JOURNAL OF PETROLOGY VOLUME 43 NUMBER 9 PAGES 1617–1650 2002 Water-deficient Calc-alkaline Plutonic Rocks of Northeastern Superior Province, Canada: Significance of Charnockitic Magmatism JOHN A. PERCIVAL1∗ AND JAMES K. MORTENSEN2 1 GEOLOGICAL SURVEY OF CANADA, 601 BOOTH STREET, OTTAWA, ONTARIO, K1A 0E8, CANADA 2 DEPARTMENT OF EARTH AND OCEAN SCIENCES, UNIVERSITY OF BRITISH COLUMBIA, 6339 STORES ROAD, VANCOUVER, B.C., V6T 1Z4, CANADA RECEIVED JULY 24, 2001; REVISED TYPESCRIPT ACCEPTED MARCH 1, 2002 Calc-alkaline batholiths of the Archaean Minto block, northeastern Superior Province, Canada, have pyroxene- and hornblende-bearing mineral assemblages inferred to have crystallized from hot, waterundersaturated magmas at 2·729–2·724 Ga. A regional amphibolite- to granulite-facies tectonothermal event at 2·70 Ga resulted in mild to negligible metamorphic effects on the dominantly granodioritic units. Geochemical, textural and thermobarometric studies define the crystallization history in compositions ranging from cumulate pyroxenite through quartz diorite, granodiorite, granite, and syn-magmatic gabbroic dykes. Early magmatic assemblages include orthopyroxene, clinopyroxene, plagioclase, biotite, Fe–Ti oxides and ternary feldspar, indicating crystallization from magmas containing <2 wt % H2O at 1100–900°C. Water enrichment in the residual melt induced hornblende crystallization at 5 ± 1 kbar, 800–600°C. Characterized by a continuum of large ion lithophile element (LILE)-enriched, high field strength element (HFSE)-depleted compositions, the I-type suite resembles modern continental arc batholiths in composition and size but not primary mineralogy. Magmatic arcs produced between 2·75 and 1·85 Ga commonly have charnockitic components, possibly because slabderived fluids interacted with mantle wedges at ambient temperatures higher by >100°C than at present, producing large volumes of water-deficient magma. INTRODUCTION granitoid rocks; igneous pyroxenes; water-undersaturated magma; charnockite Since Holland’s (1900) initial description of south Indian charnockites as orthopyroxene-bearing rocks of granitic composition, the term charnockite has been applied to rocks of widely divergent origin: granitic rocks metamorphosed to the granulite facies (metamorphic charnockites); and rocks whose pyroxene crystallized directly from a magma (igneous charnockites). Unmetamorphosed, discrete plutons such as the Barrington Tops batholith (Eggins & Hensen, 1987), Kleivan granite (Petersen, 1980), Mawson charnockite (Young & Ellis, 1991; Young et al., 1997; Zhao et al., 1997) and Ballachulish complex (Weiss & Troll, 1989) contain pyroxene of undisputed igneous origin. However, in high-grade terranes that contain both granulite-facies metamorphic rocks and pyroxene-bearing granites, the origin of pyroxene in granites may be less evident (Newton, 1992; Percival, 1994). By virtue of their large abundance, these units can be inferred to have played a significant role in the evolution of cratonic crust. Several complementary approaches can be used to distinguish igneous and metamorphic origins of pyroxenebearing granitoids. Field observations such as dykes of pyroxene-bearing granite cutting amphibolite-facies rocks (Frost & Frost, 1987; Bohlender et al., 1992) argue for hot, dry magmas. Similarly, textures that indicate the relative crystallization order of pyroxenes and hydrous ferromagnesian phases serve to distinguish prograde metamorphic from igneous histories. Thermobarometry can provide clues to origin, for example where relict ∗Corresponding author. E-mail: [email protected] Oxford University Press 2002 KEY WORDS: JOURNAL OF PETROLOGY VOLUME 43 phases preserve temperatures >1000°C and must be considered in the light of possible igneous processes (e.g. Bohlen & Essene, 1978; Rollinson, 1982). Geochronology may establish different generations of mineral growth related to igneous and metamorphic events. Pyroxene-bearing granitoid rocks and their hydrous equivalents constitute a large part of the 500 km × 500 km Minto block of the northeastern Superior Province of Canada (Fig. 1). Pyroxene was initially considered to be of metamorphic origin based on reconnaissance investigations (Stevenson, 1968). Herd (1978) supported this conclusion, regarding pyroxenes to have formed during a granulite-facies M1 metamorphism and hornblende and biotite during a retrogressive M2 event. In contrast, recent studies have concluded that many of these rocks are essentially unmetamorphosed, containing early igneous pyroxene and late igneous amphibole (Percival et al., 1990, 1992, 2001; Shore, 1991; Bégin & Pattison, 1994; Stern et al., 1994). In this paper we document the age, geochemical and mineral chemical characteristics of pyroxene-bearing granitoid suites of the Minto block and discuss implications for magma genesis. REGIONAL GEOLOGICAL SETTING The Superior Province consists of two distinct regions (Fig. 1): a southern block made up of alternating, easttrending, relatively low-grade greenstone and metasedimentary subprovinces; and a northeastern (Minto) block, consisting essentially of granitoid and high-grade metamorphic rocks with northerly structural and aeromagnetic trends (Card, 1990; Percival et al., 1992, 1996, 2001; Labbé et al., 1998; Pilkington & Percival, 1999). In the south, the distribution of belts has been attributed to successive lateral accretion of juvenile oceanic terranes, microcontinents and collisional sedimentary prisms in the interval 2·72–2·70 Ga (Card, 1990; Corfu & Davis, 1992; Williams et al., 1992). (All quoted ages are U–Pb zircon dates unless otherwise indicated.) Recent work in the Minto block has recognized a series of orogenic events between 2·81 and 2·70 Ga, providing linkages to areas to the south and west (Percival & Skulski, 2000). Scattered remnants of ancient (2·9–3·0 Ga; Percival et al., 2001) crust occur in the east, in the Goudalie and Douglas Harbour domains, possibly representing an orogenic foreland during subsequent tectonic events. Volcanic and associated rocks (2·84–2·83 Ga) in the Qalluviartuuq domain have juvenile Nd isotopic signatures (Skulski et al., 1996), suggesting oceanfloor and arc settings. Early (>2·81 Ga) shear zones bounding distinct tectonostratigraphic packages may represent intraoceanic accretionary structures (Percival & Skulski, 2000). The early collage was cut by a suite of calc-alkaline plutons associated with minor volcanic rocks, NUMBER 9 SEPTEMBER 2002 dated at 2775 Ma (Skulski et al., 1996), and the composite 2·84–2·77 Ga basement overlain unconformably by <2748 Ma sedimentary rocks including conglomerate, iron formation and greywacke (Percival & Skulski, 2000). The metasedimentary units are probably correlative with high-grade schists and paragneisses of the Lake Minto domain to the west (Fig. 1). Calc-alkaline plutonic rocks of 2730–2720 Ma age are widespread throughout the Utsalik and Lake Minto domains (Percival et al., 2001) and volcanic rocks of similar age occur in the Vizien belt (Percival et al., 1994), representing voluminous continental arc magmatism (Stern et al., 1994). In >2725 Ma granodiorites of the Utsalik domain, Nd values of +1·1 to −0·5 indicate significant involvement of older crust, whereas in the Lake Minto domain to the west, rocks of similar age and composition are relatively juvenile ( 2725Nd = +0·1 to +1·3). The youngest supracrustal rocks are conglomerate and greywacke of the Vizien belt, with clasts <2718 Ma (Percival & Card, 1994; Lin et al., 1995; Skulski & Percival, 1996). Calc-alkaline plutonic rocks of the Tikkerutuk domain (2712–2702 Ma; Percival et al., 2001), represent renewed arc magmatism. Eastward thrusting of this active arc over the Lake Minto domain resulted in burial, deformation, and metamorphism to the amphibolite and granulite facies (3·5–10 kbar, 575–900°C, 2702 Ma; Bégin & Pattison, 1994; Percival & Skulski, 2000), as well as production and emplacement of crustally derived plutons including diatexites (2696–2693 Ma). Still younger magmatism included 2688 Ma orthopyroxene granite (Stern et al., 1994; Percival et al., 2001), 2675 Ma granite (Percival & Skulski, 2000), and 2660 Ma pegmatites (Percival & Card, 1994). Late-stage growth of monazite in supracrustal belts (2688–2628 Ma; Percival & Skulski, 2000) and zircon overgrowths (Percival et al., 2001) may reflect circulation of metamorphic, magmatic and hydrothermal fluids. ANALYTICAL TECHNIQUES All data were acquired in laboratories of the Geological Survey of Canada (Ottawa). Geochemical data were obtained from whole-rock powders. Major elements were analysed on fused discs by X-ray fluorescence (XRF), and trace elements, including rare earth elements, by inductively coupled plasma mass spectrometry (ICP-MS). Errors are estimated at ±5% for major elements and ±10% for trace elements. Zircon concentrates were prepared from 20 kg samples using conventional crushing, grinding, Wilfley table, heavy liquids and Frantz magnetic separator techniques. The techniques for zircon grain selection, abrasion, dissolution, geochemical preparation and mass spectrometry have been described by Parrish et al. (1987). All zircon 1618 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Fig. 1. Generalized geological map showing distribution of major rock units and domains in the central Minto block. Zircon dates (Percival et al., 1992; Percival & Card, 1994; Skulski & Percival, 1996) are from igneous grains with errors generally <±3 Ma. Inset map (lower right) shows Superior Province with subprovince boundaries and location of study area in the NE. fractions were air abraded (Krogh, 1982) before dissolution to minimize the effects of post-crystallization Pb loss. Procedural blanks were 10–22 pg for Pb and from 1 to 3 pg for U. Errors assigned to individual analyses were calculated using the numerical error propagation method of Roddick (1987). Decay constants used are those recommended by Steiger & Jäger (1975), and compositions for initial common Pb were taken from the model of Cumming & Richards (1975). Regressions of discordia arrays were carried out using the model of Davis (1982). All errors are given at the 2 level. Mineral chemical analyses were obtained on a Camebax electron microprobe equipped with wavelength-dispersive spectrometers. Accelerating voltage was 15 kV, with specimen current varying from 10 to 30 nA, depending on mineral type. Counting times varied from 10 to 30 s per element, for total count times of >100 s per spot. Standards include a variety of minerals, oxides and metals, and data reduction was performed using routines provided by Pouchou & Pichoir (1984). Analytical reproducibility is of the order of ±5% for most elements. Structural formulae were calculated using programs developed by G. J. Pringle. MINERALOGY AND GEOCHEMISTRY OF PYROXENE-BEARING PLUTONS Four suites of coarse-grained, pyroxene-bearing granodioritic rocks have been identified in the Minto block, through reconnaissance and detailed petrological and geochronological studies (Leclair et al., 2001; Percival et al., 2001). Many bodies vary internally from pyroxenedominated to hornblende-, biotite-dominated mafic mineral assemblages and therefore compositional terms with mineral modifiers are used (e.g. orthopyroxene–clinopyroxene–biotite granodiorite), rather than nomenclature specific to pyroxene-bearing rocks (e.g. charnockite, mangerite, opdalite, etc.). The term ‘charnockitic’ is used in this paper for general reference to igneous pyroxene-bearing granitic rocks. A suite of >2·78 Ga calc-alkaline plutons in northern Lake Minto domain represents the oldest pyroxenebearing granodiorites recognized to date (Skulski et al., 1996). A younger group of calc-alkaline, pyroxene- and hornblende-bearing granodiorites of the Lake Minto and Utsalik domains forms the main focus of this study. Based on common ages of 2725 ± 5 Ma, these rocks were grouped as the ‘Leaf River suite’ (Stern et al., 1994). 1619 JOURNAL OF PETROLOGY VOLUME 43 The linear Tikkerutuk domain of pyroxene-bearing calcalkaline granodiorite and granite has ages in the range 2710–2693 Ma (Percival et al., 2001). Orthopyroxenebearing peraluminous granodiorite (diatexite) in the Lake Minto domain (2696 Ma) may have originated through crustal melting resulting from collisional tectonism at 2700 Ma (Percival & Skulski 2000). Utsalik domain plutons The Utsalik domain is characterized by north-striking sheets of granodiorite and monzogranite on the 1–10 km scale (Percival & Card 1994). Pods and enclaves include pyroxenite, gabbro and diorite in bodies of 10 cm to 30 m scale. Pyroxenites consist of assemblages of orthopyroxene, clinopyroxene and biotite, with accessory olivine, spinel, Fe–Ti oxides, hornblende and plagioclase. Gabbro and diorite have common clinopyroxene–biotite–plagioclase ± orthopyroxene assemblages. Granodiorite is medium to coarse grained, homogeneous and massive to weakly foliated, with several mineral facies (Fig. 2a–c). Mafic mineral assemblages of orthopyroxene, clinopyroxene and biotite (Fig. 3a), all of apparent igneous origin, grade through facies with clinopyroxene cores in hornblende (Fig. 2b), to massive, homogeneous rocks containing hornblende and biotite (Fig. 2c). Hornblende-bearing enclaves commonly have centimetre-scale orthopyroxene-rich margins where in contact with pyroxene-bearing granodiorite (Fig. 2d). Pyroxene-rich selvages are also observed where dykes of pyroxene-bearing granodiorite transect mafic rocks (Fig. 2e; Ross, 1991). Sheets and plutons of granite with similar mineral assemblages to those in granodiorite have common accessory allanite. Gabbro and diorite occur as 1–5 m sheets or dykes in granodiorite and granite. The dykes generally consist of assemblages of clinopyroxene–biotite–plagioclase, are straight walled, massive to weakly foliated and boudinaged (Percival et al., 1992). Some dykes have cuspate margins (Fig. 2f ) and are back-veined by granodiorite, suggesting synmagmatic emplacement (Shore, 1991; see Blundy & Sparks, 1992). In quartz diorite, granodiorite and quartz monzodiorite, pyroxenes occur as randomly oriented subhedral crystals up to 5 mm, along with plagioclase (An11–48), quartz, alkali feldspar, ilmenite, magnetite and accessory apatite, zircon and rare monazite; biotite occurs as fox-red grains (Fig. 3a and b). Clinopyroxene rarely has 001 lamellae of possible pigeonite (Fig. 3c) (see Ollila et al., 1988). Orthopyroxene rarely exhibits