4 - (x - 2)2 -1 -(x-2) -3 :t ~4 - (x - 2)2 + 3 -3 = - (x - 2) y+3 (d) Implicitly: 2x + 2yy' - 4 + 6y' = 0 (2y + 6)y' = -2(x - 2) y (c) Explicitly: 39. (a) 16y2= 144 - 9X2 1 y2 = -(144 16 3 y = :t4~16 9 - 9X2)= -(16 16 - X2) dy -dx 3 = :t-(16 - r)-1/2(-2x) 8 3x - X2 = +=4~16 -3x - r = 4(4/3)y = (d) Implicitly: (b) 18x + 32yy' = 0 -9x -6 ,_-(x-2) y:t3 y' = 16y -9x 16y 149 150 Chapter 2 40. (a) y2 Differentiation = 1 + X24 = r 4+ 4 (c) Explicitly: 1 Y = -z-..}r +4 2 r dy = +.!.( dx -4 + 4) -1/2(2x) -zx = 2../r + 4 (b) -zx _x - 4(I/2)..}r + 4 - 4y (d) Implicitly: 1 2yy' - -x 2 = 0 X y' = 4y 41. r+xy=5 2x + xy' + Y = 0 -(2x+y) y'=~ 2 + xy" + y' + y' = 0 xy"= -2(1 +y1 " - 2[1 - (2x + y)/x] = Y " x 2(x + y) r y= (Note: Youcouldwritey x 2(x + y) =~ 10 .:;=x3 = (5 - r)/x and calculate y' and y" directly.) 42. ry2-2x=3 2x2yy' + 2xy2- 2 = 0 ryy' + xy2 - 1 = 0 y'- l-xy2 -~ 2xyy' +r(y12 + x2yy"+ 2xyy'+ y2 = 0 4xyy' + r(Y12 + x2yy"+ y2 = 0 4 - -4xy2 + X 4xy2 - (I - xy2)2 x2y2 4ry4 + 1 - 2xy2 + ry4 + x2yy"+ y2 = 0 + x4y3y" + H =0 x4y3y" = 2x2y4- 2xy2 - 1 y" = 2x2,.4- 2xy2 - 1 .f x4y3 Section 2.5 43. X2 - y2 = 16 44.1-xy=x-y y-xy=x-l 2x - 2yy' = 0 X y y'= x-I y=-=-1 1- x y' = 0 x - yy' = 0 y"= 1 - yy" - (y ~2 = 0 1 ,, -yY-y Implicit Differentiation 0 X 2 () =0 y2 - y3y" = X2 y" = y2 - xl = -16 y3 y3 45. 46. y2=x3 2yy' = 4 2yy' = 3X2 , 3X2 3x2 xy 3y y ----.---.--- 2y - 2y xy - 2x , 2 y =Y x3 3y y2 - 2x " 2x(3y~ - 3y(2) y = 4xl - 2x[3 y2 = 4x . (3y/2x)] - y" = -2y-2y' = [ ] . ~ --2 2 Y Y - -4 y3 - 6y 4X2 -ll. - 3x - 4X2 - 4y 47. X2 + y2 = 25 -x Y'=y 6 At (4, 3): -4 Tangent line: y - 3 = 3(x - 4) ~ Normal line: y - 3 = ~(x - 4) ~ ~ 4x + 3y - 25 = 0 3x - 4y = O. -9lEZJ 6 At (- 3,4): Tangent line: y - 4 = ~(x + 3) ~ line: y - 4 = 3(x ~ 3x - 4y + 25 = 0 -4 Normal 9 -6 -9 + 3) ~ 4x + 3y = O. [SJ2]-6 9 151 152 Chapter 2 48. x2 + y2 = Differentiation 9 -x 4 Y'=y EZELJ At (0, 3): Tangent line: y = 3 -6[TJ6 Normal line: x = O. -4 4 At (2, ,)5): -2 Tangentline: y - .,/5 = .,/5 (x - 2) => 2x + .,/5y - 9 = 0 Normalline: y - .,/5 = 49. ~ (x - 2) => .,/5x - 2y = O. UE3 -6 LB2J 6 -4 x2 + y2 = r2 2x + 2yy' = 0 -x y' = - = slopeof tangentline y lx = slope of normal line Let (xo'y~ be a point on the circle. If Xo= 0, then the tangent line is horizontal, the normal line is vertical and, hence, passes through the origin. If Xo*- 0, then the equation of the normal line is y - y 0 = Yo(x Xo y=-x x ) 0 Yo Xo which passes through the origin. 