Algebra Test Prep and Review Unit 5 – Polynomial Functions Special Special Binomial Binomial Products Products • Special • Special binomial binomial products products – squaring – squaring binominals binominals Special Special Products Products Formula Formula InitialInitial Expansion Expansion Example Example 2 2 2 2 2 2 2 2 2 2 (a 2+ b)(a (a + – b) b)(a = a – b) – ab = a + – ba ab – + b ba (x – b + 2)(x (x + – 2) 2)(x = x – 2) –2=2 =x2x–2 – 4= x2 – 4 difference difference of of (a + b)(a (a +–b)(a b) =–ab)–=b a – b 2 2 22 2 2 2 2 or (x – or 2)(x (x + – 2) 2)(x = x + –2 2) = = x x –2 – 42 = x(2a–=4x , b( = a= 2 )x , b = 2 ) = a – b = a – b does not if (amatter – b) comes if (a – first b) comes first squares squares It does notItmatter 2 2 2 2 (a + b)(a =+(ab)+2 = b)(a (a + b)(a b) + b) (x + 3)(x =+x3) += 2∙xx·2 +3 2∙ + 3x·2 3 + 32 2 2 = a2 + = aba+ +baab+ +b2ba + b2 = x2 + = 6xx+ +9 6x + 9 2 = a2 +=2ab a2 + + b2ab + b2 2 2 2 2 2 (a – b)(a=–(ab)– b)(a = (a – b)(a b) – b) (x – 4)(x =–x4) – 2∙ = xx·2 –4 2∙ + 4x·2 4 + 42 squaresquare of of (a – b)(a2 –= b) 2 a2 –=2ab a2 –+ 2ab b2 + b2 = a2 –ab = a–2 ba –ab+ –b2ba + b2 = x2 – = 8xx+ –168x + 16 perfecttrinomial square trinomial difference difference A perfectAsquare = a2 –=2ab a2 + – 2ab b2 + b2 (a + b)(a2 + = b) a22 +=2ab a2 ++ 2ab b2 + b2 squaresquare of sumof sum A perfectAsquare perfecttrinomial square trinomial • Special • Special binomial binomial products: products: special special formsforms of binomial of binomial products products that are thatworth are worth memorizing. memorizing. • 2 Memory aid: aid: (a ± b) (a22=± (a 2ab ± +2ab b2)+ b2) • Memory (a2 ±= b) Example: Example: Find Find the following the following products. products. a 1. 2. 3. 4. 5. b 22 2 (3y 1. +(3y 4)(3y + 4)(3y – 4) =– (3y) 4) =2 (3y) –4 –4 = 9y2=– 9y 162 – 16 𝟏𝟏 2 𝟏𝟏 2 b)b=2 a2 – b2 (a + b) (a – + b) = (aa–2 – 1 𝟏𝟏 𝟏𝟏 𝟏𝟏 = 25t=2 +25t 5t2 ++ 𝟒𝟒5t + 𝟒𝟒 2𝟏𝟏 1 1 1 𝟏𝟏 = 9q2=–9q q 2p–+q𝟑𝟑𝟑𝟑p 𝒑𝒑+2 𝟑𝟑𝟑𝟑 𝒑𝒑2 2 = +a2b)+2 2ab = a2++b2ab + b2 (a + b)2(a 21 2 (t4.+ 𝟏𝟏) (t 3+=𝟏𝟏) (t3+=1) (t2+(t1) + 21) (t + 1) 2 2 = (t =+ (t 2t ++ 1) 2t (t+ + 1)1) (t + 1) 3 23 22 2 = t += tt + + 2t t ++2t2t ++ t2t+ +1 t + 1 3 32 = t += 3t t ++3t3t2 ++ 13t + 1 2 2 (2A 5. –(2A 3 +–4B)(2A 3 + 4B)(2A – 3 ––4B) 3 –=4B) (2A=–(2A 3)2 –– 3) (4B) – (4B)2 a b b a a b Using • Using function function notation: notation: 1 a = 5t a ,= 5tb = , 2 2 2 (3q 3. – (3q 𝒑𝒑)– 𝟔𝟔=𝒑𝒑)(3q) = (3q) – 2(3q)� – 2(3q)� 𝑝𝑝� +6 𝑝𝑝� � 6+𝑝𝑝�� 6 𝑝𝑝� 𝟔𝟔 6 𝟏𝟏 a = 3y a,= 3y b = ,4 b = 4 11 2 1 2 2 �𝟓𝟓𝒕𝒕 2. +�𝟓𝟓𝒕𝒕 � +=𝟐𝟐�(5t) =2 (5t) + 2(5t)� + 2(5t)� � + �2�2�+ �2� 𝟐𝟐 2 a • ab 2 b= 1 2 2 = –a2b)–2 2ab = a2+–b2ab + b2 (a – b)2(a 1 1 a = 3q a, =b3q = ,𝑝𝑝 b = 𝑝𝑝 6 amm= a n+ m anam = a nn+ 6 2 (a + b)2(a =+ a2b) +22ab = a2++b2ab + b2 Distribute Distribute Combine Combine like terms. like terms. 2 - b2A : –a 3, = b2A=–4B 3, b = 4B (a + b) (a – + b) = (aa–2 -b)b2=:aa2 = 2 b =2(2A) = (2A) – 2(2A)∙3 – 2(2A)∙3 + 32 –+16B 32 –2 16B2 2 2 = –a2b)–2 2ab = a2+–b2ab : a += b2A, : ab = 2A, 3 b=3 (a – b)2(a 2 = 4A2=–4A 12A – +12A 9 –+16B 9 –216B2 Simplify Simplify Example: Example: GivenGiven f (x) =f (x) -3x=+-3x x2 ,+find x2 , and findsimplify and simplify 1. f 1. (u –f 1) (u ,–and 1) , and 2. f 2. (a +f h) (a –+ fh)(a)– .f (a) . 1. 2. f1.(u –f 1) (u =– -3(u 1) = –-3(u 1) +– (u 1) –+ 1) (u2 – 1)2 = -3u=+-3u 1 ++u12 –+2u u2 –+ 2u 1 +1 = u2-=5u u2+- 5u 2 +2 2 f2.(a +f h) (a –+ fh) (a)– =f (a) [-3(a = [-3(a + h) ++ (a h) ++ h) (a2]+–h)(-3a ] – +(-3a a2)+ a2) 2 = -3a=–-3a 3h –+ 3h a2 ++ 2ah a2 ++2ah h2 + 3a h2 + – a3a – a2 = h2 + = 2ah h2 + –2ah 3h – 3h © 2014 The Critical Thinking Co.™ • www.CriticalThinking.com • 800-458-4849 ReplaceReplace x with (u x with – 1) (u – 1) 2 2 (a – b)2(a =– a2b) –2ab = a+2 –b2ab + b2 Combine Combine like terms. like terms. ReplaceReplace x with (a x with + h) and (a + h) a. and a. RemoveRemove parentheses. parentheses. Combine Combine like terms. like terms. Page 5-7 Page 5-7 103
© Copyright 2026 Paperzz