Quiz 7. Time: 15 minutes KEY Name: 1 Math 142, Calculus II, Fall 2016 Section: ID#: (i) (1pt) Which of the following is a correct identity. A. sec2 x = 1 − tan2 x. B. tan2 x = sec2 x − 1. C. cot2 x = csc2 x + 1. D. sec2 x − tan2 x = −1. (ii) (1pt) Which of the following is a correct identity. A. cos2 x = 1 − 2 sin(2x). B. sin2 x = 12 (1 − cos(2x)). C. cos2 x = 21 (1 − cos(2x)). D. B & C. (iii) (1pt) Which of the following is a correct identity. A. cos2 (2x) = 2 D. sin (2x) = 1 2 (1 B. cos2 (2x) = + cos(4x)). 1 4 (1 + cos(4x)). C. sin2 (2x) = 1 2 (1 + cos(4x)). 1 4 (1 + cos(4x)). Z (iv) (1pt) Consider the integral tan3 x sec x dx. To calculate this integral, we should use the substitution A. u = sec x. D. u = tan2 x. C. u = sec2 x. B. u = tan x. Solution: We split tan3 x into tan2 x tan x and then use the identity in part (i) Z Z Z 3 2 tan x sec x dx = tan x sec x tan x dx = (sec2 x − 1) sec x tan x dx Let u = sec x, then du = sec x tan x dx and so the integral becomes Z sec3 x u3 −u+C = − sec x + C. (u2 − 1) du = 3 3 J Z (v) (1pt) Consider the integral A. u = sec x. B. u = tan x. tan5 x sec4 x dx. To calculate this integral, we should use the substitution C. u = sec2 x. D. u = tan2 x. Solution: We split sec4 x into sec2 x sec2 x and then use the identity in part (i) Z Z Z Z tan5 x sec4 x dx = tan5 x sec2 x sec2 x dx = tan5 x(1 + tan2 x) sec2 x dx = (tan5 x + tan7 x) sec2 x dx Let u = tan x, then du = sec2 x dx and so the integral becomes Z u6 u8 tan6 x tan8 x (u5 + u7 ) du = + +C = + + C. 6 8 6 8 J Z (vi) Consider the integral dx . (x2 + 4)2 (vi1) (1pt) To calculate this integral, we should use the substitution A. x = 2 sec θ. B. x = 2 tan θ. C. x = 4 sin θ. D. x = 2 sin θ. (vi2) (1pt) With the correct choice of substitution, the integral can be written as Z Z Z Z 2 2 2 1 1 1 1 A. 8 sin θ dθ. B. 8 cos θ dθ. C. 4 sin θ dθ. D. 4 cos2 θ dθ. Quiz 7. Time: 15 minutes Math 142, Calculus II, Fall 2016 2 Solution: dx = 2 sec2 θ dθ and (x2 + 4)2 = ([2 tan θ]2 + 4)2 = (4 tan2 θ + 4)2 = (4[tan2 θ + 1])2 = (4 sec2 θ)2 = 16 sec4 θ. Thus, Z dx = (x2 + 4)2 Z 2 sec2 θ dθ 1 = 16 sec4 θ 8 Z dθ 1 = sec2 θ 8 Z cos2 θ dθ J 2 Z x √ dx is equivalent to (vii) (1pt) The integral 1 − x2 Z Z Z sin2 θ dθ. C. sin θ cos θ dθ. A. sin θ dθ. B. D. None of these choices. Solution: p √ √ Let x = sin θ, then dx = cos θ dθ and 1 − x2 = 1 − sin2 θ = cos2 θ = cos θ. Plugging all these in the integral we have Z Z Z x2 sin2 θ √ dx = (cos θ dθ) = sin2 θ dθ. cos θ 1 − x2 To calculate this integral we should use the identity in part (ii) sin2 θ = Z 1 cos(2θ) − to have: 2 2 Z θ sin(2θ) 1 cos(2θ) − dθ = − +C 2 2 2 4 θ 2 sin θ cos θ = − +C 2 4 √ sin−1 (x) x 1 − x2 = − +C 2 2 √ where in the last line we used the fact that x = sin θ and cos θ = 1 − x2 . sin2 θ dθ = J (2pts) DRAW A PICTURE! (You can use the back if space here is not enough. Don’t forget to comment on it)
© Copyright 2026 Paperzz