50. y2 = 4x 2yy' = 4 y'=-= 2 y lat(I,2) Equation of normal at (I, 2) is y - 2 = - I(x - I), Y = 3 - x. The centers of the circles must be on the normal and at a distance of 4 units from (1,2). Therefore, (x - 1)2+ [(3 - x) - 2]2= 16 2(x - 1)2= 16 x = I ::f:2J2. Centersof the circles: (I + 2J2, 2 - 2J2) and(I - 2J2, 2 + 2J2) Equations:(x - I - 2J2)2 + (y - 2 + 2J2)2 = 16 (x - 1 + 2J2)2 + (y - 2 - 2J2)2 = 16 Section 2.5 51. 25x2 + 16y2+ 200x - 16Oy+ 400 5Ox + 32yy' + 200 - Implicit Differentiation =0 16Oy' =0 , 200 + 5Ox y = 160 - 32y (-8.5) = -4: Horizontal tangents occur when x -10 -8 -6 -4 -2 25(16) + 16y2+ 200(-4) - 16Oy+ 400 = 0 y(y - 10)= 0 ~ y = 0, 10 Horizontaltangents: (- 4,0); (- 4, 10). Vertical tangents occur when y 25r + 400 + 200x - = 5: 800 + 400 =0 25x(x + 8) = O~x = 0,-8 Verticaltangents: (0,5), (- 8, 5). 52. 4r + y2 - 8x + 4y + 4 =0 8x + 2yy' - 8 + 4y' = 0 8-8x -1 4-4x Horizontal tangents occur when x 4(1)2 + y2 - 8(1) + 4y + 4 -3 = I: =0 = y(y + 4) = 0 ~ (2.-2) (0,-2)l y' = 2y + 4 = y + 2 y2 + 4y (1.0) I""" I -1 -4 -s y 1(1,:'4) = 0, -4 Horizontal tangents: (1,0), (1, -4). Vertical tangents occur when y = - 2: 4r + (- 2)2- 8x + 4(- 2) + 4 = 0 4r - 8x= 4x(x- 2) = 0 ~ x = 0,2 Verticaltangents: (0, -2), (2, -2). 53. y = xR-=t 54. I Iny = Inx + ZIn(r - 1) Hz) =~+ ~- X2 ~I 2x2-1 = ~(x - l)(x - 2)(x - 3) I Iny = Z[In(x - 1) + In(x - 2) + In(x - 3)] ~(z) = Ux ~ 1 + x ~ 2 + x ~ 3] _2x2-1 dx - Y x(r - 1) - R-=t [ y ] 1 3X2- 12x + 11 I)(x - 2)(x - 3) = Z[(x - ] dy - 3r - 12x+ 11 dx 2y 3r - 12x+ 11 2~(x - l)(x - 2)(x - 3) 153 154 Differentiation Chapter 2 X2§-=2 55. y = y= Y( ) 2 dx =Y 3 2 = ~ + 2(3x - 2) - x - I 3x2 - 15x + 8 dy [2x(3x 2)(x - I) - H2) = ] - x(x - 1)3/2 v"X+l 3 I In y = In x + 2ln(x - I) - 2ln(x + I) () I =I 2 59. H2)=x~l+x~2-x~l-x~2 dy ] ( )= ~(I xx X2 X2 ~(2) = (x - - In x) (2) dy - 6(X2 - 2) = (x = (x + dx=y~+lnx [ I Iny = -In(1 + x) x -dx = y[ x-2'-- ( )=1. (~ )+ In(1 + x)(-1- ) = ~ dx xx+1 [ - In(xx+ I) ] = x [~x+1 - In(xx+ I)] 1. dy = (x + I)C ~ 2) + In(x - 2) = (x - y = (I + X)l/x I)ln(x - 2) X+ I ydx + In(x - 2) ] [ x-2 xl+x dy X+ I 2)X+ 1 - ] = xx-2 (x - I + xlnx) 62. 2)X+1 1)(;) + Inx X- I dy + In(x - 2) ] y.. (I + X)l/x ] (x + I)(x - I)(x + 2)(x - 2) y =XX-1 dy dx = 2y X2 (I - In x) = 2x(2/x)-2(I - In x) ~ - I)(r - 4) In y = (x - l)(In x) ( ) () Iny -6X2+ 12 6(X2- 2) (x - 1)2(x - 2)2 60. 