internal exsolution whereas clinopyroxene commonly has fine (5–20 m) 100 exsolution lamellae in the cores of some grains, with unexsolved rims (Fig. 3d–f ). Orthopyroxene NUMBER 9 SEPTEMBER 2002 and ilmenite form the principal exsolved phases (Fig. 3f ). With increasing development of hydrous matrix phases, patches of hornblende and biotite develop as overgrowths and along 100 planes in pyroxenes. The granodiorites grade through zones with pyroxene cores in hornblende (Fig. 4a–d) to common hornblende-, perthitebearing assemblages in granodiorites and granites. Magnetite is generally abundant, giving these rocks high magnetic susceptibility and in turn producing an intense regional aeromagnetic anomaly (Pilkington & Percival, 1999, 2001). New chemical analyses of plutonic rocks of the Utsalik domain (Fig. 5) are reported in Table 1 and presented with complementary data from Stern et al. (1994) in Figs 6–10. Sample locations and mineral assemblages are listed in the Appendix. The suite can be divided into eight sub-units based on mode of occurrence and mineral assemblages. Mafic rocks include gabbroic and dioritic enclaves, as well as two chemically distinct types of synplutonic dykes. Five suites of main-phase plutonic rock are distinguished on the basis of their mafic mineral assemblage: (1) orthopyroxene–clinopyroxene–biotite ± hornblende diorite to granodiorite; (2) clinopyroxene– biotite diorite to granodiorite; (3) clinopyroxene– hornblende–biotite diorite to granodiorite; (4) hornblende–biotite granodiorite; (5) biotite granodiorite to granite. Together, the Utsalik units represent silica contents in the 45–73 wt % SiO2 range and form coherent major and trace element trends on Harker diagrams (Fig. 6). They are dominantly calc-alkalic, with a few calcic and alkali–calcic compositions using the classification of Frost et al. (2001). Gabbroic enclaves are characterized by variable compatible-element (Mg, Cr, Ni, V) and alumina contents within a narrow (49–52%) silica range (Fig. 6). Some rocks have low Al2O3 and high CaO contents suggesting the presence of cumulate clinopyroxene. A second suite of enclaves, of gabbroic to dioritic composition (49·1– 58·6 wt % SiO2), forms collinear and continuous trends with more evolved rocks on variation diagrams (Fig. 6). The enclaves have orthopyroxene–clinopyroxene– biotite–plagioclase assemblages in common with granodiorites and may represent early crystallized units approaching parental compositions. Mafic dykes also plot on compositional trends defined by the more evolved rocks. Some group 1 dykes display widely variable compatible-element contents, suggesting fractionation before emplacement. The second group of dykes has relatively low MgO contents (<5 wt %) and high K2O, P2O5, TiO2, Zr and Ba (Table 1; Fig. 6). Three of five dykes have slight negative Eu anomalies. On a primitive-mantle-normalized extended-element profile (Fig. 7), the mafic rocks have patterns characterized by enrichment in light rare earth elements (LREE) (La/Ybn = 1·2–43) and large ion lithophile 1620 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Fig. 2. Field photographs of pyroxene-bearing and associated rocks: (a) orthopyroxene–clinopyroxene–biotite granodiorite showing coarse grain size and homogeneous, massive character; (b) transitional granodiorite: pale patches are rich in perthite, with dark hornblende; matrix is orthopyroxene–clinopyroxene–plagioclase–quartz; (c) hornblende–biotite granite with cores of clinopyroxene (pale) in hornblende; (d) enclaves of hornblende-bearing gabbro in coarse orthopyroxene–clinopyroxene granodiorite have orthopyroxene-rich selvages; (e) dyke of pyroxenebearing granite cutting hornblende-bearing mafic gneiss (note orthopyroxene-rich reaction selvage); (f ) syn-plutonic clinopyroxene–biotite diorite dyke in orthopyroxene–clinopyroxene–biotite granodiorite (note boudinaged geometry). elements (LILE), as well as negative Nb, Zr and Ti anomalies. The compositions correspond well to those of calc-alkaline basalt and andesite formed in modern arc environments (see Rollinson, 1993). The high LILE contents and element depletions in these relatively primitive members of the suite, which also characterize the more evolved compositions, suggest that the trace element patterns may reflect a mantle wedge signature. The Utsalik plutonic domain is dominated by rocks of granodioritic and granitic composition. These form linear trends on Harker plots of compatible elements (MgO, Fe2O3, V, Ni, Cr, etc.), that decrease systematically with 1621 JOURNAL OF PETROLOGY VOLUME 43 NUMBER 9 SEPTEMBER 2002 Fig. 3. Photomicrographs of pyroxene-bearing plutonic rocks: (a) medium-grained diorite showing random orientation of orthopyroxene (O), clinopyroxene (C), magnetite (M) and plagioclase (P); minor biotite (B) is not associated with pyroxenes (sample U-12); (b) medium-grained quartz diorite showing randomly oriented pyroxenes (O, C), plagioclase (P) and biotite (B) in textural equilibium (PBA91-58); (c) clinopyroxene (C) in granodiorite showing 001 lamellae of possible pigeonite (indicated by arrows) and faint 100 lamellae (orthopyroxene?); matrix phases are biotite (B), plagioclase (P) and quartz (Q ) (PBA91-6); (d) clinopyroxene (C) in granodiorite showing 100 exsolution lamellae of orthopyroxene in grain core (formerly augite) and unexsolved rims (diopside) (U-18); (e) granodiorite showing clinopyroxene (C) overgrown by biotite (B) (note concentration of exsolution lamellae in core of grain and unexsolved rims) (U-3); (f ) detail of relationship between exsolved (E) region in augitic core of clinopyroxene grain and clear (C) diopsidic rim (U-1). High-temperature igneous crystallization followed by orthopyroxene exsolution in sub-calcic portions is implied from textures illustrated in (d), (e) and (f ). All photomicrographs are taken in plane-polarized light except (d) (crossed nicols). silica (Fig. 6). Plots of incompatible elements show more scatter (e.g. K2O, Rb, Th, Ba) but generally increase with silica. Both K2O and Al2O3 have inflection points in the 60% SiO2 range. Alumina contents decline slightly with silica above >60% SiO2, whereas potash levels rise. These compositional changes appear to correspond to 1622 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Fig. 4. Photomicrographs of hornblende-bearing plutonic rocks: (a) partial hornblende (H) rims around clinopyroxene; orthopyroxene (O) is unaltered (PBA91-143); (b) complete rims of hornblende (H) around clinopyroxene (C) and orthopyroxene (O) in a plagioclase-rich (P) matrix (U-13); (c) large twinned hornblende (H) grain with inclusions of clinopyroxene (C), plagioclase (P) and magneite (M) (U-14); (d) hornblende (H)–perthite (Pe) association in granite and granodiorite; quartz (Q ) and plagioclase (P) are also present (GS90-1). All photomicrographs are taken in plane-polarized light except (d) (crossed nicols). the appearance of hornblende in the mafic mineral assemblage, in addition to orthopyroxene, clinopyroxene and biotite. Rare earth patterns (averages shown in Fig. 8) vary with bulk composition and mineral assemblage. All have sinusoidal patterns with concave-down LREE, concaveup heavy rare earth element (HREE) profiles (La/Ybn = 13–197) and negligible Eu anomalies. However, the levels of LREE enrichment and HREE depletion increase systematically from orthopyroxene–clinopyroxene, through clinopyroxene–hornblende and hornblende– biotite, to biotite-only assemblages (Fig. 8), probably also reflecting higher silica contents (respectively 61·2, 65·4, 67·4 and 71·5 wt % SiO2). On primitive-mantle-normalized extended-element plots, the intermediate and felsic rocks show strong enrichment in LILE as well as in LREE (Figs 7 and 9). Pyroxene-bearing rocks have comparable concentrations of both compatible and incompatible trace elements to hornblende-, biotite-bearing units (Fig. 9). Both suites have negative Nb and Ti anomalies and slight Zr enrichment. Thorium is systematically higher in the hornblende-bearing and biotite-only rocks, consistent with its partitioning into hydrous magma (e.g. Wood & Blundy, 2001). The geochemical features are consistent with fractional crystallization of a basaltic calc-alkaline magma resembling the mafic end-members of the suite. Some crustal contamination is indicated by 2725Nd values in the range −0·5 to +1·1 (Stern et al., 1994). Using known ages of potential contaminants (2·8–3·0 Ga; Stern et al., 1994; Percival et al., 2001), the volume of older crust assimilated before fractionation is in the range 10–20%. Mass-balance considerations would predict a large mass of complementary cumulates. Lake Minto domain plutons Plutons of Lake Minto domain occur as kilometre-scale sheets, separated by screens of supracrustal rock and 1623 50·9 0·40 16·4 8·6 0·14 8·86 10·90 2·4 0·54 0·07 99·2 210 180 26 110 5·3 17 160 370 2·2 1·9 28 11 2·1 0·27 11 22 11 2·1 0·72 2·1 1·7 0·38 1·0 0·17 1·1 53·8 0·84 17·5 9·6 0·13 3·86 6·65 3·9 2·41 0·27 99·0 21 25 16 170 21 75 890 780 9·4 3·2 120 23 7·8 0·36 39 83 40 7·1 1·4 5·5 4·0 0·83 2·1 0·35 2·0 49·1 1·19 18·6 12·0 0·13 4·07 7·65 4·0 1·85 0·47 99·1 20 32 18 180 12 93 630 970 13 3·3 120 33 2·8 0·86 40 98 58 11·0 2·3 8·5 5·9 1·1 3·0 0·53 2·9 U-28 gbr encl OCB U-12 dte encl OCB U-30 dte encl H 49·1 50·5 58·6 1·06 1·37 0·65 16·5 17·1 16·0 11·2 11·9 8·5 0·16 0·16 0·11 6·33 4·55 3·86 9·41 7·85 5·56 3·6 3·7 4·2 1·67 1·64 1·79 0·29 0·55 0·15 99·3 99·3 99·4 92 22 36 52 23 48 29 21 13 200 180 82 11 8·2 15 75 52 110 580 1000 350 570 770 410 10 12 12 3·2 5·4 3·9 110 260 110 22 22 18 1·3 0·69 10 0·32 0·23 2·9 34 45 28 77 90 55 35 45 23 5·6 7·2 4·0 1·6 2·2 1·1 4·5 6·1 3·4 3·7 4·1 2·8 0·75 0·83 0·6 2·0 2·1 1·6 0·35 0·34 0·26 2·1 1·8 1·7 U-29 gbr encl CB U-32 gdi main OCHB U-35 gdi main OCHB 58·0 62·5 57·1 0·70 0·46 1·48 16·6 17·0 16·6 7·3 5·3 10·0 0·09 0·05 0·14 3·56 1·85 2·42 5·72 3·54 6·27 4·4 4·2 4·5 1·55 3·59 1·03 0·21 0·18 0·51 98·1 98·7 100·1 52 32 12 33 17 12 15 5·4 17 120 81 92 15 22 15 67 120 17 460 1000 410 620 460 580 9·4 6·5 20 4·1 5·2 10 160 220 530 17 11 29 1·7 8·7 2·8 0·26 0·58 0·51 39 42 48 79 77 110 33 28 56 5·4 4·1 10·0 1·1 1·1 2·6 3·8 2·7 8·4 2·9 1·8 5·6 0·58 0·37 1·1 1·4 0·82 2·6 0·26 0·15 0·39 1·6 0·79 2·1 U-31 gdi main OCB U-11 gdi main OCHB U-37 gdi main OCHB U-38 gdi main CB U-43 gdi main CHB 56·8 62·5 56·1 66·4 69·1 0·82 0·95 1·54 0·36 0·43 16·1 15·8 14·0 15·2 14·6 6·9 6·3 12·5 4·1 4·5 0·09 0·08 0·19 0·05 0·04 4·18 1·34 3·08 1·65 1·60 5·76 3·83 6·67 3·07 3·58 4·3 3·6 3·9 3·4 4·3 1·55 3·77 0·82 4·48 1·44 0·15 0·26 1·07 0·15 0·11 96·7 98·4 99·9 98·9 99·7 62 10 <10 25 24 29 <10 <10 13 15 20 12 20 7·9 4·1 110 63 89 58 70 16 21 12 21 28 67 73 16 120 81 340 1400 250 1300 220 490 310 460 480 460 12 14 17 3·5 6·9 3·8 7·2 3 3·8 3·8 100 320 110 150 120 24 17 43 12 6·1 6·8 2·4 2·8 4·5 68 0·97 0·81 0·48 0·33 0·6 32 37 78 33 52 62 68 160 66 100 29 32 83 26 27 5·9 5·5 15·0 4·1 2·6 0·82 1·7 2·1 0·93 0·52 5·6 4·5 12·0 2·9 1·0 4·4 3·1 8·1 2·2 0·81 0·9 0·61 1·7 0·4 0·18 2·4 1·5 4·0 1·0 0·49 0·4 0·23 0·66 0·17 0·12 2·1 1·3 3·4 1·0 0·71 U-36 gdi main OCHB 66·4 0·47 14·5 5·0 0·07 1·96 3·30 4·3 2·66 0·15 98·8 29 18 7·7 56 24 88 500 470 10 6·4 290 26 27 0·8 80 150 62 9·4 1·5 6·0 4·4 0·88 2·2 0·38 2·3 U-44 gdi main CHB U-45 gdi main CHB 60·8 66·8 0·72 0·51 16·3 15·5 6·9 4·5 0·11 0·06 3·14 1·92 4·93 3·93 4·1 4·2 2·48 1·44 0·20 0·18 99·7 99·0 39 40 24 21 15 4·4 89 33 25 15 120 40 380 460 420 540 14 4·2 5·1 5·1 200 210 19 9·3 32 1·5 1·1 0·7 71 31 130 52 49 20 6·8 3·1 1·3 0·89 4·4 2·4 3·3 1·7 0·65 0·33 1·7 0·81 0·29 0·12 1·7 0·65 U-7 gdi main CB U-51 gdi main HB U-52 grnt main B 69·1 63·3 71·5 0·54 0·99 0·32 14·6 15·7 13·6 3·9 6·6 2·2 0·08 0·13 0·02 0·71 1·25 0·97 2·18 3·50 1·52 4·2 4·7 2·8 3·62 2·95 5·39 0·14 0·23 0·10 99·1 99·4 98·4 <10 <10 15 <10 <10 14 7·4 12 1·6 11 23 27 18 35 33 84 110 160 2300 1400 940 380 470 400 12 13 5·9 3·7 4·7 3·4 140 270 120 11 27 6·1 1·8 8·2 56 0·42 1·2 0·63 20 43 110 37 86 190 17 40 60 3·1 7·2 5·3 2·6 2·6 0·85 2·7 6·4 1·6 2·1 5·0 1·1 0·42 0·97 0·19 1·0 2·7 0·38 0·19 0·45 0·08 1·1 2·6 0·4 U-4 gdi main OCHB VOLUME 43 1624 NUMBER 9 Lithology and mineral abbreviations as in the Appendix. 49·4 45·6 49·8 0·75 1·49 2·37 16·7 7·6 15·8 12·1 16·0 14·2 0·13 0·23 0·15 7·04 16·90 4·70 8·36 6·89 7·40 3·1 0·6 3·8 1·48 2·28 1·23 0·17 0·10 0·56 99·2 97·7 100·0 74 1300 35 85 810 44 16 41 16 210 190 150 8·2 4·8 9·3 59 160 27 510 210 470 910 65 680 2·9 32 27 1·9 3·7 5·6 52 92 240 8·4 98 22 2·8 1·9 0·23 1·2 0·57 0·11 17 16 37 37 53 81 17 47 46 3·3 17·0 9·0 0·96 1·1 2·5 2·5 24·0 7·5 1·5 24·0 4·6 0·28 4·9 0·85 0·65 12·0 2·0 0·1 2·0 0·31 0·63 9·7 1·5 SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Total Cr Ni Sc V Pb Rb Ba Sr Nb Hf Zr Y Th U La Ce Nd Sm Eu Gd Dy Ho Er Tm Yb U-18 U-19 U-23 U-27 gbr gbr gbr dte dyke 1 dyke 1 dyke 1 encl B OCH OCH OCB U-15 gbr encl H Sample: Lithology:∗ Setting: Min. ass.: Table 1: Chemical compositions of Utsalik plutonic rocks JOURNAL OF PETROLOGY SEPTEMBER 2002 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Fig. 5. Locations of samples analysed in this study, along with pyroxene occurrences based on foot traverses and spot-checked petrographically. Owing to the coarse grain size of all units, field identification of assemblages is generally reliable. younger plutonic sheets. Pyroxenite, hornblendite, gabbro, and diorite occur as pods up to 40 m in size. Boudinaged dykes of diorite and gabbro are also common. Rare tonalite gneiss enclaves have yielded ages >3·1 Ga. Granodiorite, the main plutonic phase, is medium to coarse grained, homogeneous and weakly foliated to massive. Mafic mineral assemblages range from orthopyroxene–clinopyroxene–biotite with or without late hornblende, to hornblende–biotite. No new geochemical results are reported here; however, analyses of Lake Minto domain rocks reported by Stern et al. (1994) are shown for comparative purposes in Fig. 10. In comparison with the coeval (2725 Ma) Utsalik domain plutonic suite, granodiorites of the Lake Minto domain have systematically lower Th and U contents, and are more depleted in the HREE (Fig. 10a). The fractionated HREE profile suggests the presence of residual garnet in the source (Stern et al., 1994). Lake Minto granodiorites show several geochemical features comparable with those of modern adakites, such as high Sr/Y, low Y (Fig. 10b) and La/Yb up to 260, which are commonly considered to result from the presence of a slab melt component (Drummond & Defant, 1990; Martin, 1994; Schiano et al., 