Extra Practice Chapter 1 29. Sample answer: You know the temperature in Quito in degrees Celsius and the temperature in Miami in degrees Fahrenheit. You need to find out which one is greater. 32. Input 2 4 6 8 Output 33. 7.5 10 12.5 y 15 Evaluate the expression. 4.4 7 5 1.1 1. k 1 9 when k 5 7 16 2. 21 2 x when x 5 318 3. 3.5 1 t when t 5 0.9 4. y 2 }3 when y 5 } } 12 24 8 2 8 } 7. z when z 5 } 3 27 m 5. } when m 5 9.6 2.4 6. 1.5t when t 5 2.3 4 3.45 1.2 9. 25 2 7 1 8 26 3 3 27 13. } 10 2 3 4 8. p when p 5 0.2 0.0016 10. 67 2 3 p 4 55 11. 82 4 4 1 12 28 12. 9 1 6 4 3 11 1 14. } (7 2 5.5)2 0.75 15. 3 1 4(3 1 24) 111 16. }[27 2 (2 1 5)]2 240 3 3 5 1.3 Translate the verbal phrase into an expression. 3 17. } of a number m }3 m x 18. the quotient of a number x and 7 } 19. the difference of a number y and 3 y 2 3 20. 6 more than 3 times a number n 3n 1 6 4 4 7 1.3 Write an expression for the situation. 21. Number of minutes left in a 45 minute class after m minutes have gone by 45 2 m 1 1 34. x y c 22. Number of meters in c centimeters } 100 1.4 Write an equation or an inequality. 23. The product of 12 and the difference of a number r and 4 is 72. 12 p (r 2 4) 5 72 n1an-01ep-01-t 24. The difference of a number q and 18 is greater than 10 and less than 15. 10 < q 2 18 < 15 1.4 Solve the equation using mental math. 25. d 2 13 5 25 38 1 x 21 35. 26. 12z 5 96 8 k 28. } 5 12 72 27. 23 2 m 5 7 16 6 1.5 29. For the following, identify what you know and what you need to find out. You do not need to solve the problem. 29. See margin. y One day the temperature in Quito, Ecuador, was 208C. The temperature in Miami, Florida was 758F. Which temperature was higher? n1an-01ep-02-t 1.6 30. Identify the number of significant digits in the measurements (a) 25.03 m and (b) 1.620 ft. a. 4 b. 3 1.7 31. Identify the domain and range of the function. Input 3 4 5 6 Output 9 11 13 15 domain: 3, 4, 5, 6; range: 9, 11, 13, 15 10 10 36. x y 1.7 32. The domain of the function y 5 1.25x 1 5 is 2, 4, 6, and 8. Make a table for n1an-01ep-03-t 1 x 22 the function. Identify the range of the function. See margin for table; range: 7.5, 10, 12.5, 15. 1.8 Graph the function. 33–36. See margin. 33. y 5 x 1 2; domain: 0, 1, 2, and 3 34. y 5 3x 2 3; domain: 1, 2, 3, and 4 35. y 5 1.5x; domain: 0, 20, 40, and 60 1 36. y 5 } x 1 2; domain: 0, 4, 8, and 12 4 n1an-01ep-04-t EP2 CS10_A1_MESE618203_C01EP.indd 2 4/2/11 12:12:29 AM EP2 CC13_A1_METE647067_C1EP.indd 2 6/4/11 3:52:54 PM Extra Practice Chapter 2 2.1 Evaluate the expression. } } 3. Î 6400 80 } 1. -Ï 36 -6 2. ±Ï 400 ±20 } 4. ±Ï 144 ±12 2.1 Approximate the square root to the nearest integer. } } } 12 5. Ï 135 } 7. -Ï 160 -13 6. -Ï 75 -9 8. Ï 250 -16 Solve the equation. Check your solution. 2.2 9. x 1 4 5 20 16 13. 7h 5 63 9 10. 8 5 m 2 13 21 11. t 1 2 5 210 212 14. 24t 5 244 11 15. } 5 13 52 2.3 17. 4x 1 3 5 27 6 y 23 b 4 16. } 5 8 224 18. 6m 2 4 5 14 3 t 4 19. 50 5 7y 2 6 8 x 7 20. } 2 3 5 9 48 2.4 23. 6x 1 3x 1 8 5 35 3 26. 7m 1 3(m 1 2) 5 224 23 2.5 29. 8x 2 4 5 3x 1 6 2 21. } 1 3 5 22 235 22. 6p 2 2p 5 28 7 24. 12w 2 5 2 3w 5 40 5 25. 4d 2 3 2 2d 5 215 26 27. 5x 2 3(x 2 5) 5 13 21 3 28. }(2y 2 8) 5 6 8 30. 10 2 2x 5 3x 2 20 6 31. 5 2 5x 5 14 2 8x 3 4 1 2 32. 3(2y 2 5) 5 4y 2 7 4 12. z 2 8 5 27 1 3 4 34. 3x 2 3 5 }(2x 1 12) 8 33. 9 1 4y 5 2(3 2 y) 2} 2.6 Solve the proportion. Check your solution. 7 x 35. } 5 } 56 2 16 m 6 36. } 5 } 2 9 z 48 37. } 5 } 16 4 27 30 t 38. } 5 } 6 12 50 10 2.6 Write the sentence as a proportion. Then solve the proportion. 5 7 15 9 x 3 12 y 6 42. 6 is to 18 as y is to 3. } 5 }; 1 18 3 39. 5 is to 7 as 15 is to x. } 5 } x ; 21 40. 