1. dy = ~ 1. + Inx -~ y ] [(r - 4 =Y - (x - I)(x - 2) 2 Iny=-Inx x 61. -4 r + I)(x + 2) . - (x + 4x - 2 = (2x2 + 2x - I)~ x(x2 - I) (x + 1)3/2 y = X2/x ydx -2 [ dx = Y X2 - I + x~ I] 4X2 [ Iny = In(x + I) + In(x + 2) - In(x- I) - In(x- 2) ( ) ( ) 1- + 1)2/3(X2 - 1)4/3 (x + I)(x + 2) y = (x - I)(x - 2) 58. I I -2x+1 2=~[~+ x~ x ~ I - x ~ I] -4x - 3(r Y= I dY I 3 ydx =~+2x-1 ~I- HX2 dy -4xy I) - - 3(x44x I) -virr -+ I dx - 3(x4- 3x3 - 15r + 8x - 2(x - 1)3~3x - 2 57. +I x2-1 I Iny = 3[In(x2 + I) -In(x + I) -In(x - I)] I In y = 2 In x + 21n(3x - 2) - 2ln(x - I) I dY dx ~ 3- 56. (x - 1)2 X2 Section 2.5 63. Find the points of intersection by letting y2 2,x2+ 4x = 6 and = 4x in the equation 2,x2 + y2 Implicit Differentiation = 6. (x + 3)(x - I) = 0 The curves intersect at (1, :t2). Ellipse: Parabola: 4x + 2yy' = 0 2x y'= -Y 2yy' = 4 2 y' =y -6 At (1, 2), the slopes are: y' = 1. y' = -1 At (1, -2), the slopes are: y' = -1. y' = 1 Tangents are perpendicular. 64. Find the points of intersection by letting y2 2x2 + 3X3 = 5 and = x3 in the equation 2,x2 + 3y2 = 5. 3x3+2x2_5=0 Intersect when x = 1. Points of intersection: (1,:t I) y2 = X3: 2x2 + 3y2 = 5: 2yy' = 3X2 4x + 6yy' = 0 '- 3X2 Y -2y 2x y' = - 3y i=X3 At (1, 1), the slopes are: 2 y' = -'3' 3 y' =- 2 At (1, -1), the slopes are: 2 y' = '3' 3 y'= -2 Tangents are perpendicular. 65. y = -x and x = siny Point of intersection: (0, 0) y = -x: x=siny: y' = -1 1 = y'cosy y'=secy At (0, 0), the slopes are: y' = -1 y' = 1. Tangents are perpendicular. -6 6 155 156 Differentiation Chapter 2 66. Rewriting each equation and differentiating, x(3y - 29) = 3 x3 = 3(y - 1) x3 y=-+3 y' = I y = ~(~ + 29) I X2 - X2' y' = -3 For each value of x, the derivatives are negative reciprocals of each other, Thus, the tangent lines are orthogonal at both points of intersection, 67. xy' 2 x2_y2=K xy=C + Y = 0 2 2x - 2yy' = 0 -,~"c:s=:rn, ~ X y'= _lX y'= Y bl:ITJ -2 -2 At any point of intersection (x, y) the product of the = -1. The curves are orthogonal. slopes is (-y/x)(x/y) 68. 2x + 2 y = Kx x2+y2=C2 2 y'= K 2yy' = 0 X y'= -y .tm3. -2 .~, -2 At the point of intersection (x,y) the product of the slopes is (- x/y)(K) = (- x/Kx)(K) = -1. The curvesareorthogonal. 69. 2y2 - 3x4 = 0 dy dx (b) 4y- dt - 12x3-dt (a) 4yy' - 12x3= 0 =0 4yy'= 12x3 Y , ydy dt 12x3 3x3 - 4y - y ---- = 3X3dx dt 70. x2 - 3xy2 + y3 = 10 dx dx dy dy (b) 2x -dt - 3y2-dt - 6xy -dt + 3y2-dt = 0 (a) 2x - 3y2 - 6xyy' + 3y2y' = 0 (-6xy + 3y2)y' = 3y2 - 2x .(2x - 3y2)dx= dt (6xy - 3y2)dy dt 3y 2 - 2x 3y2 - 6xy . y'= 71. cos TTY- 3 sin TTX= I (a) - 7T sin (77)')y' - 37T CDSTTX = (b) -7Tsin(7Ty)dy dt - 37Tcos(7Tx)dx dt = 0 0 dy -sin(7Tytdt , - 3 cos TTX Y = sin TTY dx = 3 COS(7TX7t 72. 