1995). In contrast, Utsalik plutonic rocks fall mainly within fields defined by ‘normal’ arcs (see Castillo et al., 1999; Fig. 10b). In view of the gradation from adakitic to normal arc signatures (Fig. 10b), it is possible that the Lake Minto and Utsalik suites represent magmas derived from a single mantle wedge, fluxed respectively by slab melts and slab-derived fluids. GEOCHRONOLOGY U–Pb data are listed in Table 2 and plotted on conventional U–Pb concordia diagrams in Fig. 11. Utsalik domain Sample U-34 (orthopyroxene–clinopyroxene–biotite granodiorite) Four fractions of zircon and two of monazite were analysed (Fig. 11a). The zircons form stubby euhedral prisms with faint internal growth zoning and no evidence of metamorphic overgrowth. One fraction (B) is 1625 JOURNAL OF PETROLOGY VOLUME 43 NUMBER 9 SEPTEMBER 2002 Fig. 6. Harker diagrams showing variation of compatible and incompatible element contents with silica. Naney granodiorite and granite from Naney’s (1983) experimental runs; average I-type (n = 991) and S-type (n = 578) from Whalen et al. (1987): C-type (n = 12) from Kilpatrick & Ellis (1992); M-type (n = 8) from Eggins & Hensen (1987). concordant with a 207Pb/206Pb age of 2724·3 ± 4·5 Ma, and a regression line through all four zircon analyses gives calculated upper and lower intercept ages of 2725·6 +7·4/–3·8 Ma and 1472 Ma, respectively. The crystallization age of the rock is given by the 207Pb/206Pb age of fraction B, and the lower intercept indicates that mainly Mesoproterozoic Pb loss has affected the zircons. The two monazite fractions give considerably younger ages, at 2704 and 2695 Ma. These results may indicate either prolonged growth of metamorphic monazite in this unit, or partial and variable Pb loss from igneous monazite, or some combination of the two. Sample U-54 (clinopyroxene–biotite granodiorite) Zircons in this sample form relatively coarse, medium brown, weakly zoned, stubby euhedral prisms. Four fractions were analysed (Table 2). Three of these are 2·1–9·1% discordant, and define a linear discordia array with a relatively imprecise upper intercept age of 2737·0 1626 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Fig. 7. Primitive-mantle-normalized (Sun & McDonough, 1989) extended-element profiles showing average compositions for Utsalik domain plutonic rocks. Fig. 8. Average rare-earth element plots (chondrite normalized; Sun & McDonough, 1989) for Utsalik domain plutonic rock types. +10·5/–5·3 Ma (Fig. 11b). This regression is strongly controlled by the most discordant analysis (DA). The three most concordant analyses give 207Pb/206Pb ages in the range of 2723–2729·5 Ma (Table 2). The calculated upper intercept is interpreted as a maximum crystallization age for the sample, and the 207Pb/206Pb age of the most concordant fraction (AB, 2729·5 Ma) gives a minimum possible crystallization age. 1627 JOURNAL OF PETROLOGY VOLUME 43 NUMBER 9 SEPTEMBER 2002 Fig. 9. Primitive-mantle-normalized extended-element profiles comparing hornblende-, biotite-bearing and pyroxene-bearing Utsalik granodiorites. Symbols correspond to rock types listed in Figure 6. Lake Minto domain Sample M-13 (clinopyroxene–hornblende–biotite granodiorite) intercept is interpreted as the crystallization age of the rock unit, and the pattern of discordance indicates that both Mesoproterozoic and more recent Pb loss affected the zircons. Zircons recovered from this sample form stubby euhedral prisms that range from clear and colourless to translucent and dark brown. Six single- and multi-grain fractions of abraded zircons were analysed, including two brown grains (AA and AB) and four fractions of relatively clear zircon (Fig. 11c). A regression through the three most concordant fractions (0·7–4·8% discordant; including two clear fractions and one brown fraction) gives calculated upper and lower intercept ages of 2724·3 +2·9/–2·0 Ma and 1057 Ma, respectively. The more discordant fractions plot both above and below this regression line. The upper Sample M-14 (clinopyroxene–hornblende–biotite granodiorite) Zircons from this sample occur as stubby euhedral prisms with faint growth zonation and no evidence of metamorphic rims. Five abraded single zircon grains define a linear array with individual fractions ranging from 1·6 to 34·9% discordant (Fig. 11d). Calculated upper and lower intercept ages are 2724·8 ± 3·3 Ma and 1483 Ma. The upper intercept age gives the crystallization age of the rock unit and the lower intercept indicates that mainly 1628 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Fig. 10. Geochemical comparison of Utsalik domain plutonic rocks and Lake Minto granodiorites. (a) Primitive-mantle-normalized extendedelement profiles comparing the field for Utsalik plutons (Fig. 7) with Lake Minto analyses from Stern et al. (1994). (b) Sr/Y vs Y plot for Lake Minto and Utsalik domain plutons. For scaling reasons, two Lake Minto rocks (Sr/Y 1113 and 6010; Y 0·7 and 0·1) and one Utsalik rock (0·66, 98) were omitted from the diagram. Adakite and ‘typical arc’ fields from Castillo et al. (1999). The data show compositional gradation and suggest the influence of a slab melt component in the generation of plutons in the Lake Minto domain. Mesoproterozoic Pb loss has affected the zircons. Five abraded monazite fractions were also analysed; the analyses cluster on or near concordia with 207Pb/206Pb ages ranging from 2704 to 2712 Ma (Table 2). The reason for the range of ages for monazite is not certain, and may reflect either prolonged growth of metamorphic monazite or partial resetting of igneous monazite, or both. 1629 0·006 0·003 0·006 0·002 0·001 0·005 0·004 0·009 0·017 0·009 0·004 0·004 0·003 0·006 A: N2,+134,1 B: N2,+134,1 C: N2,+134,1 1630 D: N2,+134,1 E: N2,+134,1 M1,1 M2,1 M3,1 M4,1 M5,1 Sample U-54 AA: N1,105-149,1 AB: N1,105-149,4 CA: N1,105-149,1 DA: N1,105-149,1 103 303 216 341 65 180 134 207 17500 12050 10350 13260 15070 1024 551 526 94 436 157 113 1550 952 695 695 21530 26130 362 1278 6026 2043 753 5652 5652 10800 580 2054 6493 34760 2083 346 785 380 1011 850 2014 4222 13 41 41 24 38 23 495 108 47 62 45 35 24 15 46 12 139 17 15 319 33 41 21 17 17 33 18·6 10·8 13·3 12·8 95·7 91·2 94·7 96·1 96·7 2·0 3·6 3·0 3·1 2·1 6·6 10·5 7·6 14·4 84 9·5 13·9 11·3 13·1 12·8 98·9 98·6 0·50327(0·41) 0·51715(0·11) 0·52312(0·15) 0·51866(0·13) 0·52072(0·10) 0·52305(0·09) 0·44834(0·09) 0·52075(0·10) 0·52119(0·11) 0·44834(0·09) 0·44834(0·09) 0·43285(0·11) 0·43285(0·11) 0·49800(0·09) 0·31151(0·13) 0·50933(0·16) 0·489737(0·11) 0·52013(0·10) 0·52357(0·16) 0·23911(0·12) 0·51839(0·15) 0·52545(0·29) 0·52473(0·14) 0·51488(0·16) 0·52300(0·11) 0·51803(0·09) (±% 1) Pb† 208 Pb/238U§ 206 % Pb/235U§ 12·827(0·41) 13·444(0·14) 13·577(0·18) 13·430(0·14) 13·345(0·11) 13·456(0·10) 13·502(0·26) 13·328(0·12) 13·362(0·12) 10·622(0·10) 11·632(0·15) 10·045(0·12) 13·466(0·21) 12·554(0·10) 7·907(0·19) 13·070(0·17) 12·109(0·12) 13·425(0·11) 13·559(0·17) 5·989(0·28) 13·322(0·16) 13·617(0·29) 13·600(0·15) 13·227(0·16) 13·386(0·12) 13·184(0·10) (±% 1) 207 Pb/206Pb§ 0·18485(0·05) 0·18854(0·06) 0·18823(0·09) 0·18780(0·06) 0·18588(0·03) 0·18659(0·03) 0·18614(0·19) 0·18562(0·05) 0·18593(0·03) 0·17182(0·04) 0·17804(0·07) 0·16830(0·03) 0·18721(0·04) 0·18721(0·04) 0·18410(0·12) 0·18612(0·04) 0·18020(0·03) 0·18720(0·03) 0·18782(0·04) 0·18167(0·22) 0·18639(0·07) 0·18795(0·14) 0·18797(0·06) 0·18632(0·07) 0·18562(0·04) 0·18458(0·04) (±% 1) 207 Pb/206Pb 2696·9(1·7) 2729·5(2·1) 2726·8(2·9) 2723·0(1·9) 2706·0(0·9) 2712·3(0·9) 2708·3(6·4) 2703·7(1·7) 2706·5(1·0) 2575·5(1·3) 2634·7(2·2) 2540·8(1·0) 2717·8(1·4) 2678·7(0·9) 2690·2(4·0) 2708·2(1·4) 2654·7(1·0) 2717·7(1·0) 2723·2(1·3) 2682·0(7·3) 2710·6(2·4) 2724·3(4·5) 2724·4(2·0) 2709·9(2·3) 2703·8(1·5) 2694·5(1·2) ( Ma;±% 2) age 207 NUMBER 9 1407 1965 1007 950 927 2222 1109 1173 170 843 461 195 433 412 270 213 164 92 387 270 9124 8287 Pb (pg) common Pb/204Pb Total (meas.)‡ 206 VOLUME 43 ∗N1, N2, non-magnetic at given degrees side slope on Frantz isodynamic magnetic separator; grain size given in microns; u, unabraded; M, monazite; last digit is number of grains analysed. †Radiogenic Pb; corrected for blank, initial common Pb, and spike. ‡Corrected for spike and fractionation. §Corrected for blank Pb and U, and common Pb, Stacey & Kramer (1975). 0·003 0·004 807 664 461 794 0·037 0·027 0·002 0·009 BB: N5,+134,1 BC: N5,+134,6 Sample M-14 266 151 627 447 185 212 content (ppm) content Pb† (ppm) U 0·003 0·003 0·001 0·001 0·015 0·020 (mg) description∗ Sample U-34 A: N2,+105,1 B: N2,+105,1 C: N2,+105,1 D: N2,+105,4 M1,u,1 M2,u,1 Sample M-13 AA: N5,+134,1 AB: N5,+134,1 AC: N5,+134,1 AD: N5,+134,3 Wt Sample Table 2: U–Pb analytical data for zircon and monazite JOURNAL OF PETROLOGY SEPTEMBER 2002 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Fig. 11. U–Pb concordia diagrams for zircon and monazite from four samples. POF, probability of fit of regression line. MINERAL COMPOSITIONS AND CRYSTALLIZATION CONDITIONS Analyses of minerals of Lake Minto and Utsalik domain plutons (Fig. 5) are reported in Tables 3–10 and derived P–T conditions in Tables 11 and 12. Mineral compositions are similar in both domains, as are derived crystallization conditions. Clinopyroxene compositions straddle the diopside– augite boundary, with Wo contents of 42–47 mol % [Table 3; Lindsley (1983) parameters]. The mg-number [Mg/(Mg + Fe2+)] is generally in the range 0·62–0·76; Al2O3 constitutes <2 wt % and Na2O <0·55 wt %. Exsolution lamellae (100) of orthopyroxene on a scale of 2–10 m in clinopyroxene cores (Fig. 3d–f ) are too fine for microprobe resolution; the internal zones were analysed with a defocused beam and yielded minimum Wo contents of 40 mol % (reintegrated). Orthopyroxene (Table 4) has generally low Wo contents (<6 mol %), lower mg-numbers than coexisting clinopyroxene (0·17–0·65), as well as lower Al2O3 contents (<1·07 wt %). Plagioclase compositions (Table 5) fall in the range An12–56, with Or contents up to 3 mol %, although most common rock types have plagioclase between An20 and An30. Substantial amounts of normal zonation (An56–35) are present within single grains in the more calcic rocks, whereas variation is limited to a few mol % in the An20–30 range. Coarse antiperthite (exsolved Or blebs and strings up to 10 by 20 m), particularly in the central parts of grains, suggests slightly higher Or contents before exsolution. BaO is present in amounts up to 0·3 wt %. Alkali feldspar (Table 5) is mainly orthoclase, with albite components as high as 43 mol %. Minor BaO (<1·2 wt %) is present in most analyses, with SrO contents below 0·1 wt %. Microcline occurs in both granites and granodiorites. Cryptoperthitic alkali feldspars with a ternary component occur in several pyroxene-bearing rocks and three have been examined in detail with the microprobe. The feldspars are internally heterogeneous with strings and blebs of exsolved plagioclase on the 2–20 by 100–200 m scale, in proportions up to 30 vol. %. The exsolved plagioclase compositions correspond closely to those of matrix plagioclase, with maximum An content of 29. Reintegration of the ternary feldspar compositions yield An8·6Ab21·4Or70 to An2·5Ab22·5Or75 (Table 5). Amphibole generally plots in the edenitic and ferroedenitic hornblende fields defined by Leake (1978). Its mg-number is generally in the range 45–65 with a few anomalous values (Table 6). Calculated Fe3+/(Fe3+ + 1631 0·28 MnO 99·89 Total 99·13 0·34 97·98 0·47 21·7 13·8 0·38 6·37 2·40 0·05 1·41 0·21 51·2 M-6 1632 0·89 0·02 0·04 0·31 0·01 0·67 0·91 0·03 0·72 Fe3+ Fe2+ Mn Mg Ca Na mg-no. 0·09 0·17 Fs 0·42 0·14 0·43 0·12 0·45 0·44 0·76 0·03 0·89 0·78 0·01 0·20 0·07 0·07 0·12 0·44 0·44 0·75 0·05 0·87 0·77 0·01 0·21 0·07 0·00 1·97 0·15 0·40 0·45 0·77 0·03 0·92 0·71 0·01 0·27 0·00 0·00 0·08 0·01 0·16 0·38 0·45 0·76 0·04 0·92 0·69 0·02 0·29 0·00 0·00 0·06 0·00 1·99 99·21 0·53 22·6 12·2 0·52 9·26 0·00 0·00 1·32 0·16 52·6 M-12 0·13 0·43 0·44 0·76 0·04 0·89 0·75 0·02 0·22 0·06 0·00 0·08 0·01 1·94 98·43 0·52 21·8 13·3 0·52 6·89 2·04 0·03 1·81 0·29 51·2 U-1 0·13 0·43 0·44 0·76 0·04 0·88 0·75 0·01 0·23 0·06 0·00 0·08 0·00 1·95 98·32 0·55 21·7 13·3 0·41 7·22 1·99 0·00 1·74 0·12 51·36 U-2 0·21 0·36 0·44 0·68 0·03 0·87 0·65 0·02 0·37 0·04 0·00 0·05 0·00 1·97 100·8 0·44 21·4 11·6 0·49 11·9 1·37 0·00 1·09 0·12 52·3 U-3 0·31 0·26 0·43 0·62 0·04 0·87 0·44 0·03 0·54 0·00 0·00 0·04 0·00 2·02 100·9 0·51 21·2 7·8 0·85 16·7 0·00 0·00 0·86 0·08 52·9 U-4 0·43 0·13 0·43 0·53 0·04 0·87 0·24 0·03 0·78 0·00 0·00 0·02 0·00 2·01 99·8 0·46 20·2 4·0 0·90 23·3 0·00 0·00 0·47 0·07 50·3 U-5 0·16 0·38 0·47 0·77 0·04 0·94 0·67 0·02 0·28 0·00 0·00 0·04 0·00 2·00 99·6 0·55 23·3 12·0 0·58 8·80 0·00 0·03 0·93 0·08 53·3 U-7 Weight per cent Fe2O3 calculated from charge-balanced structural formula; mg-number = Mg/(Mg + Fe2+ + Fe3+). 0·46 0·37 Wo En Lindsley (1983) end-members 0·06 0·00 1·95 0·01 99·44 0·43 23·0 12·7 0·29 8·55 0·00 0·10 1·86 0·22 52·4 M-8 0·16 0·42 0·43 0·77 0·03 0·89 0·70 0·01 0·27 0·00 0·00 0·08 0·01 1·99 101·0 0·43 22·6 12·7 0·44 8·66 0·00 0·06 1·74 0·20 54·1 U-8 0·24 0·32 0·44 0·67 0·03 0·89 0·57 0·01 0·43 0·00 0·00 0·05 0·00 2·00 98·8 0·41 21·6 9·9 0·44 13·4 0·00 0·00 0·99 0·15 51·8 U-11 0·19 0·39 0·42 0·72 0·03 0·86 0·69 0·01 0·34 0·00 0·00 0·06 0·01 2·00 97·5 0·43 20·9 12·0 0·37 10·4 0·00 0·00 1·31 0·16 51·9 U-12 0·15 0·40 0·45 0·77 0·04 0·92 0·72 0·01 0·26 0·00 0·00 0·07 0·00 1·98 98·9 0·52 22·7 12·7 0·38 8·35 0·11 0·05 1·54 0·14 52·4 U-13 NUMBER 9 0·79 0·74 0·01 0·24 0·00 1·95 0·01 98·91 0·67 21·5 13·7 0·18 6·79 2·53 0·02 1·61 0·23 51·7 M-7 VOLUME 43 0·01 0·06 0·00 Al Cr 1·97 0·01 1·96 0·01 Si Ti Cations normalized for 6 oxygens 0·46 Na2O CaO 0·21 7·71 22·3 9·96 FeO 0·00 22·4 1·32 Fe2O3 0·29 13·2 0·00 Cr2O3 2·03 0·36 52·7 M-5 11·9 1·25 Al2O3 MgO 0·20 52·0 TiO2 SiO2 M-1 Table 3: Electron microprobe analyses of clinopyroxene JOURNAL OF PETROLOGY SEPTEMBER 2002 0·00 0·00 Cr2O3 Fe2O3 97·3 0·03 0·68 17·6 0·74 26·1 0·00 0·00 0·62 0·07 51·4 M-1 99·8 0·00 0·49 22·5 0·46 21·8 0·00 0·12 1·07 0·11 53·2 M-5 1633 0·03 0·00 0·00 1·32 0·05 0·56 0·05 0·00 0·30 Fe3+ Fe2+ Mn Mg Ca Na mg-no. 0·03 0·68 Fs 0·01 0·45 0·54 1·98 0·35 0·64 0·01 0·65 0·00 0·02 1·26 0·01 0·68 0·00 0·00 0·05 0·00 0·37 0·61 0·01 0·62 0·00 0·02 1·20 0·13 0·73 0·01 0·00 0·03 0·00 1·97 99·1 0·00 0·55 21·3 0·82 23·1 0·21 0·00 0·77 0·13 52·2 M-6 0·32 0·63 0·05 0·64 0·00 0·09 1·22 0·02 0·61 0·09 0·00 0·04 0·00 1·94 100·3 0·00 2·15 21·9 0·64 19·7 3·02 0·04 0·80 0·08 52·0 M-7 0·42 0·57 0·01 0·57 0·00 0·02 1·13 0·03 0·82 0·01 0·00 0·03 0·00 1·98 100·9 0·00 0·44 20·1 0·83 25·7 0·42 0·04 0·74 0·06 52·5 M-8 0·45 0·54 0·00 0·54 0·00 0·01 1·01 0·02 0·85 0·00 0·00 0·17 0·00 1·93 101·5 0·00 0·17 18·2 0·49 27·2 0·00 0·02 3·74 0·13 51·7 M-10 0·45 0·53 0·02 0·54 0·00 0·03 1·04 0·04 0·87 0·00 0·00 0·03 0·00 1·99 99·6 0·02 0·72 18·1 1·12 27·1 0·00 0·06 0·69 0·09 51·7 M-12 0·50 0·49 0·01 0·49 0·00 0·03 0·94 0·04 0·97 0·00 0·00 0·03 0·00 1·99 100·4 0·02 0·68 16·3 1·34 29·9 0·00 0·03 0·57 0·04 51·6 U-3 0·61 0·34 0·05 0·35 0·01 0·10 0·64 0·06 1·15 0·05 0·00 0·02 0·01 1·97 102·1 0·08 2·37 10·9 1·89 34·9 1·71 0·00 0·34 0·16 49·8 U-4 0·81 0·17 0·02 0·17 0·00 0·04 0·32 0·07 1·54 0·00 0·00 0·01 0·00 2·01 99·9 0·02 0·82 5·13 1·99 43·9 0·00 0·01 0·13 0·09 47·8 U-5 0·78 0·20 0·02 0·20 0·01 0·03 0·38 0·03 1·51 0·00 0·00 0·04 0·00 1·99 101·4 0·07 0·67 6·28 0·89 44·0 0·00 0·06 0·86 0·08 48·5 U-6 Weight per cent Fe2O3 calculated from charge-balanced structural formula; mg-number = Mg/(Mg + Fe2+ + Fe3+). 