9 is to 3 as x is to 12. } 5 }; 36 g 16 41. g is to 9 as 16 is to 12. } 5 }; 12 9 12 2.7 Solve the proportion. Check your solution. 6 12 43. } 5} 14 x 7 2x 1 6 x 7 2 47. } 5 } 4 6x 4 18 12 7 x 1 13 4 45. } 5 } 8 44. } 5 } 1 3b 5b 2 7 8 11 8 2x 1 12 48. } 5 } 8 12 y15 10 8 46. } y 5 } 20 6 x18 4.8 2 2x 8 0.4 1 x 10 49. } 5 } 22 50. } 5 } 1.6 2.8 Solve the literal equation for x. Then use the solution to solve the specific equation. c c1b 51. ax 2 b 5 c; 6x 2 5 5 25 x 5 } a ;5 52. a(b 2 x) 5 c; 2(8 2 x) 5 26 x 5 b 2 } a ; 11 2.8 Write the equation so that y is a function of x. 53. 5x 1 y 5 10 y 5 25x 1 10 54. 8x 2 2y 5 16 55. 7x 1 3y 5 6 2 5x y 5 4x 2 8 y 5 24x 1 2 56. 21 5 6x 1 7y y 5 2 }6 x 1 3 7 EP3 CS10_A1_MESE618203_C02EP.indd 3 4/1/11 9:37:05 PM EP3 CC13_A1_METE647067_C2EP.indd 3 6/4/11 3:53:22 PM Extra Practice Chapter 3 1–12. See Additional Answers. 1. K(24, 22) 2. L(5, 0) 3. M(3, 21) 4. N(22, 2) Quadrant III Quadrant IV Quadrant II on the x2axis 5. P(0, 4) 6. Q(23.5, 5) 7. R(2.5, 6) 8. S(21, 21.5) Quadrant II Quadrant I Quadrant III on the y-axis 3.1 Graph the function with the given domain. Then identify the range of the function. 9, 10. See margin for art. y 13. 3.1 Plot the point in a coordinate plane. Describe the location of the point. 1–8. See margin for art. 1 x 21 1 10. y 5 } x 2 3; domain: 24, 22, 0, 2, 4 9. y 5 22x 1 2; domain: 22, 21, 0, 1, 2 2 range: 22, 0, 2, 4, 6 3.2 Graph the equation. 11–18. See margin. 14. y n1an-04ep-13-t range: 25, 24, 23, 22, 21 11. y 2 x 5 3 12. y 1 3x 5 5 13. y 2 4x 5 10 14. y 5 4 15. 2x 2 y 5 0 16. 3x 1 y 5 0 17. 3x 1 2y 5 26 18. x 5 0.5 3.3 Find the x‑intercept and the y‑intercept of the graph of the equation. 19–22. See margin. 1 19. 2x 2 y 5 12 20. 25x 2 2y 5 20 3 4 21. 24x 1 1.5y 5 4 22. y 5 }x 2 15 x 21 3.3 Graph the equation. Label the points where the line crosses the axes. 23–26. See margin. y 15. 23. y 5 3x 2 6 n1an-04ep-14-t 1 7 29. (25, 3) and (28, 10) 2}3 31. (22, 5) and (22, 10) no slope 32. (6, 24) and (4, 24) 0 1 3 3.5 Identify the slope and y‑intercept of the line with the given equation. 33–36. See margin. 33. y 5 7x 1 8 y 34. y 5 10x 2 6 35. y 5 3 2 4x 36. y 5 x 3.5 Rewrite the equation in slope‑intercept form. Then identify the slope and the y‑intercept of the line. 37–40. See margin. n1an-04ep-15-t 3 37. 2x 1 y 5 8 x 21 y 38. 10x 2 y 5 20 39. 5x 1 2y 5 10 40. 22x 2 y 5 3 43. 2x 1 y 5 1 44. 22x 1 3y 5 29 3.6 Graph the equation. 41–44. See margin. 41. y 5 2x 2 4 17. 26. 0.3x 2 y 5 6 2 28. (23, 0) and (2, 25) 21 30. (9, 4) and (0, 1) } x 16. 3 3.4 Find the slope of the line that passes through the points. 27. (4, 2) and (6, 8) 3 21 2 1 25. } x1} y 5 10 24. 4x 1 5y 5 220 3 42. y 5 2} x11 4 3.6 Graph the direct variation equation. 45–52. See margin. n1an-04ep-16-t 1 1 x 45. y 5 2x 46. y 5 2x 47. y 5 4x 48. 5x 1 y 5 0 49. x 2 2y 5 0 50. 3x 1 y 5 0 51. 2y 5 9x 52. y 2 }x 5 0 5 4 3.7 Find the value of x so that the function has the given value. 53. f(x) 5 27x 2 3; 217 2 18. y 56. m(x) 5 x 2 2 57. t(x) 5 x 1 4 58. z(x) 5 6x 59. h(x) 5 22x EP4 x 19. x-int: 6, y-int: 212 20. x-int: 24, y-int: 210 CS10_A1_MESE618203_C03EP.indd 4 n1an-04ep-18-t 55. t(x) 5 3x 1 1; 211 24 3.7 Graph the function. Compare the graph with the graph of f(x) 5 x. 56–59. See margin. 2 n1an-04ep-17-t 21 16 5 54. g(x) 5 5x 2 4; 12 } 21. x-int: 21, y-int: }8 3 22. x-int: 20, y-int: 215 23–26. See Additional Answers. 33. slope: 7, y-intercept: 8 34. slope: 10, y-intercept: 26 35. slope: 24, y-intercept: 3 36. slope: 1, y-intercept: 0 37. y 5 22x 1 8; slope: 22, y-intercept: 8 38. y 5 10x 2 20; slope: 10, y-intercept: 220 39. y 5 2 }5 x 1 5; slope: 2 }5, 2 2 y-intercept: 5 40. y 5 22x 2 3; slope: 22, y-intercept: 23 41–52, 56–59. See Additional Answers. EP4 CC13_A1_METE647067_C3EP.indd 4 6/4/11 3:54:13 PM 3/18/11 9:48:58 PM Extra Practice Chapter 4 13. 