4 sin x cos y = I (a) 4 sin x(-sin y)y' + 4cosxcosy = 0 , cos x cos y y = sin x sin y (b) 4sinx(-siny)! + 4COSX~ cosy = 0 dx . . dy cos x cos Y dt = sm x sm y dt Section 2.5 73. (a) .0 = 4(4x2 - y2) 10 4y2 = 16x2 - .0 1 y2 y (b) = 4X2 - -.0 4 = Ij::: y =3~ -"~,, -10 - ~.0 1 = 4X2 - -.0 4 9 = 36 16x2 - .0 .0 - 16x2+ 36 = 0 X2 = 16 I ~256 - 144 = 8 + "28 2 -~£O Note thatx2 = 8 I h8 = 8 I 2fi = (I Ifi)2. Hence, there are four values of x: - 1- fi, 1- fi, -1+ fi, 1+ fi 3 ' - x(8 - X2) 2 ' - 8 fi d h 1 To III t e s ope, yy - x - x ~ y 2(3) . For x = -1 - fi, y' = Hfi + 7), andthe lineis Yl = Hfi + 7)(x+ 1 + fi) + 3 = t[(fi + 7)x + 8fi + 23]. Forx = 1 - fi, y' = Hfi yz = Hfi - 7), andthe lineis - 7)(x - 1 + fi) Forx = -1 + fi,y'= Y3= -Hfi = -Hfi - 7)x + 23 - 8fi]. - 7),andthelineis - 7)(x + 1 - fi) Forx = 1 + fi,y' Y4= -Hfi -Hfi + 3 = H(fi + 3 = -t[( fi - 7)x - (23 - 8fi)]. + 7), andthe lineis + 7)(x - 1 - fi) + 3 = -t[( fi + 7)x - (8fi + 23)]. (c) Equating Y3 and Y4' -1-(fi 3 - 7)(x + 1 - fi) + 3 = -1-(fi 3 + 7)(x - 1 - fi) +3 (fi - 7)(x+ 1 - fi) = (fi + 7)(x- 1 - fi) fix + fi - 7 - 7x - 7 + 7fi = fix - fi - 7 + 7x - 7 - 7fi 16fi = 14x 8fi x=7 If x = 8f, theny = 5 andthe linesintersectat (8f, 5). Implicit Differentiation 157 158 Chapter 2 74. tany=x Differentiation y'sec2y = 1 , 1 ~ ~ y = -- < y < sec2y' 2 2 sec2y = 1 + tan2y = 1 + X2 1 1 +x2 y'= 75. Letf(x) = x" = xp/q, where p and q are nonzero integers and q > O.First consider the case where p = f(x) = Xl/q is given by ~[Xl/q] dx = ~-->o lim f(x + /lx) /lx - f(x) = lim '-->xf(t)t -- f(x) x where t = x + /lx. Observe that f(t) - f(x) - t1/q - Xl/q t1/q - Xl/q t- x t - x - (tl/q)q - (Xl/q)q t1/q - Xl/q (tl/q - Xl/q)(tl-(l/q) + tl-(2/q)Xl/q + . . . + tl/qxl-(2/q)+ Xl-(l/q») 1 - tl-(l/q) + tl-(2/q)Xl/q + ... + tl/qxl-(2/q) + X1-(I/q)' As t~x, the denominator approaches qxl-(l/q). That is, d 1 1 _[Xl/q] = = -X(l/q)-l. dx qxl-(l/q) q Now consider f(x) = :xf'/q= (:xf')1/q. From the Chain Rule, f'(x) = .!.(:xf')(l/q)-l~:xf'] q dx = .!.(:xf')(l/q)-lp:xf'-l q 76. = !!..;,<p/q)-p]+(p-I) = !!..X(p/q)-bnx"-I q q (n = q). !!.. ~+Jy=Jc ~+~dy=O 2~ 2Jy dx dy__Jy dx- ~ Tangent line at (xo' Yo): y - Yo = - ~ yXo (x - xo) x-intercept:(xo + ~-So, 0) y-intercept:(0, Yo+ ~-So) Sum of intercepts: (xo + ~-50) + (Yo+ ~-50) = Xo+ 2~-50 + Yo= (~ + -50)2 = (Jc)2 = C.
© Copyright 2026 Paperzz