0·03 0·29 Wo En Lindsley (1983) end-members 0·55 1·03 0·02 0·85 0·00 0·00 0·02 0·00 Al Cr 2·01 0·00 1·99 0·00 Si Ti Cations normalized for 6 oxygens 99·6 0·04 Total 1·23 CaO Na2O 1·40 9·11 MnO MgO 38·7 0·46 Al2O3 FeO 0·10 48·6 TiO2 SiO2 T-1 Table 4: Electron microprobe analyses of orthopyroxene 0·36 0·62 0·01 0·63 0·00 0·02 1·19 0·03 0·69 0·00 0·00 0·04 0·00 2·00 100·9 0·05 0·60 21·6 0·91 22·4 0·00 0·00 0·91 0·06 54·4 U-8 0·72 0·27 0·01 0·27 0·00 0·03 0·52 0·02 1·39 0·00 0·00 0·02 0·00 2·00 99·1 0·03 0·59 8·46 0·56 40·3 0·00 0·00 0·46 0·10 48·6 U-10 0·54 0·40 0·06 0·42 0·00 0·11 0·78 0·03 1·05 0·02 0·00 0·02 0·00 1·98 100·8 0·01 2·66 13·3 0·99 32·1 0·71 0·07 0·49 0·11 50·3 U-11 0·44 0·54 0·01 0·54 0·00 0·03 1·06 0·03 0·86 0·03 0·00 0·03 0·00 1·97 97·2 0·01 0·64 18·0 0·99 26·1 0·91 0·01 0·61 0·11 50·0 U-12 0·36 0·60 0·04 0·61 0·00 0·07 1·16 0·02 0·69 0·06 0·00 0·04 0·00 1·95 101·4 0·00 1·87 20·9 0·73 22·3 2·03 0·01 0·98 0·14 52·4 U-13 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS 623 491 449 516 468 448 456 456 698 647 TOr 394 467 492 620 616 650 443 274 457 1061 616 492 473 442 442 602 744 478 445 451 447 447 442 282 653 654 1613 595 745 747 492 275 438 407 860 TAn 387 466 444 280 357 VOLUME 43 TAb 451 77·16 70·00 63·13 94·45 91·73 96·02 95·05 55·78 XOr Temperatures (°C) at 5 kbar from Elkins & Grove (1990) 4·80 80·00 87·16 91·85 75·00 90·55 91·18 89·71 95·05 95·71 15·20 12·84 0·00 0·00 8·15 22·50 2·50 0·00 9·45 4·29 0·00 8·82 0·00 4·95 0·00 0·00 10·29 22·09 0·75 8·60 21·40 36·67 0·20 0·00 5·55 8·25 0·02 0·83 XAn 3·87 4·95 0·00 43·39 XAb 0·10 2·19 1·03 1·92 1·90 1·33 2·03 1·16 1·71 XOr Alkali feldspar 32·87 2·81 1·17 3·01 0·93 1·48 2·43 1·96 0·60 2·71 17·86 80·97 68·91 28·08 11·94 87·13 80·29 18·23 32·30 24·03 20·13 64·99 73·55 79·27 23·69 74·36 69·56 28·25 30·43 68·54 76·47 21·61 23·55 74·54 75·30 24·60 27·65 71·76 74·24 70·65 XAb XAn Plagioclase 23·36 U-9 U-7 U-5 U-4 U-1 G-2 G-1 M-13 M-11 M-10 M-9 M-3 M-2 T-3 T-2 T-1 Table 5: Coexisting feldspar compositions and derived temperatures 26·21 U-11 64·32 JOURNAL OF PETROLOGY NUMBER 9 SEPTEMBER 2002 Fe2+) ratios vary from zero to 0·35. Al2O3 contents range from 7·5 to 11·5 wt % and TiO2 from 0·57 to 2·3 wt %. Halide contents are negligible. Biotite has mg-numbers of 11–69 with most in the range 40–65. TiO2 contents are generally 4–5 wt % with exceptional values as high as 6·27 wt %. The micas contain variable quantities of F (0·1–1·45 wt %) and negligible Cl (0–0·29 wt %) (Table 7). Ilmenite (Table 8) generally has low haematite contents (0–4 mol %). All analyses indicate substantial MnO components (2–13·5 wt %). Coexisting magnetite (Table 9) contains up to 2·3 wt % TiO2 and minor Al2O3 (<1·9 wt %). Garnet occurs in three samples, along with orthopyroxene, hornblende, biotite, plagioclase and quartz. Compositions are in the range Alm61–75, Py5–29, Gro5–16, Sp4–5 (Table 10). A variety of minerals and assemblages provides information on pressures and temperatures of equilibration. From these, crystallization conditions have been inferred. Barometry The aluminium-in-igneous hornblende barometer has been calibrated empirically and experimentally, although the thermodynamic basis is not well established. Many calc-alkaline granodiorites of the Lake Minto and Utsalik domains contain the requisite buffering assemblage (hornblende, biotite, titanite, magnetite, plagioclase, alkali feldspar, quartz), with the additional phases orthopyroxene and clinopyroxene. Owing to their low Al contents, the pyroxenes are unlikely to have influenced the Al budget significantly. In several independent study areas, the Alin-hornblende barometer has provided results for pyroxene-bearing plutons consistent (within 1 kbar) with pressures derived from their contact metamorphic aureoles (e.g. Weiss & Troll, 1989; Lahti, 1995). Results of the Al-in-hornblende barometer [Schmidt (1992) calibration] are listed in Table 11 and plotted in Fig. 12. Apparent pressures range from 3·8 to 6·5 kbar, with most values between 4·5 and 5·5 kbar. Samples located within <5 km of each other generally yield values within 1 kbar. The compositional restrictions of Anderson & Smith (1995) eliminate over half of the samples. Their temperature correction results in a pressure range of 2·2–6·1 kbar and a lower average pressure (3·9 kbar). No systematic variation in hornblende crystallization pressure is evident either within or between the Lake Minto (3·8–5·7 kbar; average 4·82 kbar) and Utsalik domains (3·9–6·5 kbar; average 4·95 kbar). The observation of garnet–orthopyroxene–plagioclase–quartz pressures of 5·5–10·1 kbar in metamorphic enclaves of the Lake Minto domain (Bégin & Pattison, 1994) is not supported by the hornblende barometry for proximal samples, which yields 1634 0·00 0·00 Cr2O3 Fe2O3 1·67 0·58 0·09 K 2O F Cl 1635 0·21 13·5 2·56 0·03 9·21 1·74 43·2 M-1 95·6 0·16 0·13 1·27 1·25 11·4 95·5 0·07 0·27 1·08 1·36 11·5 9·75 10·8 0·48 13·7 5·24 0·00 8·89 1·13 42·2 T-2 1·31 42·3 M-3 96·4 0·06 0·50 1·21 1·50 11·7 12·0 0·50 11·4 4·14 0·04 97·3 0·13 0·46 1·45 1·33 11·7 11·0 0·30 12·0 5·26 0·02 8·77 10·0 1·08 43·6 M-2 0·36 0·49 0·04 0·38 6·62 0·55 0·02 0·13 0·21 0·41 1·89 2·46 0·03 1·73 0·30 0·00 1·66 0·20 6·62 0·59 0·02 0·24 0·23 0·44 1·90 2·71 0·06 1·44 0·47 0·01 1·57 0·12 6·41 0·54 0·03 0·22 0·28 0·39 1·91 2·49 0·04 1·52 0·60 0·00 1·79 0·15 0·52 0·01 0·00 0·24 0·30 1·89 2·41 0·08 1·56 0·67 0·00 1·56 0·17 6·56 95·0 0·04 0·01 1·19 1·00 11·4 10·4 0·59 12·1 5·79 0·00 8·58 1·46 42·4 M-4 0·68 0·05 0·30 0·29 0·34 1·95 2·83 0·02 1·36 0·00 0·12 1·73 0·26 6·61 96·4 0·19 0·63 1·52 1·18 12·1 12·6 0·15 10·8 0·00 1·02 9·80 2·32 44·0 M-5 2·09 43·3 M-8 0·66 0·01 0·15 0·21 0·36 1·88 3·02 0·02 1·07 0·49 0·01 1·60 0·19 6·61 96·3 0·03 0·32 1·12 1·23 11·7 13·6 0·17 8·6 4·40 0·04 0·61 0·02 0·30 0·26 0·47 1·94 2·69 0·01 1·63 0·10 0·03 1·84 0·24 6·48 97·8 0·06 0·64 1·37 1·60 12·1 12·1 0·10 13·0 0·88 0·24 9·09 10·4 1·65 44·3 M-7 0·69 0·01 0·14 0·16 0·32 1·81 3·27 0·03 0·72 0·76 0·00 1·32 0·06 6·84 96·0 0·02 0·29 0·87 1·12 11·5 14·9 0·20 5·8 6·83 0·01 7·58 0·57 46·4 M-9 0·39 13·1 1·76 0·00 9·23 1·86 42·7 0·44 0·03 0·14 0·29 0·46 1·86 2·01 0·05 2·01 0·56 0·01 1·76 0·25 6·36 98·6 0·10 0·29 1·49 1·54 11·4 0·58 0·02 0·33 0·29 0·46 1·87 2·57 0·05 1·69 0·20 0·00 1·68 0·22 6·59 95·2 0·09 0·67 1·47 1·54 11·3 8·88 11·2 0·38 15·8 4·86 0·04 9·82 2·18 41·8 0·62 43·5 0·55 0·02 0·18 0·21 0·38 1·91 2·55 0·09 1·59 0·49 0·00 1·48 0·09 6·72 97·2 0·08 0·37 1·11 1·29 11·8 11·3 0·67 12·6 4·29 0·00 0·28 9·8 6·05 0·05 9·26 1·85 43·3 U-1 0·45 0·00 0·13 0·23 0·39 1·89 2·01 0·06 1·92 0·52 0·00 1·89 0·07 6·53 98·7 0·00 0·27 1·22 1·33 11·7 0·59 0·01 0·07 0·25 0·41 1·80 2·70 0·04 1·23 0·68 0·01 1·64 0·21 6·50 96·7 0·03 0·14 1·30 1·40 11·2 8·98 12·1 0·49 15·3 4·58 0·01 8·34 10·7 0·81 44·5 M-11 M-12 M-13 G-2 0·64 0·03 0·05 0·25 0·32 1·89 2·86 0·03 1·19 0·44 0·00 1·75 0·20 6·54 96·6 0·12 0·10 1·32 1·10 11·8 12·9 0·23 9·5 3·88 0·00 9·98 1·77 43·9 U-2 0·52 0·02 0·27 0·29 0·43 1·81 2·29 0·04 1·88 0·27 0·00 1·67 0·26 6·60 99·4 0·07 0·57 1·52 1·49 11·4 10·3 0·28 15·1 2·42 0·03 9·55 2·31 44·4 U-3 0·30 0·02 0·09 0·24 0·51 1·80 1·36 0·06 2·79 0·32 0·00 1·59 0·22 6·66 98·0 0·07 0·18 1·20 1·70 10·8 5·89 0·49 21·5 2·77 0·00 8·68 1·87 42·9 U-4 0·21 0·03 0·28 0·27 0·58 1·80 0·95 0·06 3·32 0·30 0·00 1·50 0·19 6·68 99·3 0·10 0·56 1·34 1·91 10·7 4·04 0·47 25·3 2·56 0·00 8·11 1·64 42·6 U-5 Weight per cent Fe2O3 calculated from charge-balanced structural formula; mg-number = Mg/(Mg + Fe2+ + Fe3+). no. mg- 0·06 0·29 0·02 F Cl 0·25 0·38 0·34 Na K 2·25 1·90 1·54 0·06 1·93 0·04 Mn 1·77 0·61 Mg 2·73 Fe2+ Ca 0·00 Fe3+ 0·00 1·64 1·81 0·00 Al Cr 6·53 0·13 6·66 0·18 Si Ti Cations normalized for 23 oxygens Total 96·1 1·23 11·4 Na2O CaO 0·32 6·56 MnO MgO 20·7 9·76 Al2O3 FeO 1·53 42·3 TiO2 SiO2 T-1 Table 6: Electron microprobe analyses of hornblende U-7 8·27 0·21 0·55 0·00 0·03 0·22 0·04 0·33 0·24 0·44 0·40 1·79 1·90 0·94 2·48 0·02 0·06 2·92 1·87 0·53 0·13 0·01 0·00 2·06 1·49 0·17 0·15 6·37 6·82 100·3 95·9 0·01 0·11 0·45 0·09 1·67 1·25 1·49 1·34 10·9 11·6 4·0810·9 0·16 0·46 22·7 14·7 4·57 1·17 0·04 0·00 11·4 1·44 1·34 41·4 44·7 U-6 0·62 0·03 0·09 0·24 0·38 1·84 2·70 0·03 1·51 0·16 0·01 1·67 0·22 6·71 98·0 0·11 0·20 1·26 1·34 11·7 12·3 0·21 12·3 1·40 0·04 9·64 2·01 45·6 U-8 1·29 40·7 0·49 0·01 0·16 0·27 0·45 1·82 2·22 0·09 1·89 0·42 0·00 1·53 0·11 6·74 97·8 0·04 0·33 1·40 1·52 11·2 9·83 0·70 15·0 3·69 0·00 0·25 0·02 0·06 0·20 0·52 1·71 1·07 0·02 2·61 0·65 0·00 2·10 0·15 6·40 96·3 0·08 0·11 1·01 1·70 10·1 4·56 0·15 19·8 5·45 0·01 0·22 10·6 2·88 0·12 10·1 0·75 45·1 0·37 0·02 0·04 0·32 0·28 1·90 1·60 0·03 2·43 0·24 0·00 2·08 0·16 6·48 96·3 0·09 0·09 1·61 0·94 11·4 0·63 0·04 0·13 0·25 0·36 1·91 2·83 0·03 1·31 0·32 0·01 1·76 0·08 6·66 97·8 0·16 0·27 1·33 1·25 12·1 6·88 12·9 0·19 18·7 2·08 0·00 11·3 1·36 41·7 0·52 0·00 0·01 0·19 0·39 1·84 2·31 0·03 1·97 0·19 0·00 1·45 0·15 6·89 99·8 0·00 0·02 1·04 1·39 11·7 10·6 0·26 16·1 1·70 0·03 8·43 1·40 47·1 U-10 U-11 U-13 U-14 8·60 11·3 0·95 44·5 U-9 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS SiO2 0·04 1636 96·9 94·8 0·11 0·53 9·73 0·13 0·05 0·02 12·6 0·25 17·0 0·04 14·1 2·96 37·2 T-3 93·2 0·11 0·37 9·58 0·10 0·42 0·03 11·5 0·03 16·1 0·07 13·6 4·78 36·5 M-1 96·4 0·13 0·92 9·77 0·05 0·17 0·03 17·1 0·06 11·1 0·45 13·5 4·23 38·9 M-5 0·00 2·10 0·56 0·03 0·18 1·90 0·03 0·03 0·01 2·68 0·00 2·63 0·73 0·03 0·43 1·83 0·01 0·01 0·01 3·74 0·01 1·37 0·05 5·85 0·68 0·01 0·30 1·78 0·04 0·00 0·04 3·53 0·01 1·69 0·00 2·19 0·42 mg-number = Mg/[Mg + Fe(total)]. 0·03 0·57 0·03 Cl mg-no. 0·42 1·90 0·26 2·04 0·34 K 0·04 F 0·01 0·01 Ba 2·87 2·81 0·01 5·71 0·47 0·55 0·03 0·46 1·80 0·01 0·03 0·01 2·62 0·01 2·18 0·01 2·55 0·66 5·55 99·2 0·12 0·99 9·57 0·03 0·46 0·04 11·9 0·04 17·7 0·09 14·7 5·91 37·7 M-10 0·49 0·04 0·46 2·22 0·03 0·00 0·00 2·45 0·02 2·60 0·00 2·66 0·03 5·87 95·0 0·14 0·92 11·1 0·10 0·05 0·01 10·5 0·16 19·9 0·01 14·4 0·28 37·5 M-11 0·69 0·02 0·67 1·88 0·02 0·02 0·01 3·48 0·01 1·56 0·00 2·55 0·52 5·75 92·1 0·08 1·35 9·48 0·06 0·26 0·08 15·0 0·09 11·9 0·00 12·5 4·42 36·9 M-12 0·11 0·00 0·11 1·92 0·01 0·00 0·00 0·49 0·08 4·12 0·00 3·07 0·42 5·45 97·7 0·00 0·21 9·49 0·02 0·01 0·02 2·06 0·58 31·0 0·00 16·4 3·55 34·3 G-1 0·54 0·00 0·26 1·97 0·01 0·01 0·01 2·86 0·06 2·41 0·00 2·69 0·19 5·63 93·9 0·00 0·52 9·86 0·02 0·10 0·03 12·3 0·43 18·4 0·02 14·6 1·65 36·0 G-2 0·63 0·05 0·10 1·98 0·01 0·03 0·01 3·23 0·02 1·86 0·00 2·47 0·58 5·50 94·0 0·20 0·21 10·1 0·02 0·41 0·03 14·1 0·15 14·5 0·03 13·6 4·98 35·8 U-1 0·64 0·07 0·39 1·96 0·01 0·02 0·00 3·24 0·01 1·82 0·00 2·46 0·57 5·52 96·5 0·29 0·82 10·3 0·03 0·30 0·00 14·5 0·06 14·5 0·02 13·9 5·09 36·8 U-2 0·54 0·02 0·38 2·04 0·02 0·01 0·00 2·59 0·02 2·17 0·00 2·36 0·71 5·61 97·6 0·06 0·80 10·6 0·08 0·23 0·02 11·5 0·18 17·2 0·02 13·3 6·27 37·2 U-3 0·33 0·02 0·04 1·81 0·04 0·03 0·03 1·65 0·02 3·28 0·00 2·38 0·53 5·72 97·3 0·06 0·08 9·14 0·13 0·54 0·17 7·13 0·14 25·3 0·03 13·1 4·54 36·9 U-4 0·27 0·00 0·28 1·86 0·02 0·04 0·01 1·31 0·01 3·46 0·00 2·51 0·65 5·58 96·8 0·01 0·56 9·24 0·06 0·71 0·03 5·56 0·07 26·2 0·00 13·5 5·50 35·4 U-6 0·54 0·02 0·16 1·97 0·02 0·01 0·00 2·53 0·02 2·19 0·00 2·64 0·48 5·67 94·9 0·09 0·33 10·1 0·06 0·15 0·01 11·1 0·16 17·1 0·00 14·6 4·15 37·1 U-7 0·63 0·03 0·19 1·86 0·03 0·02 0·00 3·08 0·02 1·78 0·00 2·40 0·61 5·67 96·8 0·13 0·41 9·84 0·09 0·41 0·00 13·9 0·12 14·4 0·03 13·8 5·45 38·3 U-8 0·55 0·00 0·69 2·08 0·01 0·01 0·00 2·82 0·07 2·34 0·00 2·46 0·23 5·78 98·5 0·00 1·45 10·8 0·04 0·12 0·00 12·6 0·53 18·6 0·00 13·9 2·07 38·4 U-9 0·26 0·02 0·07 2·01 0·03 0·03 0·01 1·27 0·01 3·72 0·00 2·74 0·54 5·37 95·6 0·07 0·13 9·76 0·10 0·44 0·07 5·28 0·10 27·5 0·01 14·4 4·47 33·2 U-10 0·41 0·02 0·13 1·95 0·02 0·00 0·01 1·96 0·02 2·79 0·00 2·56 0·60 5·61 94·0 0·08 0·26 9·67 0·07 0·07 0·03 8·33 0·14 21·1 0·03 13·7 5·01 35·5 U-11 0·52 0·03 0·27 1·86 0·02 0·04 0·00 2·60 0·01 2·37 0·00 2·38 0·60 5·63 95·3 0·12 0·55 9·43 0·06 0·64 0·00 11·3 0·10 18·3 0·03 13·1 5·19 36·5 U-12 0·67 0·01 0·34 2·05 0·01 0·02 0·00 3·43 0·02 1·70 0·04 2·51 0·41 5·59 98·2 0·05 0·74 10·9 0·04 0·30 0·00 15·6 0·14 13·9 0·35 14·5 3·66 38·0 U-13 0·46 0·01 0·13 1·74 0·02 0·01 0·01 2·28 0·02 2·66 0·00 2·55 0·44 5·73 93·9 0·04 0·26 8·75 0·06 0·11 0·03 9·8 0·11 20·4 0·00 13·9 3·75 36·7 U-14 NUMBER 9 Na 0·00 2·15 0·01 Mg Ca 2·18 Mn 0·03 2·91 0·01 Fe2+ 0·01 2·85 2·46 0·00 Al 5·68 0·56 95·8 0·02 0·63 9·40 0·13 0·04 0·22 16·0 0·06 13·7 0·02 12·5 3·76 39·4 M-7 VOLUME 43 Cr 5·71 0·34 5·58 0·52 Si Ti Cations normalized for 22 oxygens Total 0·69 0·12 F Cl 10·3 Na2O K 2O 0·04 0·15 CaO BaO 0·05 9·27 MnO 22·4 0·00 13·4 4·47 36·0 MgO FeO Cr2O3 Al2O3 TiO2 T-1 Table 7: Electron microprobe analyses of biotite JOURNAL OF PETROLOGY SEPTEMBER 2002 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Table 8: Electron microprobe analyses of ilmenite T-1 TiO2 50·1 M-11 50·3 U-3 51·4 U-4 U-8 U-9 U-11 U-12 U-13 U-14 51·8 49·8 52·3 49·3 48·5 47·7 51·1 Al2O3 0·05 0·05 0·04 0·04 0·09 0·06 0·04 0·08 0·07 Cr2O3 0·04 0·01 0·06 0·00 0·02 0·01 0·01 0·02 0·14 0·00 Fe2O3 4·48 4·43 2·67 0·00 1·36 0·24 3·56 4·20 10·79 1·56 FeO 42·9 41·8 42·3 41·4 39·6 33·2 43·0 40·3 38·4 MnO 2·01 3·36 3·81 3·47 4·95 13·52 1·30 3·16 4·28 MgO 0·01 0·00 0·04 0·00 0·00 0·00 0·05 0·04 0·02 Total 99·5 100·0 100·2 96·7 95·8 99·3 97·3 96·3 101·4 0·07 39·8 5·97 0·15 98·7 Cations normalized for 6 oxygens Ti 1·91 1·92 1·95 2·02 1·97 1·99 1·93 1·91 1·79 1·96 Al 0·00 0·00 0·00 0·00 0·01 0·00 0·00 0·01 0·00 0·00 Cr 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·01 0·00 Fe3+ 0·17 0·17 0·10 0·00 0·05 0·01 0·14 0·17 0·41 0·06 Fe2+ 1·82 1·77 1·78 1·80 1·75 1·41 1·87 1·77 1·61 1·69 Mn 0·09 0·14 0·16 0·15 0·22 0·58 0·06 0·14 0·18 