4.1 Write an equation of the line with the given slope and y‑intercept. y 3 x 21 14. 2. slope: 22 3. slope: 5 y‑intercept: 6 y 5 3x 1 6 4. slope: 21 y‑intercept: 23 y 5 2x 2 3 y‑intercept: 4 y 5 22x 1 4 1 5. slope: } y‑intercept: 21 y 5 5x 2 1 7 6. slope: 2} 10 2 y‑intercept: 25 y‑intercept: 8 7 y 5 }1x 2 5 y 5 2} x 1 8 10 2 4.2 Write an equation of the line that passes through the given point and has the given slope m. y 2 8. (21, 5); m 5 24 9. (26, 3); m 5 } 3 y 5 2x 1 2 y 5 24x 1 1 y 5 }2 x 1 7 3 4.2 Write an equation of the line that passes through the given points. 7. (3, 8); m 5 2 1 x 22 1 12. 2, } , (6, 3) 1 10. (2, 4), (5, 13) 11. (1, 22), (22, 13) y 5 3x 2 2 y 5 25x 1 3 4.3 Graph the equation. 13–15. See margin. n1an-05ep-01 -t 15. 1. slope: 3 y 13. y 2 3 5 23(x 1 4) 3 2 y 5 }2 x 2 1 3 2 15. y 2 6 5 } (x 2 3) 14. y 1 5 5 22(x 2 1) 3 4.3 Write an equation in point‑slope form of the line that passes through the given points. 16–18. See margin. n1an-05ep-02-t 16. (24, 2), (22, 16) 1 x 23 17. (3, 9), (27, 4) 18. (10, 22), (12, 26) 4.4 Write an equation in standard form of the line that passes through the given point and has the given slope m or that passes through the two given points. 16–18. Sample answers are given. 16. y 2 2 5 7(x 1 4) 17. y 2 9 5 }1 (x 2 3) 2 n1an-05ep-03 -t 19. (2, 7), m 5 24 20. (5, 11), m 5 3 21. (1, 22), (22, 4) 2x 1 y 5 0 4x 1 y 5 15 3x 2 y 5 4 2 }5x 1 70 6 4.5 Write an equation of the line that passes through the given point and is parallel to the given line. 18. y 1 2 5 22(x 2 10) 28. y 22. (5, 4), y 5 3x 1 5 y 5 3x 2 11 60 50 40 30 20 10 0 29. 30. y 5 25x 2 22 perpendicular to the given line. line of fit 0 1 2 3 4 5 6 x y 7 6 31. 3 5 5 y 5 2}x 1 14 3 25. (212, 22), y 5 3x 1 2 26. (15, 211), y 5 }x 2 8 1 y 5 2 }x 2 6 3 27. (7, 26), 4x 1 6y 5 7 33 y 5 }3x 2} 2 2 4.6 Make a scatter plot of the data in the table. Draw a line of fit. Write an equation of the line. 28, 29. See margin for art. 28. 4.7 29. x 1 2 3 3.5 4 4.5 5 y 20 35 40 55 60 45 60 x 10 20 30 40 50 60 y 55 45 45 40 35 20 Sample answer: y 5 10x 1 10 Sample answer: y 5 2 }5x 1 70 Make a scatter plot of the data. Find the equation of the best‑fitting line.6 Approximate the value of y for x 5 7. 30–31. See margin for art. 30. line of fit n1an-05ep-05-t x 0 2 4 6 8 y 0.5 3 4 5.5 7 y 5 0.78x 1 0.9; 6.36 2 1 0 24. (8, 23), y 5 }x 1 5 4.5 Write an equation of the line that passes through the given point and is y 70 60 line of fit 50 40 n1an-05ep-04-t 30 20 10 0 0 10 20 30 40 50 60 70 x 5 4 3 3 4 3 y 5 }x 2 9 4 23. (23, 27), y 5 25x 2 2 31. EP5 x 0 1 y 5 8 3 6 8 12 15 14 y 5 1.1x 1 6.7; 14.4 0 2 4 6 8 10 12 x y 18 15 12 9 6 3 0 CS10_A1_MESE618203_C04EP.indd 5 3/18/11 10:10:02 PM n1an-05ep-06-t line of fit 0 1 2 3 4 5 6 7 8 x n1an-05ep-07-t CC13_A1_METE647067_C4EP.indd 5 EP5 6/4/11 3:54:33 PM Extra Practice Chapter 5 1–9. See Additional Answers. 10. Solve the inequality. Graph your solution. 1–24. See margin for art. 27 26 25 2 24 9. 28.5 ≤ t 2 10 t ≥ 1.5 25.5 12. 26 24 n1an-06ep-10-t 22 5.2 13. 3p ≤ 27 0 n1an-06ep-11-t 5 4 4 14. 24 15. 2 16. 215 17. 0 6 8 10 23 22 21 4 6 8 n1an-06ep-12-t z ≤ }2 210 25 n1an-06ep-15-t 1 1 2 y > 210 19. 0.3z ≤ 2.4 20. 25 > 22.5s 22. 0.09d < 21.8 23. } > 215 25. 3x 1 5 ≥ 20 10 s > 210 y 0.3 24. 21.8t < 9 y > 24.5 t > 25 z<3 29. 8(m 1 2) < 4(5 1 2m) all real numbers 32. 6(25 1 3p) ≥ 3(6p 2 10) 3 27. 8(t 1 4) > 28 t > 25 30. 6d 2 4 2 3d ≥ 14 d≥6 5 6 2 33. }(12z 2 24) > } (25z 2 25) 5 all real numbers no solution y<6 5.4 Solve the inequality. Graph your solution. 