0·26 Mg 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 Ilm 0·01 91·2 88·6 89·1 92·2 87·5 70·6 93·5 88·6 80·4 85·0 Pyroph 4·4 7·2 8·1 7·8 11·1 29·1 2·9 7·0 9·1 12·9 Geikie 0·05 0·00 0·15 0·00 0·00 0·00 0·20 0·15 0·05 Hem 4·3 4·2 2·5 0·0 1·4 0·2 3·5 4·2 Eskol 0·10 0·00 0·10 0·00 0·05 0·00 0·00 0·05 10·2 0·30 0·55 1·5 0·00 Weight per cent Fe2O3 calculated from charge-balanced structural formula. pressures up to 4·5 kbar lower (Fig. 12). However, pressures based on garnet–plagioclase–sillimanite–quartz barometry of pelitic enclaves correspond closely to the Alin-hornblende results. Bégin & Pattison (1994) suggested that the garnet–orthopyroxene pressures of enclaves could have been established before incorporation into the calc-alkaline granodiorites. An alternative possibility is that the hornblende compositions were not reset by the >2700 Ma metamorphism, such that the hornblende barometer records premetamorphic (i.e. 2725 Ma) crystallization pressures. The latter hypothesis is consistent with 2700 Ma monazite ages of metasedimentary gneisses (Percival & Skulski, 2000) and local, thin, 2700 Ma rims on zircons from granodiorites (Percival et al., 2001). Rare assemblages of garnet–orthopyroxene–plagioclase–quartz in granitoid rocks (U-6, U-10) yield independent pressure estimates (Table 11, Fig. 12). The TWQ barometer (Berman, 1991; Berman, 1988 database) yields pressures lower (5·4, 5·5 kbar) than those derived from hornblende from the same sample (6·9, 7 kbar) and slightly higher than Al-in-hornblende pressures of proximal samples (4·1, 4·3 kbar). The withinsample difference may reflect the sensitivity of the Al-inhornblende barometer to bulk compositions beyond the mineralogically defined limits. Thermometry Analyses of 13 pyroxene pairs from Tables 3 and 4 were used with QUILF software (Anderson et al., 1993) to calculate temperatures. Results are reported in Table 12 and plotted in Fig. 12. They range from 625 to 1010°C, with most between 700 and 800°C. With the exception of the four values above 900°C, these temperatures do not reflect primary pyroxene crystallization, but have probably been reset during cooling or subsequent metamorphism. Most of the feldspar compositions listed in Table 5 correspond to binary plagioclase and alkali feldspar solutions with very minor ternary components. These provide temperatures in the range 350–700°C using Elkins & Grove’s (1990) calibration (Table 5). Most analyses show reasonable internal consistency between albite, orthoclase and anorthite thermometers. Ternary compositions are preserved in alkali feldspar grains with heterogeneous exsolution patterns. The fine scale of the cryptoperthitic grain portions renders optical recognition difficult and the ternary compositions were identified only through microprobe analysis. Reintegrated compositions showing An contents up to 8 mol % are plotted along with coexisting plagioclase on 5 kbar isotherms from 1637 JOURNAL OF PETROLOGY VOLUME 43 NUMBER 9 SEPTEMBER 2002 Table 9: Electron microprobe analyses of magnetite T-1 M-11 U-3 U-4 U-8 U-9 U-11 U-12 U-13 U-14 TiO2 0·79 0·10 0·34 0·05 0·15 0·11 2·31 0·26 0·66 0·66 Al2O3 0·70 0·10 1·89 0·17 0·44 0·02 0·05 0·14 0·12 0·10 Cr2O3 0·04 0·02 0·16 0·03 0·01 0·06 0·16 0·00 0·84 0·06 Fe2O3 66·1 69·5 65·1 69·6 67·5 69·3 64·6 67·7 66·2 68·1 FeO 31·5 31·5 31·3 31·4 30·9 31·3 33·2 30·9 31·4 31·9 MnO 0·07 0·03 0·00 0·02 0·00 0·07 0·11 0·02 0·04 0·07 MgO 0·02 0·02 0·01 0·01 0·04 0·05 0·02 0·07 0·00 0·03 Total 99·1 101·2 98·8 101·3 99·0 100·9 100·4 99·1 99·3 100·9 Cations normalized for 4 oxygens Ti 1·91 1·92 1·95 2·02 1·97 1·99 1·93 1·91 1·79 1·96 Al 0·00 0·00 0·00 0·00 0·01 0·00 0·00 0·01 0·00 0·00 Cr 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·01 0·00 Fe3+ 0·17 0·17 0·10 0·00 0·05 0·01 0·14 0·17 0·41 0·06 1·69 Fe2+ 1·82 1·77 1·78 1·80 1·75 1·41 1·87 1·77 1·61 Mn 0·09 0·14 0·16 0·15 0·22 0·58 0·06 0·14 0·18 0·26 Mg 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·01 Mgnsf 0·1 0·1 0·1 0·1 0·2 0·3 0·1 0·4 0·0 0·2 Mgnet 96·0 99·4 94·4 99·4 98·4 99·3 93·0 98·5 96·6 97·6 0·0 Spinl 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 Hercy 1·6 0·2 4·3 0·4 1·0 0·1 0·1 0·3 0·3 0·2 Mgchr 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 Chrom 0·1 0·1 0·3 0·1 0·0 0·1 0·3 0·0 1·3 0·1 Mgulv 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 Feulv 2·3 0·3 1·0 0·1 0·4 0·3 6·6 0·8 1·9 1·9 Weight per cent Fe2O3 calculated from charge-balanced structural formula. Elkins & Grove (1990) (Fig. 13). The highest An contents indicate temperatures in excess of 1100°C, at the upper limit of possible igneous crystallization conditions. Diffusion of Na and K from feldspar is common during cooling and exsolution (Fuhrman & Lindsley, 1988), and this probably accounts for low apparent temperatures and internal disequilibrium indicated by the wide temperature spread (Table 5). A concentration of values in the 450°C range suggests that this temperature may represent the effective closure of feldspars to re-equilibration. Late K loss from plagioclase is suggested by consistently lower temperatures indicated by plagioclase compositions (Fig. 13). Hornblende is a late magmatic phase based on its habit and could indicate conditions near the end of the crystallization history. Although the feldspar thermometry indicates that Na and K equilibrated down to relatively low temperatures (<450°C), it is likely that plagioclase established its Na/Ca ratios at higher temperatures, possibly in equilibrium with hornblende. Results from calibrations (Blundy & Holland, 1990; Holland & Blundy, 1994) of the equilibria edenite + 4 quartz = tremolite + albite (A) edenite + albite = richterite + anorthite (B) and are reported for 27 rocks in Table 11 at an assumed pressure of 5 kbar. Values range from 575 to 820°C for the three calibrations, with narrower ranges for each. In the calibrations taking account of amphibole non-ideality (Holland & Blundy, 1994), most values fall between 680 and 760°C, with identical mean temperatures of 714°C for Utsalik and Lake Minto domain rocks. The common occurrence of pyroxene and amphibole in this temperature range has been demonstrated in many experimental studies (e.g. Naney, 1983; Conrad et al., 1988; Patiño Douce, 1995). Thus these values may reflect the range in which hornblende precipitated or reached equilibrium with plagioclase in a subsolidus state. 1638 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS may be suitable as a thermometer at known pressure. Using mineral compositions from Tables 3, 5 and 6, and amphibole parameters from Mäder et al. (1994) in TWQ (Berman, 1991), highly scattered values and temperatures lower by 100–300°C than the hornblende–plagioclase values were calculated. Either the thermometer is not well calibrated for this bulk composition, or hornblende may have grown directly from residual melt and did not equilibrate with previously crystallized clinopyroxene. Garnet–orthopyroxene and garnet–biotite assemblages are present in two samples (U-6, U-10), along with hornblende (Table 12). Relatively low temperatures (685, 730°C) are indicated by Fe–Mg exchange thermometers, whereas the more refractory Al-in-orthopyroxene thermometer (Aranovich & Berman, 1997) gives values in the 800°C range. Fe–Mg exchange between biotite and orthopyroxene has been calibrated as a thermometer. Using values from Tables 4 and 7 in TWQ yields a wide range of values, from >515 to 950°C. The values less than >700°C do not represent equilibrium conditions because they are below the orthopyroxene stability field. Temperatures in the 950°C range approach biotite’s thermal stability limit, although Ti-saturated biotites may be stable at temperatures as high as 1000°C (Patiño Douce, 1993; Patiño Douce & Beard, 1995). The high TiO2 contents of biotites (up to 6·27 wt %; Table 7) qualitatively support the high crystallization temperatures. Table 10: Electron microprobe analyses of garnet SiO2 TiO2 Al2O3 M-10 U-6 U-10 36·6 37·6 37·5 0·03 21·6 0·02 20·3 Cr2O3 0·07 0·00 Fe2O3 3·33 0·00 FeO 26·7 32·7 0·07 20·4 0·00 0·02 33·0 MnO 2·12 1·88 1·79 MgO 7·19 1·16 1·57 CaO 1·64 5·49 Total 99·2 99·0 5·73 100·1 Cations normalized for 24 oxygens Si 5·78 6·11 6·05 Ti 0·00 0·00 0·01 Al 4·02 3·89 3·88 Cr 0·01 0·00 0·00 Fe3+ 0·40 4·44 4·45 Fe2+ 3·53 0·00 0·00 Mn 0·28 0·28 0·38 Mg 1·70 0·26 0·25 Ca 0·28 0·96 0·99 mg-no. 0·30 0·06 0·05 Pyrope 27·6 4·7 6·2 Almand 57·6 74·8 73·4 Spessa 4·6 4·4 4·0 Uvarov 0·2 0·0 0·0 Grossu 0·5 16·1 16·3 Andrad 9·5 0·0 0·1 Water fugacity Weight per cent Fe2O3 calculated from charge-balanced structural formula; mg-number = Mg/(Mg + Fe2+ + Fe3+). The spatial distribution of temperature values from equilibrium (B) is illustrated in Fig. 12. The Lake Minto and Utsalik domains exhibit similar ranges (670–790°C) and identical mean temperatures (718°C), with a slightly higher standard deviation in the Utsalik domain. There is no indication of higher values in the western Lake Minto domain, where high garnet–orthopyroxene temperatures are recorded in paragneiss enclaves (Bégin & Pattison, 1994). If hornblende–plagioclase assemblages reached equilibrium with igneous clinopyroxene and quartz, then the equilibrium 2 diopside + 2 quartz + tschermakite = tremolite + 2 anorthite Minerals in several assemblages provide estimates of water fugacity, assuming equilibrium. The assemblage biotite–quartz–orthopyroxene–K-feldspar is a common hygrometer in igneous and metamorphic rocks. It returns TWQ temperatures (5 kbar) in the 760–840°C range at unit water activity (Table 12). Assemblages of orthopyroxene–clinopyroxene–plagioclase–hornblende–quartz yield TWQ values of aH2O, at 5 kbar and temperatures defined by the hornblende–plagioclase thermometer, in the range 0·06–0·18. Using Burnham’s (1979) equations, these values correspond to magmatic water contents in the range 2–3 wt %. The significance of these calculations is unclear in light of the wide range of crystallization temperatures inferred for pyroxene, biotite and amphibole; however, the results appear consistent with experimentally derived phase equilibria (see below). Oxygen fugacity Estimates of oxygen fugacity based on the assemblage orthopyroxene–clinopyroxene–ilmenite–magnetite– quartz were made with QUILF (Anderson et al., 1993). Values range from FMQ +0·6 to +2, consistent with 1639 T-1 T-2 M-1 5·6 4·8 4·9 661 610 746 4 5 6 −22·2 801 575 740 748 760 815 701 744 738 710 769 744 5·5 M-3 734 749 752 4·4 M-4 705 773 821 5·2 M-5 717 737 738 4·6 M-7 −23·3 699 719 791 638 5·7 M-8 671 684 711 M-9 −26·3 578 782 817 777 5·4 724 735 742 4·8 678 719 715 3·9 653 693 714 4·1 M-11 M-12 M-13 G-2 791 622 765 4·8 U-1 714 728 775 5·3 U-2 −26·3 670 773 708 766 4·9 U-3 698 704 707 4·9 U-4 672 711 686 4·1 U-5 750 722 604 5·4 U-6 666 683 702 4·1 U-7 495 720 677 705 4·1 U-9 −36·6 −47·5 457 748 714 769 5·0 U-8 759 712 763 5·5 804 700 716 757 5·0 679 694 725 695 3·9 −21·7−17·9−28·6 817 646 654 743 6·5 U-10 U-11 U-13 U-14 1640 T-1 723 1010 870 703 M-8 760 895 M-10 5.0 796 630 M-12 670 770 U-3 938 840 920 U-4 625 U-5 5.5 790 725 555 U-6 744 920 U-8 5.6 650 680 705 920 U-10 972 765 895 U-11 950 U-12 959 820 U-13 References: 1, orthopyroxene–biotite Fe–Mg exchange thermometer (TWQ ; Berman, 1991); 2, biotite–quartz = orthopyroxene + K-feldspar + H2O equilibrium (TWQ ; Berman, 1991, pers. comm., 1996); 3, two-pyroxene QUILF thermometer (Anderson et al., 1993); 4, almandine+enstatite = pyrope + ferrosilite equilibrium (TWQ ; Aranovich & Berman, 1997); 5, pyrope = enstatite + Al in orthopyroxene (TWQ ; Aranovich & Berman, 1997); 6, anorthite+enstatite = grossular+ferrosilite+quartz equilibrium (TWQ ; Aranovich & Berman, 1997). 6 Pressure (kbar) 805 759 760 M-7 5 678 885 M-6 700 515 M-5 4 3 2 M-1 NUMBER 9 1 Temperature (°C) Ref. VOLUME 43 Table 12: Equilibration conditions based on pyroxene and garnet compositions References: 1, hornblende barometer (Schmidt, 1992); 2, garnet–orthopyroxene–plagioclase–quartz barometer ( TWQ ; Berman, 1991); 3, edenite– quartz–tremolite–albite thermometer (Blundy & Holland, 1990); 4, edenite–quartz–tremolite–albite thermometer (Holland & Blundy, 1994); 5, edenite– albite–richterite–anorthite thermometer (Holland & Blundy, 1994); 6, QUILF oxide thermometer (Anderson et al., 1993); 7, fugacity O2 from QUILF (Anderson et al., 1993). 7 Fugacity O2 711 3 3·8 M-2 Temperature estimates (°C) 2 1 Pressure estimates (kbar) Ref. Table 11: Equilibration conditions based on hornblende and oxide compositions JOURNAL OF PETROLOGY SEPTEMBER 2002 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Fig. 12. Map showing pressure–temperature estimates. Most pressures are derived from Schmidt’s (1992) calibration of the Al-in-igneous hornblende barometer and most temperatures from hornblende–plagioclase assemblages [Holland & Blundy (1994) calibration]. Also plotted are pressures from TWQ for garnet-, orthopyroxene- and garnet-, sillimanite-bearing rocks, as well as two-pyroxene temperatures. 414–815°C (Table 11), reflecting post-crystallization reequilibration. The presence of the assemblage clinopyroxene– ilmenite in the more calcic compositions of the suite can be used to derive relatively reducing conditions relatively early in the crystallization history (Czamanske & Wones, 1973). Occurrences of amphibole–titanite–magnetite, developed in relatively potassic compositions, indicate that oxygen fugacity may have increased with hydration during advanced crystallization (Wones, 1989; Frost et al., 2000a). Summary Fig. 13. Ternary and plagioclase feldspar compositions plotted on 5 kbar isotherms (Elkins & Grove, 1990). an arc environment (Anderson & Lindsley, 1988; Frost & Lindsley, 1992). Magnetite–ilmenite pairs (Tables 8 and 9) yield QUILF temperatures in the range Although reliable pressure-sensitive assemblages are scarce in the calc-alkaline rocks, available geobarometers yield relatively consistent pressure values of 5 ± 1 kbar. Results of the Al-in-hornblende barometer are supported by garnet–orthopyroxene–plagioclase–quartz data for igneous rocks and garnet–sillimanite–plagioclase–quartz equilibria in enclosed metamorphic rocks. Conversely, a wide range of temperature conditions is indicated by various mineral geothermometers. Feldspars 1641 JOURNAL OF PETROLOGY VOLUME 43 record an >700°C range, from >1100°C for cryptoperthitic ternary compositions to the 400°C range for discrete pairs. The high temperatures for crystallization of pyroxene-bearing assemblages are supported by several high two-pyroxene and biotite–orthopyroxene temperatures. The range is narrower (>400°C) for twopyroxene assemblages (1010–625°C), and oxide pairs (815–415°C). The wide observed temperature range probably reflects variable resetting from crystallization conditions. The variable degree of retrogression could have been produced in a cooling magmatic system at depth, through evolution of fluids during advanced crystallization. Even relatively anhydrous, high-level (3 kbar) intrusions have been shown to be susceptible to diffusive retrograde re-equilibration (e.g. Eggins & Hensen, 1987; Weiss & Troll, 1989). Alternatively, later metamorphism, crustal magmatism and hydrothermal activity (2700–2630 Ma) could also have contributed to resetting. CRYSTALLIZATION HISTORY AND CONSTRAINTS ON WATER CONTENTS The crystallization history of the Leaf River suite can be interpreted from mineral assemblages, reaction and exsolution textures, temperatures derived from various thermometers, and bulk compositional changes. Diorites represent the most primitive compositions of the suite (Stern et al., 1994) and may be parental; comagmatic gabbro and pyroxenite enclaves may be cumulates. All of these rock types, as well as quartz diorites and some granodiorites, have assemblages of ortho- and clinopyroxene, plagioclase, biotite, hornblende and Fe–Ti oxides, with or without quartz. Normally zoned plagioclase, and clinopyroxene evolving from subcalcic to diopside compositions in this compositional range reflect declining temperature. Alkali feldspar is present sporadically in the highest-temperature assemblages, apparently following pyroxenes, biotite and plagioclase in the crystallization order. Subsequent cooling led to exsolution in pyroxenes (001 pigeonite; 100 orthopyroxene) and feldspar (cryptoperthite). In the granodiorite to granite compositional range, hornblende appears as an additional phase and alkali feldspar is abundant. Based on textural observations of amphibole as initial overgrowths on pyroxene, and in more felsic compositions as the main ferromagnesian mineral, it is possible that hornblende and alkali feldspar are products of the subsolidus decomposition of clinopyroxene–biotite–quartz. However, based on TWEQU calculations using natural compositions, the equilibrium diopside + biotite + quartz = hornblende + K-feldspar NUMBER 9 SEPTEMBER 2002 does not occur in the 600–800°C temperature range. It is more likely that hornblende crystallized directly from the magma, in response to changes in bulk composition, including increasing water content. In summary, orthopyroxene, clinopyroxene, plagioclase, biotite and some alkali feldspar formed early in the crystallization sequence. Fractionation of water into the residual magma promoted some resorption of pyroxene and crystallization of hornblende in more evolved compositions. The crystallization order of early biotite and late hornblende differs from that of hydrous I-type granitoid rocks (Eggler, 1972; Burnham, 1979; Wones & Gilbert, 1982; Sisson & Grove, 1993). However, it matches closely that of H2O-undersaturated, K-bearing magmas (Wones & Gilbert, 1982; Naney, 1983; Weiss & Troll, 1989; Kilpatrick & Ellis, 1992). Experimental results for synthetic granite and granodiorite (Naney, 1983) demonstrate qualitative crystallization orders at 2 and 8 kbar for a variety of water contents. In only the driest magmas (<2 wt % H2O) does biotite precede alkali feldspar in the crystallization order. Hornblende appears in the crystallization sequence only in granodioritic bulk compositions containing >4 wt % H2O (Sisson & Grove, 1993; Beard, 1995). Additional indirect evidence for low magmatic water contents in the calc-alkaline pyroxenebearing rocks includes low intrinsic water contents (<1 wt % H2O; Table 1), lack of hydrothermal sericitization of plagioclase and lack of pyroxene alteration products (Figs 3 and 4). The crystallization history inferred from assemblages, textures and thermometry is compared with a schematic isobaric (5 kbar) T–XH2O diagram derived from Naney’s (1983) experimental results in Fig. 14. Qualitative relations have been preserved in the nonrigorous construction of the phase diagram, with a few exceptions. A modification was necessary to allow clinopyroxene and hornblende to coexist in the same bulk compositional space: Naney’s synthetic compositions did not produce clinopyroxene in granodiorite or hornblende in granite. The phase diagram qualitatively predicts the observed assemblages and crystallization order; however, several discrepancies are also apparent. The common hornblende–perthite (alkali feldspar) assemblage in granite is not stable and must form in bulk compositions not represented experimentally. Biotite begins to crystallize in the synthetic compositions at <900°C, in contrast to indications of higher temperatures in the natural biotites which were probably stabilized as a result of high TiO2 contents (Patiño Douce, 1993). Full occupancy of the M2 site by Ti and Al in high-temperature biotite (Table 7) may account for the abundance of magnetite in these rocks, as all Fe3+ at given fH2O conditions would be sequestered in magnetite (Pilkington & Percival, 2001). 1642 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Fig. 14. Schematic T–water content diagram showing stability fields of minerals (abbreviations as in Table 1) in calc-alkaline felsic compositions [modified after Naney’s (1983) experimental results on synthetic granodiorite by linear interpolation between 2 and 8 kbar data to produce an approximate 5 kbar isobaric section]. Epidote is not present in the rocks under study and was omitted from consideration. Plotted on the diagram are observed equilibrium assemblages (Β) from a range of bulk compositions (Table 1; Fig. 5). Assemblages of hornblende–alkali feldspar, common in Leaf River granitic compositions, are not stable in the experimental range investigated by Naney. At the left margin is the range of temperature estimates from various thermometers. The maximum stability of alkali feldspar in the experiments is >1000°C, compared with higher values recorded in natural ternary compositions. Hornblende is stable at higher temperatures than those recorded by hornblende–plagioclase thermometers. This discrepancy may be explained if the water content of the natural magmas only rose to values above >3 wt % below temperatures of >800°C. The general T–H2O crystallization path is indicated by the array of assemblages in Fig. 14. Evidence supporting a primary igneous origin for pyroxene in calc-alkaline rocks of the Lake Minto and Utsalik domains includes field-based, petrographic, thermometric and geochemical observations. Field constraints include the occurrence of large bodies of homogeneous, massive, coarse-grained rocks with dehydrating contact relationships to enclaves and country rocks (Fig. 2d and e). All bulk compositions, from pyroxenite to granite, contain both hydrous and anhydrous mafic minerals; however, the more felsic rocks generally contain more hornblende and biotite. Where gradations between units with pyroxene- and hornblende-dominant units were observed, pyroxenes are invariably rimmed by hornblende (Figs 2b and c, and 4). Mineralogical thermometers record a wide range of temperatures from >1100 to 400°C with considerable scatter both within and between samples. The highest temperatures, sparsely recorded by ternary feldspar and pyroxene compositions, approach the limits of crustal metamorphic conditions. Had the region been metamorphosed to such extreme conditions, one would expect to see evidence of tectonic fabrics, migmatization, anhydrous mineralogy independent of bulk composition, and better preservation of high-temperature features, the effect of dehydration being to isolate the metamorphic rocks from potentially rehydrating fluids. Instead, the geochemically more evolved rocks exhibit relatively hydrous assemblages, and the extreme spread in temperature results suggests re-equilibration in the presence of an evolving fluid. Geochemical features of the Utsalik domain rocks support an igneous origin. Typical igneous calc-alkaline fractionation trends (Figs 6–10) characterize the mineralogical change from pyroxene- to hornblende-, biotitebearing units. REE and LILE characteristics (Figs 7–9) are consistent with igneous fractionation rather than metamorphic depletion. Identical U–Pb zircon crystallization ages are recorded by hornblende (2724, 2725 Ma) and pyroxene-bearing granodiorites (2729, 2724 Ma). Zircons in pyroxene-bearing rocks rarely have metamorphic rims (Percival et al., 2001). PETROGENESIS OF IGNEOUS PYROXENE-BEARING GRANITOID ROCKS In comparison with geochemically similar calc-alkaline batholiths of younger continental margins, the Minto rocks are notably less hydrous, although a continuum of water undersaturation exists, as in calc-alkaline magmas in general (Eggler, 1972; Hildreth, 1981; Clemens, 1984; Beard, 1995). Models of subduction-zone magmatism hold that slab-derived fluids initiate melting through mantle metasomatism and are retained through the various stages of magma genesis (e.g. Wyllie et al., 1976; Burnham, 1979; Gill, 1981; Merzbacher & Eggler, 1984; Sisson & Grove, 1993; Sobolev & Chaussidon, 1996; Peacock & Hyndman, 1999). However, granitoid magmas are commonly water undersaturated (Eggler, 1972; Clemens, 1984; Merzbacher & Eggler, 1984) and pyroxenes are common liquidus phases of calc-alkaline magmas (Frost & Lindsley, 1992), as indicated by phenocrysts in dacites of continental margin settings (e.g. Ewart, 1979). Water contents of these explosive, shallow-level 1643 JOURNAL OF PETROLOGY VOLUME 43 magmas are of the order of 1–6 wt % (Merzbacher & Eggler, 1984; Beard, 1995; Kawamoto, 1996). Arc plutonic rocks are presumed to have evolved through more hydrous magmatic conditions in which pyroxenes were resorbed and amphibole–biotite crystallized (Sisson & Grove, 1993). However, magmatic systems are commonly zoned with respect to water content (Hildreth, 1981) and some plutons have waterundersaturated root zones [e.g. orthopyroxene-bearing tonalites of the southern Sierra Nevada batholith (Ross, 1985, 1989; Sams & Saleeby, 1988; Barth & May, 1992)]. In the central Andes, Lucassen & Franz (1996) described a magmatic history involving H2O-undersaturated igneous crystallization to form orthopyroxene–clinopyroxene– biotite ‘granulites’, followed by magmatic autometamorphism yielding amphibole-bearing ‘amphibolitefacies’ assemblages. I-type felsic volcanic rocks commonly contain pyroxenes and may be linked to water-undersaturated plutonic bodies. For example, the charnockitic, I-type Ballachulish igneous complex has rhyodacitic equivalents of the most fractionated granitic compositions (Weiss & Troll, 1989; Troll & Weiss, 1991). M-type (mantlederived) magmas may also fractionate to anhydrous granitoid compositions. For example, the Barrington Tops granodioritic batholith of eastern Australia, emplaced at >3 kbar levels, has a high-temperature crystallization history involving ortho- and clinopyroxene (Eggins & Hensen, 1987). It is probable that water undersaturation is the norm for granitoid magmas of various compositions (e.g. Clemens, 1984). The most compelling evidence for low water contents throughout the magma solidification process is crystallization orders without early amphibole (Wones & Gilbert, 1982), implying that water undersaturation is an intrinsic characteristic of the magma. Models for production of virtually anhydrous (charnockitic) magmas include high-temperature (>1000°C) melting of anhydrous crustal source rocks (Kilpatrick & Ellis, 1992; Langdenberger & Collins, 1996; Young et al., 1997; Zhao et al., 1997), producing distinctive ‘Ctype’ geochemical features. A second model involves fractionation of primitive, mantle-derived, water-undersaturated magmas followed by high-temperature crystallization (e.g. Eggins & Hensen, 1987). A third model considers the role of a CO2 component in felsic magmas (e.g. Wendlandt, 1981; Frost et al., 1989; Peterson & Newton, 1990), possibly derived from mixing of crustal melts and CO2-bearing mafic magmas (Frost et al., 2000b). Intermediate models involve mixing of variably hydrous mantle-derived basalt and crustal components (MASH: melting, assimilation, storage, homogenization; Hildreth & Moorbath, 1988; Emslie & Hunt, 1990; Barker et al., 1992; Stern et al., 1994; Patiño Douce, 1995) and probably NUMBER 9 SEPTEMBER 2002 apply to the genesis of most hydrous and charnockitic granitoid rocks. Whereas pyroxene-bearing granitic plutons are not uncommon in Phanerozoic terranes, batholiths of charnockitic rock are dominantly a Precambrian feature. In particular, large pyroxene-bearing plutons of Neoarchaean (>2·7 Ga) and Palaeoproterozic (>1·85 Ga) age are integral parts of orogens formed during major episodes of crustal growth (see Condie, 1998). These broad continental magmatic arcs such as the 2·725 Ga Lake Minto and Utsalik domains of the Minto block, 2·63 Ga Louis Lake batholith of the Wyoming craton (Frost et al., 2000b), 1·86–1·85 Ga Wathaman (Meyer et al., 1992), Cumberland (St-Onge et al., 1998) and de Pas (Dunphy & Skulski, 1996) batholiths of the Trans-Hudson and New Quebec orogens, and 1·85 Ga central Finnish batholith (Lahti, 1995), may mark a thermal regime in Earth’s history conducive to the production of voluminous, water-undersaturated, arc magmas. Potential mantle temperatures at 2·7 Ga may have been higher than those at present by >100°C, based on theoretical (Davies, 1998) and metamorphic (Galer & Mezger, 1998) constraints. Given a constant flux of fluid emanating from subducting lithosphere (see Peacock et al., 1994; Schmidt & Poli, 1998) and comparable subduction rates (Davies & Bickle, 1991; Kincaid & Sacks, 1997; Davies, 1999), the higher mantle temperatures (Davies, 1995) would have evoked higher degrees of mantle wedge fusion (Kawamoto, 1996; Gaetani & Grove, 1998), yielding voluminous, relatively water-deficient magma. In the Minto block example, the arc magmas rose into older (2·77–3·0 Ga) continental crust, where they assimilated small proportions (10–20%) of older material, fractionated, and rose to upper-crustal (>15 km) levels, in a manner similar to that envisaged by Johnston & Wyllie (1988), Ague & Brimhall (1988) and Patiño Douce (1995). Early crystallization of pyroxene–biotite assemblages led to fractionation of more hydrous granitic compositions, some of which