34–42. See margin for art. 34. 2 ≤ y 2 4 < 7 35. 227 < 9x < 27 6 ≤ y < 11 5 37. 15 < }(18a 2 9) ≤ 30 9 2 < a ≤ 3}1 2 18. r < 24 or r ≥ 22 42. 2n 2 1 > 1 or 2n 1 8 > n 1 8 22 t ≥ 4 or t < 28 m > 22 or m < 25 19. 2<z<5 39. 3r 1 7 < 25 or 32 ≤ 7r 1 46 1 41. 9t 2 20 ≥ 4t or 4 < } t 40. 24m < 8 or 2m 2 2 < 212 212 26 0 n1an-06ep-17-t 36. 2 < 6z 2 10 < 20 23 < x < 3 38. 2v > 12 or v 1 2 < 6 v > 6 or v < 4 2 218 z≤8 26. 6z 2 5 < 13 x≥5 28. 7 2 8n ≤ 4n 2 17 n≥2 2 31. } y 1 28 > 20 1 2y 0 112 n1an-06ep-16-t x≥6 18. 23 ≥ } y 22 5.3 Solve the inequality, if possible. Graph your solution. 25–33. See margin for art. n1an-06ep-13-t n1an-06ep-14-t 15 3 m ≤ 4.61 y < 25.5 d < 220 3 12 5 16. } < 5 n ≤ 26 2 21. 4.8z ≤ 3.2 13. 8 4 8 x 15. } ≥ 2 3 n 2 m ≤ }3 6 4. m 1 3 < 2 x≤7 m < 21 7 3 7 2 1 1 7. 1 } > 6 } 1 z z < 24 } 8. 3 } ≥ 1} 1 k k ≤ 2} 12. 1.48 2 m ≥ 23.13 t < 22 17. 26m ≥ 29 3. 4 ≥ x 2 3 11. 26.9 > 21.4 1 y 14. 213t > 26 p≤9 4.61 3 x ≤ 23 3 5 6. 2} 1 n < 23} 4 8 n < 26}3 8 10. r 1 4 < 20.7 r < 24.7 y>5 1 n ≤ 2}1 5. 2 1 n ≤ 4} 2 11. 28 2. 5 1 x ≤ 2 5.1 1. y 2 2 > 3 24.7 n < 22 or n > 0 5.5 Solve the equation, if possible. 4 20. 215 21. 6 8 10 n1an-06ep-18-t 210 25 n1an-06ep-19-t 43. x 5 8 44. y 5 210 45. m 1 6 5 5 68 no solution 211, 21 47. t 2 7 5 21 48. 6z 2 4 5 36 49. 46s 1 11 5 252 214, 28 22, 10 no solution 51. 5r 1 10 5 15 52. 23s 1 4 5 14 53. 247v 1 2 5 32 21, 1 23}2 , 1 no solution 3 5.6 Solve the inequality. Graph your solution. 55–66. See margin for art. 12 0 2 3 24 n1an-06ep-20-t 0 22 2 4 55. x ≤ 3 22. 240 23. 230 220 23 ≤ x ≤ 3 59. x 1 2 > 6 x < 28 or x > 4 63. 3p 2 3 ≤ 12 210 n1an-06ep-21-t 24.5 28 n1an-06ep-22-t 26 24 22 25. 2 26. 1 27. 26 28. 0 24 n1an-06ep-23-t 22 0 4 6 8 2 3 4 24 22 0 n1an-06ep-24-t n1an-06ep-25-t 2 n1an-06ep-27-t n1an-06ep-28-t 13 10 23, 4 50. r 1 3 2 16 5 24 215, 9 6 3}3, 6 5 2 58. q < } 5 57. s > 1.2 5w 2 4 2 4 5 8 54. 12 } 2 2}5 < q < }2 s < 21.2 or s > 1.2 5 61. 8 2 m < 3 62. 4n 2 1 ≥ 7 3 n ≤ 2} or n ≥ 2 5 < m < 11 2 2 c 1 2 < 64 65. 25a 2 1 1 3 ≤ 11 66. 4} 3 2 }3 ≤ a ≤ 1 227 < c < 21 5 69. 4x 1 y > 3 70. x ≤ 25 71. 3(x 2 8) ≤ 6y 72. 2x 2 y ≥ 22 73. y > 8 74. 2(x 2 1) ≥ 1 2 y 75. x 2 8 ≤ y 1 2 76. 2x ≥ 22y 77. 3(y 2 8) > x 2 9 78. 2(2x 2 1) ≥ 4 1 y EP6 29. n1an-06ep-26-t 1 y ≤ 25 or y ≥ 5 60. y 1 3 ≤ 5 28 ≤ y ≤ 2 64. 3q 1 2 2 3 ≥ 8 21 ≤ p ≤ 7 q ≤ 2} or q ≥ 3 3 5.7 Graph the inequality. 67–78. See margin. 67. y ≥ x 1 5 68. y < x 2 1 0 24. 26 56. y ≥ 5 46. 4z 2 2 5 14 2 24 31. 22 0 CS10_A1_MESE618203_C05EP.indd 6 2 4 30. 3 5 6 7 n1an-06ep-29-t 33. 2 4 6 8 10 32. 8 24 n1an-06ep-30-t 22 0 n1an-06ep-31-t 2 4 24 22 0 2 4 34–42, 55–78. See Additional Answers. 3/18/11 10:39:01 PM n1an-06ep-33-t n1an-06ep-32-t EP6 CC13_A1_METE647067_C5EP.indd 6 6/4/11 3:55:23 PM Extra Practice Chapter 6 25. 6.1 Solve the linear system by graphing. Check your solution. y 2 26. 3. x 2 y 5 4 4. 4x 2 y 5 10 5. 3x 2 2y 5 25 16 2 1 6. } x1} y5} y 5 24x 2 2 (22, 6) 4x 1 3y 5 218 (23, 22) x 1 y 5 22 (1, 23) 3 3 2 5 3 8 (6, 4) 2}x 1 y 5 } 5 6.2 Solve the linear system using substitution. y 7. y 5 2x 1 6 22y 2 2x 5 8 8. y 5 3x 1 5 10. 2x 2 y 5 0 x 3 1 x 1 y 5 21 2}2, }1 2 x 5 y 2 3 (23, 0) 2 n1an-ep07-01-t 26 2. y 5 3x 1 12 x 5 4 (4, 6) x 22 2x 1 y 5 23 1. y 5 x 2 1 y 5 2x 1 5 (3, 2) y 5 22x 1 5 9. x 5 2y 2 5 2 2x 2 y 5 11 (9, 7) 3 1 12. } x1} y55 11. 1.5x 2 2.5y 5 22 x 1 3y 5 256 (28, 216) 4 1 x 2 }y 5 6 (7, 2) 2 2 x 2 y 5 10 (3, 27) 2y 2 4x 5 10 Solve the linear system using elimination. 27. 6.3 13. x 1 2y 5 2 y 2x 1 3y 5 13 (24, 3) 10x 1 5y 5 215 16. 5x 1 4y 5 6 n1an-ep07-02-t 1 x 7 5x 1 7y 5 29 (26, 3) 34. 21. 8x 2 3y 5 61 3 2 2x 1 6y 5 11 1 10, 2} 2 2 5x 1 2y 5 249 (29, 22) 7y 5 4x 2 79 1 }9, 210 2 4 2x 2 5y 5 223 (11, 9) 24. 15x 2 8y 5 6 14 9 25x 2 12y 5 16 1 } , }2 5 2 6.5 Graph the linear system. Then use the graph to tell whether the linear 21 n1an-ep07-03-t y 5 22 system has one solution, no solution, or infinitely many solutions. 25–27. See margin for art. x 25. 2x 1 y 5 23 26. 2y 2 4x 5 10 y 5 22x 1 5 22y 2 2x 5 8 no solution one solution 6.5 Solve the linear system using substitution or elimination. y 5 25 2 30. 5x 1 5y 5 232 31. 4x 1 6y 5 11 32. 3y 2 3x 5 12 33. x 1 2y 5 230 y 5 3x 2 12 (20, 48) y 5 x 2 4 no solution 34. y ≥ 25 35. x ≥ 23 x 2 y > 24 38. x > 3 y 2 4x < 8 x > 21 39. x 1 y > 3 x<5 y > 22 y≤0 1 n1an-ep07-05-t 22 36. y < 22x 2 3 y<1 37. x 1 4y ≥ 28 y y5x14 x2y>5 x 1 2y ≤ 8 x 2 5y > 10 x EP7 y 5 22x 2 3 38. y 39. y y CS10_A1_MESE618203_C06EP.indd 7 3/18/11 11:07:25 PM 1 n1an-ep07-06-t 1 x 21 1 1 1 1 y5} x 1 15 (230, 0) 2 y ≤ 22 36. 3x 1 3y 5 14 no solution 6.6 Graph the system of inequalities. 34–39. See margin. x 21 y 5 22x 2 3 infinitely many solutions 29. 2y 2 3x 5 36 2 y 5 2} x 1 7 no solution 3 n1an-ep07-04-t 27. 10x 1 5y 5 215 28. y 2 3x 5 5 x 5 y 2 5 (0, 5) y 37. 20. 5x 1 2y 5 219 23. 5x 2 2y 5 53 6x 1 4y 5 31 1 }5, 4 2 1 35. 18. 4x 2 3y 5 39 10x 2 7y 5 216 (23, 22) 22. 4x 2 3y 5 22 y 17. 10y 2 3x 5 241 3x 2 5y 5 16 (23, 25) 6.4 19. x 1 y 5 23 y 5 22x 2 3 15. 3x 1 2y 5 231 x 2 4y 5 240 (12, 13) 7x 1 4y 5 14 1 4, 2}2 2 1 14. 3x 2 4y 5 216 x x n1an-ep07-08-t EP7 n1an-ep07-09-t n1an-ep07-07-t CC13_A1_METE647067_C6EP.indd 7 6/4/11 3:55:54 PM Extra Practice Chapter 7 41. y Simplify the expression. In exercises involving numerical bases only, write your answer using exponents. 7.1 1. 53 p 54 57 5. [(24)3]2 (24) 2 87 5 8 7.2 13. } 2 y 8 43. 1 4y3 2 5 3 x 21. } y 64y 27 1 29. } y x 8 1 33. y210 } 10 7.4 41. y 5 3x q 1 2 3 4 2 5x y 23. } 2 25x 2y 6 4 6a4b5 ab 3 1 a2abb 2 24. } p } 2 2 } 2x y } 8 48b 1 16 27. 70 1 28. 425 p 43 } 1 30. (322)3 } 1 31. } 32 25 32. } 64 26 824 8 2 10c5 35. 10b23c 5 } 3 6 e 36. (2d 5e22)23 } 15 b (2e)24g5 3 (22z) 39. } 296z 5 25 g8 8d 40. } }9 5 23 16e eg 3 1 53. y 5 4 p } x y 44. y 5 5 p 2x 1 3 46. y 5 2} p 5x 47. y 5 25 p 2x 48. y 5 2} p 4x 50. y 5 (0.2)x 51. y 5 3 p (0.2)x 1 52. y 5 2 p } 1 1 54. y 5 } p } 132 x x 1 94 2 43. y 5 } 1 2 7.5 49. y 5 1 }1 2 x 1 55. y 5 22 p } 132 2 x 132 x 3 56. y 5 2} p 1 4 } 132 x 132 7.5 Tell whether the table represents an exponential function. If so, write a rule for the function. x 57. n1an-ep08-05-t x 21 y 5 } 2 0 5 1 59. x n1an-ep08-06-t 2 10 exponential; y 5 5 p 2 y 21 4x18 y 20. }4 26. (25)23 2} 42. y 5 1.25x 1 45. y 5 } p 2x 1 2 1 6x3y 2 p }7 Graph the function. 41–60. See margin. x x 47. 648u 10 z } 8 81c 1 t5 38. } }3 25 3 6t u 6u 3 21 2 1 34. (3c)24 } 4 y y5 y 1 3 10 9 2 7.3 Simplify the expression. Write your answer using only positive exponents. 2 46. 4 4 729 x24 y x n1an-ep08-04-t 21 p 1 10 5 16. 1012 p } 7 2}5 7 7 1q2 19. } 12. (24s 2)3(2s 3)6 24096s 24 25 3 5 1 23 2 1 125 37. } }4 25 45. 15. 2} 2 22. } 2 1 81 23 122 y n1an-ep08-03-t 21 6 p 42 5 4 14. 4} 3 3u 1 u 2 p 1} z 2 1 p} } 6 25. 324 } n1an-ep08-02-t 21 11. (3d2)3 p 2d2 54d 8 t 9 8. n2 p n 4 p n 5 n11 10. (22x)3 28x 3 1 18. } p t 13 t 4 9 75 4. (28)2 216 7 7.3 Evaluate the expression. 2 44. 4 172 n1an-ep08-01-t 21 7. m 5 p m2 m 4 1 17. 79 p } 2 3. (22)3 p (22)6 (22) 9 6. (8 p 4)5 8 5 p 4 5 9. (y 3)5 y 15 x 21 42. 2. 6 p 67 6 8 6 20 58. 3 40 x 21 0 1 2 3 y 80 40 20 10 5 x exponential; y 5 40 p 1 }1 2 x x 21 0 1 2 3 y 1 0 1 4 9 60. 2 x 21 0 1 y 48 36 27 2 3 1 4 3 16 20} 15} x exponential; y 5 36 p 1 }3 2 not exponential 4 EP8 48. 1 y 21 n1an-ep08-07-t x 49. 