may have risen to higher crustal levels (see Holland & Lambert, 1975; Hubbard & Whitley, 1979; Eggins & Hensen, 1987; Frost et al., 1989). The thermal regime preceding 2·7 Ga, when mantle potential temperatures were still higher, produced mainly tonalite–trondhjemite–granodiorite compositions, which may have involved slab melting (e.g. Drummond & Defant, 1990; Martin, 1994; Peacock et al., 1994; de Wit, 1998; Smithies & Champion, 2000), rather than fluiddriven suprasubduction zone processes. The scale, character and duration of calc-alkaline magmatism in the Minto block suggest that arc processes resembling those at modern long-standing consuming margins operated effectively by 2725 Ma. 1644 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS SUMMARY AND CONCLUSIONS Plutonic rocks of the Archaean Minto block formed during a period of continental arc magmatism (2775–2690 Ma). The pyroxene-bearing granitoid rocks include a calc-alkaline quartz diorite to granite suite (2725 Ma), as well as younger (2696–2688 Ma) crustderived granodiorite and granite suites. Water-undersaturated magmatic conditions are indicated by unaltered pyroxene and feldspar in granitic rocks, and the presence of orthopyroxene-rich reaction selvages where granites are in contact with hornblende-bearing mafic bodies. In the dominantly calc-alkaline suite, textures and mineral compositions define a crystallization history through bulk compositions ranging from pyroxenite to granite. In the quartz diorite–granodiorite range, assemblages of ortho- and clinopyroxene, biotite, Fe–Ti oxides, plagioclase, alkali feldspar and quartz predominate, whereas in transitional granodiorites and granites, hornblende occurs as a late magmatic phase. The 2729–2724 Ma pyroxene- and hornblende-bearing units form a geochemical continuum (48–71 wt % SiO2) with a typical continental arc signature, including LREE enrichment and negative Nb and Ti anomalies. The crystallization history is tracked by mineralogical thermometers, which record early alkali feldspar growth at >1100°C, pyroxene ± biotite crystallization at >1000–800°C, and later hornblende growth and equilibration with plagioclase at 800–600°C, 5 ± 1 kbar. Subsequent metamorphism is recorded in resetting of feldspar and oxide temperatures into the 400°C range. Field, geochemical and petrological evidence supports a model of 5 kbar crystallization of hot (>1100°C), waterundersaturated I-type magma that evolved to hydrous compositions. Bulk magma compositions produced in a continental arc setting were water deficient owing to the elevated temperature of the convecting mantle wedge at 2725 Ma. Abundant igneous charnockite in 2·7 and 1·85 Ga orogens suggests that such thermal conditions may have existed in mantle wedges over >900 Myr of geological history. ACKNOWLEDGEMENTS Gratitude is due to the dedicated members of the Minto Transect field team, particularly K. D. Card, R. A. Stern, N. J. Bégin, N. Aleksejev, G. T. Shore, A. Ross and S. H. Schwarz, whose research flourished through trying field conditions. Discussions with R. A. Stern and T. Skulski on petrology, geochemistry and geochronology have been enlightening. Olga Ijewliw and John Stirling provided reliable microprobe analyses and data reduction. Early versions of the manuscript benefited from critical comments by Jean Bedard, Ken Currie and particularly Tom Skulski. Journal reviewers Ron Frost and John Tarney provided additional helpful comments and insight. This paper is Geological Survey of Canada contribution no. 2002007. REFERENCES Ague, J. J. & Brimhall, G. H. (1988). Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: effects of assimilation, crustal thickness, and depth of crystallization. Geological Society of America Bulletin 100, 912–927. Anderson, D. J. & Lindsley, D. H. (1988). Internally consistent solution models for Fe–Mg–Mn–Ti oxides: Fe–Ti oxides. American Mineralogist 73, 714–726. Anderson, D. J., Lindsley, D. H. & Davidson, P. M. (1993). QUILF: a Pascal program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz. Computers and Geosciences 19, 1333– 1350. Anderson, J. L. & Smith, D. R. (1995). The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist 80, 549–559. Aranovich, L. Y. & Berman, R. G. (1997). A new garnet–orthopyroxene thermometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene. American Mineralogist 82, 345–353. Barker, F., Farmer, G. L., Ayuso, R. A., Plafker, G. & Lull, J. S. (1992). The 50 Ma granodiorite of the eastern Gulf of Alaska: melting in an accretionary prism in the forearc. Journal of Geophysical Research 97, 6757–6778. Barth, A. P. & May, D. J. (1992). Mineralogy and pressure– temperature–time path of Cretaceous granulite gneisses, southeastern San Gabriel Mountains, southern California. Journal of Metamorphic Geology 10, 529–544. Beard, J. S. (1995). Experimental, geological, and geochemical constraints on the origins of low-K silicic magmas in oceanic arcs. Journal of Geophysical Research 100, 15593–15600. Bégin, N. J. & Pattison, D. R. M. (1994). Metamorphic evolution of granulites in the Minto block, northern Quebec: extraction of peak P–T conditions taking account of late Fe–Mg exchange. Journal of Metamorphic Geology 12, 411–428. Berman, R. G. (1988). Internally-consistent thermodynamic data for stoichiometric minerals in the system Na2O–K2O–CaO–MgO– FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. Journal of Petrology 29, 445–522. Berman, R. G. (1991). Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Canadian Mineralogist 29, 833–855. Blundy, J. D. & Holland, T. J. B. (1990). Calcic amphibole equilibria and a new amphibole–plagioclase geothermometer. Contributions to Mineralogy and Petrology 104, 208–224. Blundy, J. D. & Sparks, R. S. J. (1992). Petrogenesis of mafic inclusions in granitoids of the Adamello massif, Italy. Journal of Petrology 33, 1039–1104. Bohlen, S. R. & Essene, E. J. (1978). Igneous pyroxenes from metamorphosed anorthosite massifs. Contributions to Mineralogy and Petrology 65, 433–442. Bohlender, F., van Reenen, D. D. & Barton, J. M. (1992). Evidence for metamorphic and igneous charnockites in the southern marginal zone of the Limpopo belt. Precambrian Research 55, 429–449. Burnham, C. W. (1979). Magmas and hydrothermal fluids. In: Barnes, H. L. (ed.) Geochemistry of Hydrothermal Ore Deposits, 2nd edn. New York: John Wiley, pp. 71–137. 1645 JOURNAL OF PETROLOGY VOLUME 43 Card, K. D. (1990). A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Research 48, 99–156. Castillo, P. R., Janney, P. E. & Solidum, R. U. (1999). Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology 134, 33–51. Clemens, J. D. (1984). Water contents of silicic to intermediate magmas. Lithos 17, 273–287. Condie, K. C. (1998). Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163, 97–108. Conrad, W. K., Nicholls, I. A. & Wall, V. J. (1988). Water-saturated and -undersaturated melting of metaluminous and peraluminous compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. Journal of Petrology 29, 765–803. Corfu, F. & Davis, D. W. (1992). A U–Pb geochronological framework for the western Superior Province, Ontario. In: Thurston, P. C., Williams, H. R., Sutcliffe, R. H. & Stott, G. M. (eds) Geology of Ontario. Ontario Geological Survey Special Volume 4, Part 2, 1335–1346. Cumming, G. L. & Richards, J. R. (1975). Ore lead ratios in a continually changing earth. Earth and Planetary Science Letters 28, 155–171. Czamanske, G. K. & Wones, D. R. (1973). Oxidation during magmatic differentiation: Finmarka Complex, Oslo area, Norway. Part 2. The mafic silicates. Journal of Petrology 14, 349–380. Davies, G. F. (1995). Punctuated tectonic evolution of the Earth. Earth and Planetary Science Letters 136, 363–379. Davies, G. F. (1998). Plates, plumes, mantle convection, and mantle evolution. In: Jackson, I. (ed.) The Earth’s Mantle; Composition, Structure, and Evolution. Cambridge: Cambridge University Press, pp. 228–258. Davies, J. H. (1999). Simple analytic model for subduction zone thermal structure. Geophysical Journal International 139, 823–828. Davies, J. H. & Bickle, M. J. (1991). A physical model for the volume and composition of melt produced by hydrous fluxing above subduction zones. Philosophical Transactions of the Royal Society of London, Series A 335, 355–364. Davis, D. W. (1982). Optimum linear regression and error estimation applied to U–Pb data. Canadian Journal of Earth Sciences 19, 2141–2149. de Wit, M. J. (1998). On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Research 91, 181–226. Drummond, M. S. & Defant, M. J. (1990). A model for trondhjemite– tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research 95, 21503– 21521. Dunphy, J. M. & Skulski, T. (1996). Petrological zonation across the de Pas batholith: a tilted section through a continental arc? In: Wardle, R. J. & Hall, J. (compilers) 1996 Eastern Canadian Shield Onshore–Offshore Transect Meeting. University of British Columbia, Lithoprobe Secretariat, Report 57, 44–58. Eggins, S. & Hensen, B. J. (1987). Evolution of mantle-derived, augite– hypersthene granodiorites by crystal–liquid fractionation: Barrington Tops Batholith, eastern Australia. Lithos 20, 295–310. Eggler, D. H. (1972). Amphibole stability in H2O-undersaturated calcalkaline melts. Earth and Planetary Science Letters 15, 28–34. Elkins, L. T. & Grove, T. L. (1990). Ternary feldspar experiments and thermodynamic models. American Mineralogist 75, 544–559. Emslie, R. F. & Hunt, P. A. (1990). Ages and petrogenetic significance of igneous mangerite–charnockite suites associated with massif anorthosites, Grenville Province. Journal of Geology 98, 213–231. NUMBER 9 SEPTEMBER 2002 Ewart, A. (1979). A review of the mineralogy and chemistry of Tertiary– Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. In: Barker, F. (ed.) Trondhjemites, Dacites and Related Rocks. Amsterdam: Elsevier, pp. 13–121. Frost, B. R. & Frost, C. D. (1987). CO2, melts and granulite metamorphism. Nature 327, 503–506. Frost, B. R. & Lindsley, D. H. (1992). Equilibria among Fe–Ti oxides, pyroxenes, olivine and quartz: Part II. Application. American Mineralogist 77, 1004–1020. Frost, B. R., Frost, C. D. & Touret, J. R. L. (1989). Magmas as a source of heat and fluids in granulite metamorphism. In: Bridgwater, D. (ed.) Fluid Movements—Element Transport and the Composition of the Deep Crust. Dordrecht: Kluwer, pp. 1–18. Frost, B. R., Chamberlain, K. R. & Schumacher, J. C. (2000a). Sphene (titanite): phase relations and role as a geochronometer. Chemical Geology 172, 131–148. Frost, B. R., Frost, C. D., Hulsebosch, T. P. & Swapp, S. M. (2000b). Origin of the charnockites of the Louis Lake batholith, Wind River Range, Wyoming. Journal of Petrology 41, 1759–1776. Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–2048. Fuhrman, M. L. & Lindsley, D. H. (1988). Ternary-feldspar modeling and thermometry. American Mineralogist 73, 201–215. Gaetani, G. A. & Grove, T. L. (1998). The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology 131, 323–346. Galer, S. J. G. & Mezger, K. J. (1998). Metamorphism, denudation and sea level in the Archean and cooling of the Earth. Precambrian Research 92, 387–412. Gill, J. B. (1981). Orogenic Andesites and Plate Tectonics. Berlin: Springer. Herd, R. K. (1978). Notes on metamorphism in New Quebec. In: Fraser, J. A. & Heywood, W. W. (eds) Metamorphism in the Canadian Shield. Geological Survey of Canada Paper 78-10, 78–83. Hildreth, W. (1981). Gradients in silicic magma chambers: implications for lithospheric magmatism. Journal of Geophysical Research 86, 10153– 10192. Hildreth, W. & Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology 98, 455–489. Holland, J. G. & Lambert, R. St. J. (1975). The chemistry and origin of the Lewisian gneisses of the Scottish mainland: the Scourie and Inver assemblages and sub-crustal accretion. Precambrian Research 2, 161–188. Holland, T. H. (1900). The charnockite series, a group of Archaean hypersthenic rocks in peninsular India. Geological Survey of India Memoir 2, 192–249. Holland, T. H. & Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433–447. Hubbard, F. H. & Whitley, J. E. (1979). REE in charnockite and associated rocks, southwest Sweden. Lithos 12, 1–11. Johnston, A. D. & Wyllie, P. J. (1988). Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. Contributions to Mineralogy and Petrology 98, 352–362. Kawamoto, T. (1996). Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth and Planetary Science Letters 144, 577–589. Kilpatrick, J. A. & Ellis, D. J. (1992). C-type magmas: igneous charnockites and their extrusive equivalents. Transactions of the Royal Society of Edinburgh 83, 155–164. Kincaid, C. & Sacks, I. S. (1997). Thermal and dynamical evolution of the upper mantle in subduction zones. Journal of Geophysical Research 102, 12295–12315. 1646 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS Krogh, T. E. (1982). Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46, 637–649. Labbé, J.-Y., Bandyayera, D., Gosselin, C., Leclair, A., Madore, L., Parent, M. & Savard, M. (1998). Potential minéral du Nord du Québec: Nouvelles ceintures volcano-sédimentaires dans la sous-province de Minto. Québec Ministère de Ressources Naturelles PRO 98-04, 9 pp. Lahti, S. I. (1995). Mineralogy and geochemistry of the Vaaraslahti pyroxene granitoid in Pielavesi, Finland. In: Hölttä, P. (ed.) Relationship of Granitoids, Structures and Metamorphism at the Eastern Margin of the Central Finland Granitoid Complex. Geological Survey of Finland, Bulletin 382, 5–25. Langdenberger, B. & Collins, W. J. (1996). Derivation of A-type granites from a dehydrated charnockitic lower crust: evidence from the Chaelundi complex, eastern Australia. Journal of Petrology 37, 145–170. Leake, B. E. (1978). Nomenclature of amphiboles. Canadian Mineralogist 16, 501–520. Leclair, A. D., Berclaz, A., David, J. & Percival, J. A. (2001). Regional geological setting of Archean rocks in the northeastern Superior Province. Geological Association of Canada Abstracts Volume 26, 84. Lin, S., Percival, J. A., Winsky, P., Skulski, T. & Card, K. D. (1995). Structural evolution of the Vizien and Kogaluc greenstone belts in Minto block, northeastern Superior Province, northern Quebec. In: Current Research, Geological Survey of Canada Paper 1995-C, 121–130. Lindsley, D. H. (1983). Pyroxene thermometry. American Mineralogist 68, 477–493. Lucassen, F. & Franz, G. (1996). Magmatic arc metamorphism: petrology and temperature history of metabasic rocks in the Coastal Cordillera of northern Chile. Journal of Metamorphic Geology 14, 249– 265. Mäder, U., Percival, J. A. & Berman, R. G. (1994). Thermobarometry of garnet–clinopyroxene–hornblende granulites from the Kapuskasing structural zone. Canadian Journal of Earth Sciences 31, 1134–1145. Martin, H. (1994). The Archean grey gneisses and the genesis of continental crust. In: Condie, K. C. (ed.) Archean Crustal Evolution. Developments in Precambrian Geology 11, 205–258. Merzbacher, C. I. & Eggler, D. H. (1984). A magmatic geohygrometer: application to Mount St. Helens and other dacitic magmas. Geology 12, 587–590. Meyer, M. T., Bickford, M. E. & Lewry, J. F. (1992). The Wathaman Batholith; an early Proterozoic continental arc in the Trans-Hudson orogenic belt, Canada. Geological Society of America Bulletin 104, 1073– 1085. Naney, M. T. (1983). Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science 283, 993–1033. Newton, R. C. (1992). An overview of charnockite. Precambrian Research 55, 399–405. Ollila, P. W., Jaffe, H. W. & Jaffe, E. B. (1988). Pyroxene exsolution: an indicator of high-pressure igneous crystallization of pyroxenebearing quartz syenite gneiss from the High Peaks region of the Adirondack Mountains. American Mineralogist 73, 261–273. Parrish, R., Roddick, J. C., Loveridge, W. D. & Sullivan, R. W. (1987). Uranium–lead analytical techniques at the geochronology laboratory, Geological Survey of Canada. In: Radiogenic Age and Isotopic Studies, Report 1: Geological Survey of Canada Paper 87-2, 3–7. Patiño Douce, A. E. (1993). Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability. Chemical Geology 108, 133–162. Patiño Douce, A. E. (1995). Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. Journal of Geophysical Research 100, 15623–15639. Patiño Douce, A. E. & Beard, J. S. (1995). Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology 36, 707–738. Peacock, S. M. & Hyndman, R. D. (1999). Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophysical Research Letters 26, 2517–2520. Peacock, S. M., Rushmer, T. & Thompson, A. B. (1994). Partial melting of subducting oceanic crust. Earth and Planetary Science Letters 121, 227–244. Percival, J. A. (1994). High grade metamorphism. In: Condie, K. C. (ed.) Archean Crustal Evolution. Amsterdam: Elsevier, pp. 35–410. Percival, J. A. & Card, K. D. (1994). Geology, Lac Minto–Rivière aux Feuilles, Quebec. Geological Survey of Canada Map 1854A, scale 1:500 000. Percival, J. A. & Skulski, T. (2000). Tectonothermal evolution of the northern Minto block, Superior Province, Quebec, Canada. Canadian Mineralogist 38, 345–378. Percival, J. A., Card, K. D., Stern, R. A. & Bégin, N. J. (1990). A geological transect of northeastern Superior Province, Ungava Peninsula, Quebec: the Lake Minto area. In: Current Research, Part C: Geological Survey of Canada Paper 90-1C, 133–141. Percival, J. A., Mortensen, J. K., Stern, R. A., Card, K. D. & Bégin, N. J. (1992). Giant granulite terranes of northeastern Superior Province: the Ashuanipi complex and Minto block. Canadian Journal of Earth Sciences 29, 2287–2308. Percival, J. A., Stern, R. A., Skulski, T., Card, K. D., Mortensen, J. K. & Bégin, N. J. (1994). Minto block, Superior Province: missing link in deciphering assembly of the craton at 2·7 Ga. Geology 22, 839–842. Percival, J. A., Skulski, T. & Nadeau, L. (1996). Granite–greenstone terranes of the northern Minto block, northeastern Superior Province, Quebec. In: Current Research, Geological Survey of Canada Paper 1996-C, 157–167. Percival, J. A., Stern, R. A. & Skulski, T. (2001). Crustal growth through successive arc magmatism: reconnaissance U–Pb SHRIMP data from the northeastern Superior Province, Canada. Precambrian Research 109, 203–238. Petersen, J. S. (1980). The zoned Kleivan granite—an end member of the anorthosite suite in southwest Norway. Lithos 13, 79–95. Peterson, J. W. & Newton, R. C. (1990). Experimental biotite–quartz melting in the KMASH–CO2 system and the role of CO2 in the petrogenesis of granites and related rocks. American Mineralogist 75, 1029–1042. Pilkington, M. & Percival, J. A. (1999). Crustal magnetization and long-wavelength aeromagnetic anomalies of the Minto block, Quebec. Journal of Geophysical Research 104, 7513–7526. Pilkington, M. & Percival, J. A. (2001). Relating crustal magnetization and satellite-altitude magnetic anomalies in the Ungava peninsula, northern Quebec, Canada. Earth and Planetary Science Letters 194, 127–133. Pouchou, J. L. & Pichoir, F. (1984). Un nouveau modèle de calcul pour la microanalyse quantitative par spectrométrie de rayon X: Partie 1. Application à l’analyse d’échantillons homogènes. Recherche Aerospatiale 3, 167–192. Roddick, J. C. (1987). Generalized numerical error analysis with application to geochronology and thermodynamics. Geochimica et Cosmochimica Acta 51, 2129–2135. Rollinson, H. R. (1982). Evidence from feldspar compositions of high temperatures in granite sheets in the Scourian complex, N.W. Scotland. Mineralogical Magazine 46, 73–76. Rollinson, H. R. (1993). Using Geochemical Data; Evaluation, Presentation, Interpretation. Harlow: Longman, 352 pp. 1647 JOURNAL OF PETROLOGY VOLUME 43 Ross, A. (1991). Geological interpretation of reaction selvages in the Ungava Peninsula, northern Quebec, Canada. B.Sc. thesis, University of Alberta, Edmonton. Ross, D. C. (1985). Mafic gneiss complex (batholithic root?) in the southernmost Sierra Nevada, California. Geology 13, 288–291. Ross, D. C. (1989). The metamorphic and plutonic rocks of the southernmost Sierra Nevada, California, and their tectonic framework. US Geological Survey Professional Paper 1381, 159 pp. Sams, D. B. & Saleeby, J. B. (1988). Geology and petrotectonic significance of crystalline rocks of the southernmost Sierra Nevada batholith, California. In: Ernst, W. G. (ed.) Metamorphism and Crustal Evolution of the Western United States. Englewood Cliffs, NJ: Prentice– Hall, pp. 865–893. Schiano, P., Clocchiatti, R., Shimizu, N., Maury, R. C., Jochum, K. P. & Hofmann, A. W. (1995). Hydrous, silica-rich melts in the subarc mantle and their relationship with erupted arc lavas. Nature 377, 595–600. Schmidt, M. W. (1992). Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 110, 304–310. Schmidt, M. W. & Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters 163, 361–379. Shore, G. T. (1991). On the nature and origin of microgranitoid enclaves in the Leaf River area, Ungava Peninsula, Superior Province, Quebec. B.Sc. thesis, University of Toronto, Toronto. Sisson, T. W. & Grove, T. L. (1993). Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology 113, 143–166. Skulski, T. & Percival, J. A. (1996). Allochthonous 2·8 Ga oceanic plateau slivers in a 2·72 Ga continental arc sequence: Vizien greenstone belt, northeastern Superior Province, Canada. Lithos 37, 163– 179. Skulski, T., Percival, J. A. & Stern, R. A. (1996). Archean crustal evolution in the central Minto block, northern Quebec. In: Radiogenic Age and Isotopic Studies: Report 9; Geological Survey of Canada, Current Research 1995-F, 17–31. Smithies, R. A. & Champion, D. C. (2000). The Archean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology 41, 1653–1671. Sobolev, A. V. & Chaussidon, M. (1996). H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth and Planetary Science Letters 137, 45–55. Stacey, J. S. & Kramer, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–221. Steiger, R. H. & Jäger, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–362. Stern, R. A., Percival, J. A. & Mortensen, J. K. (1994). Geochemical evolution of the Minto block: a 2·7 Ga continental magmatic arc built on the Superior craton. Precambrian Research 65, 115–153. Stevenson, I. M. (1968). A geological reconnaissance of Leaf River map-area, New Quebec and Northwest Territories. Geological Survey of Canada Memoir 356, 112 pp. NUMBER 9 SEPTEMBER 2002 St-Onge, M. R., Scott, D. J., Wodicka, N. & Lucas, S. B. (1998). Geology of the McKellar Bay–Wight Inlet–Frobisher Bay area, southern Baffin Island, Northwest Territories. In: Current Research, Geological Survey of Canada 1998-C, 43–53. Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders, A. D. & Norry, M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 313–345. Troll, G. & Weiss, S. (1991). Structure, petrography and emplacement of plutonic rocks. In: Seifert, F., Voll, G., Pattison, D. R. M. & Töpel, J. (eds) Equilibrium and Kinetics in Contact Metamorphism: the Ballachulish Igneous Complex and its Aureole. Heidelberg: Springer, pp. 39–66. Weiss, S. & Troll, G. (1989). The Ballachulish Igneous Complex, Scotland: petrography, mineral chemistry, and order of crystallization in the monzodiorite–quartz diorite suite and in the granite. Journal of Petrology 30, 1069–1115. Wendlandt, R. F. (1981). Influence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockites. American Mineralogist 66, 1164–1174. Whalen, J. B., Currie, K. L. & Chappell, B. W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–419. Williams, H. R., Stott, G. M., Thurston, P. C., Sutcliffe, R. H., Bennett, G., Easton, R. M. & Armstrong, D. K. (1992). Tectonic evolution of Ontario: summary and synthesis. In: Thurston, P. C., et al. (eds) Geology of Ontario: Ontario Geological Survey Special Volume 4, Part 2, 1255–1332. Wones, D. R. (1989). Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist 74, 744–749. Wones, D. & Gilbert, M. C. (1982). Amphiboles in the igneous environment. In: Veblen, D. R. & Ribbe, P. H. (eds) Amphiboles: Petrology and Phase Relations. Mineralogical Society of America, Reviews in Mineralogy 9B, 355–389. Wood, B. J. & Blundy, J. D. (2001). The effect of cation charge on crystal–melt partitioning of trace elements. Earth and Planetary Science Letters 188, 59–71. Wyllie, P. J., Huang, W. L., Wuu-liang, Stern, C. R. & Maaloe, S. (1976). Granitic magmas: possible and impossible sources, water contents, and crystallization sequences. Canadian Journal of Earth Sciences 13, 1007–1019. Young, D. N. & Ellis, D. J. (1991). The intrusive Mawson charnockites: evidence for a compressional plate margin setting of the Proterozoic mobile belt of East Antarctica. In: Thomson, M. R. A., Crame, J. A. & Thomson, J. W. (eds) Geological Evolution of Antarctica. Cambridge: Cambridge University Press, pp. 25–31. Young, D. N., Zhao, J. X., Ellis, D. J. & McCulloch, M. T. (1997). Geochemical and Sr–Nd isotopic mapping of source provinces for the Mawson charnockites, East Antarctica; implications for Proterozoic tectonics and Gondwana reconstruction. Precambrian Research 86, 1–19. Zhao, J. X., Ellis, D. J. Kilpatrick, J. A. & McCulloch, M. T. (1997). Geochemical and Sr–Nd study of charnockites and related rocks in the northern Prince Charles Mountains, East Antarctica; implications for charnockite petrogenesis and Proterozoic crustal evolution. Precambrian Research 81, 37–66. 1648 PERCIVAL AND MORTENSEN WATER-DEFICIENT CALC-ALKALINE MAGMAS APPENDIX: DETAILS OF ROCKS ANALYSED Sample Archival Mafic Rock number number mineral type UTMX UTMY Grid zone assemblage Tikkerutuk domain T-1 PBAC89-77 OHB gdi 454250 6303950 18 T-2 PBAS89-11 HB gdi 486884 6327366 18 T-3 PBA89-111 B gdi 495971 6334374 18 M-1 PBA89-28c OCHB gdi 492297 6336263 18 M-2 PBAS89-76 CHB gdi 488900 6345800 18 M-3 PBAS89-53 CHB gdi 514788 6370795 18 M-4 PBAS89-31 OCHB gdi 477818 6375211 18 M-5 PBA89-137 OCHB gdi 487652 6388424 18 M-6 PBAS89-47 OCB gdi 522738 6356086 18 M-7 PBAS89-45 OCHB gdi 513094 6349235 18 M-8 PBA89-144 OCHB gdi 517698 6409039 18 M-9 PBAS89-81 CH gdi 556676 6376769 18 M-10 PBA90-28 OBG gdi 583671 6391210 18 M-11 PBA90-50 HB gdi 579695 6409362 18 M-12 PBA89-90 OCHB gdi 570629 6437919 18 M-13 PBA90-137a CHB gdi 479220 6378922 18 M-14 PBAS89-29 OB grnt 478146 6375399 18 Lake Minto domain Goudalie domain G-1 PBA91-130 B gdi 631837 6439468 18 G-2 PBA90-76 HB gdi 625161 6412056 18 U-1 GS90-3 CHB gdi 547461 6414553 18 U-2 GS90-11 CHB gdi 547461 6414553 18 U-3 PBA90-94 OCHB gdi 648708 6467660 18 U-4 PBA91-182 OCHB gdi 641803 6481984 18 U-5 PBA91-181 OCH gdi 643130 6484636 18 U-6 PBA91-179 OHBG gdi 647114 6489676 18 U-7 PBA91-28 CHB gdi 712181 6452275 18 U-8 PBA91-134 OCHB gdi 725194 6456254 18 U-9 PBA90-101 HB gdi 684029 6506757 18 U-10 PBA91-158 OCHGB gdi 686154 6517101 18 U-11 PBA90-117 OCHB gdi 716165 6510470 18 U-12 PBA90-113 OCB dte 724397 6513653 18 U-13 PBA90-168 OCHB gdi 745405 6497208 18 U-14 PBA90-124 HB gdi 766412 6481823 18 U-15 PBA91-26 H gbr 714751 6445389 18 U-16 GS1-2 CHB gbr 547461 6414553 18 U-17 PBAS90-107 CH gbr 716458 6488243 18 U-18 PBA91-161 B gbr 676365 6516914 18 U-19 PBA91-184 OCH gbr 695621 6475456 18 U-20 GS1-15 OCB mzt 547461 6414553 18 U-21 GS1-16 CHB mdt 547461 6414553 18 U-22 GS1-17 CH dte 547461 6414553 18 Utsalik domain 1649 JOURNAL OF PETROLOGY VOLUME 43 NUMBER 9 SEPTEMBER 2002 APPENDIX: continued Sample Archival Mafic Rock number number mineral type UTMX UTMY Grid zone assemblage Utsalik domain U-23 PBA91-147 OCH gbr 694263 6522266 U-24 GS1-5 CB mdt 547461 6414553 18 18 U-25 GS1-6 CB dte 547461 6414553 18 U-26 PBA91-29 CB gbr 711749 6455842 18 U-27 PBA91-7 OCB dte 703788 6466735 18 U-28 PBA91-9 OCB gbr 703953 6468756 18 U-29 PBA91-19 CB gbr 692218 6474672 18 U-30 PBA91-37A H dte 725271 6484428 18 U-31 PBA91-6 OCB gdi 703354 6465619 18 U-32 PBA91-22 OCHB gdi 698545 6476856 18 U-33 PBAS90-93 OCHB gdi 655129 6444516 18 U-34 PBAS90-99 OCHB gdi 664430 6450723 18 U-35 PBA91-30 OCHB gdi 735474 6490192 18 U-36 PBA91-109 OCHB gdi 727615 6517567 18 U-37 PBA91-159 OCHB gdi 678369 6516739 18 U-38 PBA91-8 CB gdi 703784 6467140 18 U-39 GS1-1 CB gbr 547461 6414553 18 U-40 GS1-4 CB gbr 547461 6414553 18 U-41 PBAS90-113 CHB gdi 707392 6460073 18 U-42 PBAS 90-111 CHB gdi 728692 6498024 18 U-43 PBA91-3 CHB gdi 682749 6458805 18 U-44 PBA91-11 CHB gdi 700267 6470539 18 U-45 PBA91-147b CHB gdi 694263 6522266 18 U-46 PBAS90-89 HB gdi 681560 6466030 18 U-47 PBAS90-112 HB gdi 666643 6451296 18 U-48 GS3-12 HB gdi 547461 6414553 18 U-49 PBAS90-82 HB gdi 671822 6457151 18 U-50 PBAS90-100 HB gdi 665775 6452573 18 U-51 PBA91-155 HB gdi 686692 6516998 18 U-52 PBA91-27 B grnt 713641 6446660 18 U-53 PBAS90-101 HB gdi 669716 6454498 18 U-54 PBA91-183 OCHB gdi 693332 6474842 18 Mineral abbreviations: B, biotite; C, clinopyroxene; H, hornblende; O, orthopyroxene; G, garnet. Rock type abbreviations: dte, diorite; gbr, gabbro; gdi, granodiorite; grnt, granite; mdt, monzodiorite; mzt, monzonite. 1650
© Copyright 2026 Paperzz