50. y 51. y y CS10_A1_MESE618203_C07EP.indd 8 3/19/11 12:39:13 AM 1 21 1 x 21 3 x 21 x 52–56. See Additional Answers. n1an-ep08-08-t n1an-ep08-09-t CC13_A1_METE647067_C7EP.indd 8 EP8 n1an-ep08-10-t n1an-ep08-11-t 6/4/11 3:56:34 PM Extra Practice Chapter 8 Find the sum or difference. 8.1 1. (6x 2 21 7) 1 (x 2 2 9) 2. (8y 2 223y 2 10) 1 (211y 2 1 2y 2 7) 23y 2 y 2 17 7x 2 2 3. (10m22 2 7m 1 2) 2 (3m2 2 2m 1 5) 7m 2 5m 2 3 5. (6b 3 1 12b 2 2 b) 2 (15b 2 1 7b 2 8) 6b3 2 3b 2 2 8b 1 8 Find the product. 8.2 7. 5x 4(2x 3 2 3x 2 1 5x 2 1) 10x 7 2 15x 6 1 25x 5 2 5x4 10. (2x 2 2 5x 1 6)(3x 2 2) 6x 3 2 19x 2 1 28x 2 12 8.3 13. (x2 1 10)2 x 1 20x 1 100 16. (3x 2 4y)(3x 1 4y) 9x 2 2 16y 2 8.4 Solve the equation. 4. (2t 3 2 3t 2 21 5t) 2 (6t 3 1 3t 2 2 5t) 3 24t 2 6t 1 10t 6. (r 2 2 8 1 4r 3 1 5r) 2 (7r 3 2 3r 2 1 5) 23r 3 1 4r 2 1 5r 2 13 8. (x 2 1 4x 1 2)(x 1 7) 9. (2x 1 3)(4x 1 2) x 3 1 11x 2 1 30x 1 14 8x 2 1 16x 1 6 11. (3x 2 7)(x 1 5) 12. (9t 2 2)(2t 2 3) 14. (m 1 8)(m 2 8) 15. (4x 2 2)(4x 1 2) 17. (6 2 3t)(6 1 3t) 18. (211x 2 4y)2 19. (m 1 8)(m 2 2) 5 0 28, 2 20. (2y 2 6)(y 1 3) 5 0 63 21. (5y 2 3)(2y 2 4) 5 0 }, 2 22. 3b 2 1 9b 5 0 23, 0 23. 212m2 2 3m 5 0 2}4 , 0 3x 2 1 8x 2 35 18t 2 2 31t 1 6 2 16x 2 2 4 m 2 64 36 2 9t 2 121x 2 1 88xy 1 16y 2 1 3 5 24. 14k 2 5 28k 0, 2 8.5 Factor the trinomial. 25. y 2 1 7y 1 12 (y 1 3)(y 1 4) 26. x 2 2 12x 1 35 (x 2 7)(x 2 5) 27. x 2 1 5x 2 36 (x 2 4)(x 1 9) 28. q 2 1 3q 2 40 29. m2 2 29m 1 100 (q 2 5)(q 1 8) 8.5 Solve the equation. 30. y 2 1 14y 2 72 (m 2 25)(m 2 4) 31. m2 2 7m 1 10 5 0 2, 5 2 (y 2 4)(y 1 18) 32. p 2 2 7p 5 18 22, 9 33. z 2 2 13z 1 24 5 212 4, 9 2 34. n 1 8 5 6n 2, 4 35. r 2 15r 5 28r 2 10 2, 5 8.6 Factor the trinomial. (3k 2 4)(k 2 2) 2(x 2 3)(x 2 2) 36. c 2 2 8 5 213c 1 6 214, 1 37. 2x 2 1 5x 2 6 38. 3k 2 2 10k 1 8 39. 4k 2 2 12k 1 5 (2k 2 1)(2k 2 5) 40. 6t 2 2 5t 2 6 (2t 2 3)(3t 1 2) 41. 23s 2 2 7s 2 2 42. 2v 2 2 5v 1 3 (2v 2 3)(v 2 1) 2(3s 1 1)(s 1 2) 8.6 Solve the equation. 2 3 43. 23x 2 1 14x 2 8 5 0 }, 4 4 3 46. 3p 2 2 28 5 17p 2}, 7 3 3 2 4 44. 8t 2 1 6t 5 9 2}, } 1 45. 2x 2 1 3x 2 2 5 0 22, } 1 47. 16m2 2 1 5 215m 21, } 48. t(6t 2 7) 5 3 2}, } 50. 9y 2 2 49 (3y 2 7)(3y 1 7) 51. 12y 2 2 27 3(2y 2 3)(2y 1 3) 53. 4x 2 2 12x 1 9 (2x 2 3) 2 54. 27x 2 2 36x 1 12 3(3x 2 2) 2 16 1 3 3 2 2 8.7 Factor the polynomial. 49. y 2 2 36 (y 1 6)(y 2 6) 52. x 2 2 8x 1 16 (x 2 4) 2 55. g 2 1 10g 1 25 (g 1 5) 2 56. 9b 2 1 24b 1 16 (3b 1 4) 8.8 Factor the polynomial completely. (3z 2 1)(z 2 5) 2 2 57. 4w 2 1 28w 1 49 (2w 1 7) (5m 2 3)(m 2 4) 58. 2x 2 1 8x 1 6 2(x 1 1)(x 1 3) 59. 3z 2 2 16z 1 5 60. 5m2 2 23m 1 12 61. 3y 3 1215y 2 1 2y 1 10 63. 98m 3 2 18m (3y 1 2)(y 1 5) 64. 8h2k 2 32k 8k(h 2 2)(h 1 2) 62. 30z 3 2 14z 2 2 8z 2z(5z 2 4)(3z 1 1) 65. 2h 3 2 3h2 2 18h 1 27 (h 1 3)(h 2 3)(2h 2 3) EP9 2m(7m 2 3)(7m 1 3) 66. 212z 3 1 12z 2 2 3z 23z(2z 2 1) 2 CS10_A1_MESE618203_C08EP.indd 9 3/19/11 1:35:21 AM EP9 CC13_A1_METE647067_C8EP.indd 9 6/4/11 3:56:50 PM Extra Practice Chapter 9 9.1 Graph the function. Compare the graph with the graph of y 5 x 2. 1–8. See margin. 1–7. See Additional Answers. 8. y 2 x 21 2 1. y 5 4x 2 2. y 5 25x 2 1 2 3. y 5 } x 4. y 5 2} x2 5 5. y 5 x 2 1 3 6. y 5 x 2 2 2 7. y 5 3x 2 1 4 8. y 5 24x 2 2 3 2 9.2 Graph the function. Label the vertex and axis of symmetry. 9–14. See margin. 9. y 5 x 2 1 4x 1 4 12. y 5 3x 2 1 12x 1 8 The graph is a vertical stretch by a factor of 4, a reflection in the x-axis, and a vertical translation of 3 units down of y 5 x 2 . y 9. 13. y 5 22x 2 1 6 14. y 5 }x 2 2 3x 15. x 2 1 3x 2 10 5 0 25, 2 18. 2x 2 1 3x 2 20 5 0 24, }5 2 16. x 2 1 14 5 9x 2, 7 17. 2x 2 1 3x 5 218 23, 6 19. 2x 2 1 x 5 6 22, }3 1 2 20. } x 2 x 5 12 24, 6 2 2 if necessary. 1 x 21. 2x 2 2 20 5 78 67 22. 3y 2 1 16 5 4 no solution 23. 16y 2 2 6 5 3 6 0.75 24. 48 2 x 2 5 252 610 25. 5m2 2 5 5 10 61.73 26. 2 2 5t 2 5 4 no solution 9.5 Solve the equation by completing the square. Round the solutions to the x 5 22 10. nearest hundredth, if necessary. y 27. x 2 1 4x 2 21 5 0 27, 3 (21, 4) 28. g 2 2 10g 5 24 22, 12 29. 4m2 1 8m 2 7 5 0 22.66, 0.66 9.6 Use the quadratic formula to solve the equation. Round the solutions to the n1an-ep10-09-t nearest hundredth, if necessary. 1 x 22 30. h2 1 6h 2 72 5 0 212, 6 31. 3x 2 2 7x 1 2 5 0 0.33, 2 32. 2k 2 2 5k 1 2 5 0 0.5, 2 33. n2 1 1 5 5n 0.21, 4.79 34. 2z 1 4 5 3z 2 20.87, 1.54 35. 5x 2 2 4x 5 2 20.35, 1.15 9.7 Solve the system. y 36. y 5 2 x 2 1 5x 2 4 2 3 37. y 5 }x 2 2 3x 2 1 y 5 2x 2 4 (0, –4) and (3, 2) n1an-ep10-10-t (, ) 1 x5 12. y 5 2x 2 1 (0, –1) and (3, –4) y 5 2 4x 2 7 (–3, 5) and (–1, –3) function, or a quadratic function. Then write an equation for the function. 39–42. See margin. x 3 2 39. y 41. 8 x 5 22 n1an-ep10-11-t 1 x x 21 0 1 2 3 y 3 0 3 12 27 x 1 2 3 4 5 y 1 2 4 8 16 40. 42. x 0 1 2 3 4 y 25 22 1 4 7 x 22 21 0 1 2 y 18 14 10 6 2 9.9 43. Linear Function 1 has equation 2x 2 5y 5 212. The graph of Linear Function 2 contains (23, 23), (0, 2), (3, 7), and (6, 12). Which function is increasing more rapidly? The slope of Linear Function 1 is }5, while the slope of Linear Function 2 2 5 EP10 is }. So Linear Function 1 is increasing more rapidly. (22, 24) (0, 6) 38. y 5 2 2x 2 1 4x 2 1 9.8 Tell whether the table of values represents a linear function, an exponential 3 1 2 2 21 13. 3 4 9.4 Solve the equation. Round the solutions to the nearest hundredth, (22, 0) 21 11. 11. y 5 2x 2 2 6x 1 5 9.3 Solve the equation by graphing. n1an-ep10-08-t x 5 21 10. y 5 2x 2 2 2x 1 3 y 3 14. x50 n1an-ep10-12-t x 5 2 10 CS10_A1_MESE618203_C09EP.indd 1 21 39. quadratic function; y 5 3x 2 40. linear function; y 5 3x 2 5 41. exponential function; y 5 0.5 p 2 x 42. linear function; y 5 24x 1 10 y x x 21 3/19/11 1:52:32 AM 22 (2, 23) n1an-ep10-13-t n1an-ep10-14-t CC13_A1_METE647067_C9EP.indd 10 EP10 6/4/11 3:57:28 PM Extra Practice Chapter 10 Stem 6 7 8 9 10 9 –1 09 9 –9 10 0 90 9 –8 80 70 60 –6 9 4 2 0 –7 Frequency 1. population: parents or guardians of high school students, sampling method: systematic sample 2. Yes. Sample answer: The sampling method might be biased because only the parents or guardians of students are called and not other spectators. 3. Potentially biased. Sample answer: The question encourages the listener to agree with the researcher. 7. 6 10.1 In Exercises 1–3, use the following information. 1–3. See margin. Some parents want to gather information about updating the sound system in the high school auditorium. They obtain a list of high school students and call the parents or guardians of every 20th student on the list. The question they ask is “Don’t you think the sound system in the high school auditorium needs updating?” 1. Identify the population and classify the sampling method. 2. Is the sampling method used likely to result in a biased sample? Explain. 3. Tell whether the question is potentially biased. Explain your answer. 10.2 4. The numbers of stories in ten of the world’s tallest buildings are given below. Find the mean, median, mode(s), range, and mean absolute deviation of the data. Round to the nearest hundredth, if necessary. 101, 88, 88, 108, 88, 88, 80, 69, 102, 78 mean: 89, median: 88, mode: 88, range: 39, mean absolute deviation: 8.8 10.3 In Exercises 5 and 6, use the given two-way table showing the side dish chosen with the lunch plate and supper plate at a diner on one day. Leaves 9 8 0 8 8 8 8 n1an-ep13-01-t 1 2 8 Key: 6⏐9 5 69 8. Salad Fries Broccoli Total Lunch 26 47 9 82 Supper 42 29 34 105 Total 68 76 43 187 5. What was the most popular side at lunch? at dinner? overall? fries; salad; fries 60 72.5 85 69 80 88 n1an-ep13-02-t 97.5 110 6. About what percent of the total number of sides were salad or broccoli? about 59% In Exercises 7 and 8, use the data in Exercise 4, above. 101 108 10.4 7. Make a histogram and a stem-and-leaf plot of the data. See margin. 10.5 8. Make a box-and-whisker plot of the data. Identify any outliers. See margin. n1an-ep13-03-t 10.5 In Exercises 9 and 10, use the following information. The box-and-whisker plot shows the maximum elevations (in thousands of feet) in the top 13 U.S. states ranked by maximum elevation. 9. What is the median of the maximum 8 10 8.7 elevations in these states? 13,500 ft 12 14 12.7 13.5 16 14.4 18 20 22 20.3 10. What is the interquartile range of the maximum elevations in these states? 1,700 ft EP11 CS10_A1_MESE618203_C10EP.indd 11 4/7/11 5:43:20 AM EP11 CC13_A1_METE647067_C10EP.indd 11 6/4/11 3:52:29 PM Extra Practice Chapter 11 11.1 In Exercises 1 and 2, use the following information. A bag contains 3 red, 3 blue, and 3 yellow marbles. You toss a coin and then draw a marble out of the bag at random. 1. Find the number of possible outcomes in the sample space. Then list the possible outcomes. 6 possible outcomes; heads, yellow; heads, red; heads, blue; tails, yellow; tails, red; tails, blue 2. What is the probability that the coin shows tails and the marble is blue? }1 6 11.1 3. You toss a coin 3 times. What are the odds against the coin’s showing heads twice and tails once? 5 : 3 11.2 4. In how many ways can you arrange the letters in the word SPRING? 720 ways 5. In how many ways can you arrange 3 of the letters in the word TULIP? 60 ways 11.2 Evaluate the expression. 6. 7! 5040 7. 8P 3 336 8. P 720 9. 5P5 120 10 3 11.3 10. You can choose 3 books from a list of 5 books to read for English class. How many combinations of 3 books are possible? 10 combinations 11. You are making a snack tray. You plan to choose 3 of 5 available types of bread and 3 of 6 available types of cheese. How many different combinations of bread and cheese are possible? 200 11.3 Evaluate the expression. 12. 6C2 15 13. 7C3 35 14. C 210 10 4 15. C 20 15 15,504 11.4 Events A and B are disjoint. Find P(A or B). 16. P(A) 5 0.4, P(B) 5 0.15 0.55 17. P(A) 5 0.3, P(B) 5 0.5 0.8 18. P(A) 5 0.7, P(B) 5 0.21 0.91 11.4 Find the indicated probability. State whether A and B are disjoint events. 19. P(A) 5 0.25 20. P(A) 5 0.52 21. P(A) 5 0.54 22. P(B) 5 0.55 P(B) 5 0.15 P(B) 5 0.28 P(A or B) 5 ? P(A or B) 5 0.67 P(A or B) 5 0.65 P(A and B) 5 0.2 P(A and B) 5 ? P(A and B) 5 ? 0.6; not disjoint 0; disjoint 0.17; not disjoint 11.4 A card is randomly selected from a standard deck of 52 cards. Find the probability of drawing the given card. 1 23. a jack and a club } 52 2 24. an ace or a 10 } 13 P(A) 5 0.5 P(B) 5 0.4 P(A or B) 5 ? P(A and B) 5 0.3 0.6; not disjoint 4 25. a queen or a heart } 13 11.5 Events A and B are independent. Find the missing probability. 26. P(A) 5 0.8 0.2 P(B) 5 0.25 P(A and B) 5 ? 0.125 P(B) 5 0.4 P(A and B) 5 0.05 27. P(A) 5 ? 28. P(A) 5 0.9 0.3 P(B) 5 ? P(A and B) 5 0.27 11.5 Events A and B are dependent. Find the missing probability. 29. P(A) 5 0.4 0.24 P(B | A) 5 0.6 P(A and B) 5 ? 0.4 P(B | A) 5 0.75 P(A and B) 5 0.3 30. P(A) 5 ? 31. P(A) 5 0.15 0.2 P(B | A) 5 ? P(A and B) 5 0.03 EP12 CS10_A1_MESE618203_C11EP.indd 12 4/7/11 5:34:40 AM EP12 CC13_A1_METE647067_C11EP.indd 12 6/4/11 3:52:40 PM
© Copyright 2026 Paperzz