A. 2

Q. Find 𝑓 βˆ’1 (π‘₯) given 𝑓(π‘₯) = 4π‘₯ βˆ’ 3
A. 𝑓 βˆ’1 (π‘₯) =
π‘₯+3
4
2
Q. Find 𝑓 βˆ’1 (π‘₯) given 𝑓(π‘₯) = + 5
π‘₯
A. 𝑓 βˆ’1 (π‘₯) =
2
Q. Expand log 6 (36π‘₯ 3 )
Q. Convert 15° to radians
A. 2 + 3 log 6 π‘₯
A.
√π‘₯
64
Q. Expand log 4 ( )
2
2
Q. Find 𝑓 βˆ’1 (π‘₯) given 𝑓(π‘₯) = π‘₯ βˆ’ 2
3
3
3
π‘₯
Q. Expand ln √
𝑒
A. 𝑓 βˆ’1 (π‘₯) = π‘₯ + 3
A. ln π‘₯ βˆ’
Q. Given 𝑓(π‘₯) = π‘₯ 2 + 3, 𝑔(π‘₯) = 4π‘₯ βˆ’ 1,
find (𝑓 ∘ 𝑔)(π‘₯)
Q. Solve 125π‘₯ = 25 for π‘₯
2
1
3
3
A. π‘₯ =
A. 16π‘₯ 2 βˆ’ 8π‘₯ + 4
Q. Given 𝑓(π‘₯) = √π‘₯, 𝑔(π‘₯) = π‘₯ + 1, find
(𝑓 ∘ 𝑔)(π‘₯)
2
Q. Given 𝑓(π‘₯) = √π‘₯ βˆ’ 1, 𝑔(π‘₯) = π‘₯ + 3,
find (𝑓 ∘ 𝑔)(π‘₯)
A. √π‘₯ + 2
Q. Evaluate log 5
1
25
(without a calculator)
Q. Solve 9 π‘₯+2 = 27βˆ’π‘₯ for π‘₯
Q. Evaluate log16 4 (without a calculator)
4
5
Q. Evaluate ln
A. βˆ’4
𝑒
4 (without a calculator)
A.
4
Q. Convert
5πœ‹
3
(without
3
Q. Determine the amplitude, period, and
phase shift of 𝑦 = 2 sin(π‘₯ βˆ’ πœ‹)
to degrees
A. Amplitude = 2, Period = 2πœ‹, Phase
Shift = πœ‹
Q. Convert
7πœ‹
5
Q. Determine the amplitude, period, and
3
πœ‹
phase shift of 𝑦 = cos (2π‘₯ + )
to degrees
3
2
4
A. Amplitude = , Period = πœ‹, Phase Shift
A. 252°
=βˆ’
5πœ‹
6
πœ‹
2
8
Q. Determine the amplitude, period, and
πœ‹
phase shift of 𝑦 = βˆ’3 sin ( π‘₯ βˆ’ 3πœ‹)
3
A. Amplitude = 3, Period = 6, Phase Shift
=9
Q. Find the reference angle for 265°
Q. Solve log 3 (π‘₯ βˆ’ 1) βˆ’ log 3 (π‘₯ + 2) = 2
for π‘₯
22πœ‹
√3
2
A. βˆ’
Q. Solve 3 + 4 ln(2π‘₯) = 15 for π‘₯
2
(without
7πœ‹
A. 150°
𝑒3
6
√3
2
Q. Find the exact value of sin
a calculator)
A. π‘₯ = ln 3
A. No Solution
1
9
Q. Convert 315° to radians
A.
11πœ‹
7πœ‹
Q. Convert
1
2
Q. Find the exact value of cos
a calculator)
Q. Solve 𝑒 2π‘₯ βˆ’ 𝑒 π‘₯ βˆ’ 6 = 0 for π‘₯
A. π‘₯ =
A. βˆ’2
A. βˆ’βˆš3
A. 300°
3
A. π‘₯ = βˆ’
A. √π‘₯ + 1
A.
1
πœ‹
12
Q. Convert 140° to radians
A.
1
A. log 4 π‘₯ βˆ’ 3
π‘₯βˆ’5
Q. Find the exact value of tan 120°
(without a calculator)
to degrees
1
A. 85°
A.
Q. Find the reference angle for βˆ’410°
A. 50°
Q. Solve log 4 (2π‘₯ + 1) = log 4 (π‘₯ βˆ’ 3) +
log 4 (π‘₯ + 5) for π‘₯
Q. Find the reference angle for βˆ’
A. π‘₯ = 4
A.
Q. Find the exact value of cosβˆ’1 (βˆ’ )
2
(without a calculator)
3
3
Q. Find the exact value of tanβˆ’1 1 (without
a calculator)
A.
11πœ‹
2πœ‹
πœ‹
4
Q. Find the exact value of sinβˆ’1 (βˆ’
(without a calculator)
πœ‹
3
A. βˆ’
πœ‹
3
√3
)
2
1
Q. Find the exact value of tan [sinβˆ’1 (βˆ’ )]
2
(without a calculator)
Q. Solve sin 3π‘₯ = 1 for 0 ≀ π‘₯ < 2πœ‹
Q. If 𝐯 = 𝐒 βˆ’ 5𝐣 and 𝐰 = βˆ’2𝐒 + 7𝐣,
evaluate 6v βˆ’ 3w
πœ‹ 5πœ‹ 9πœ‹
A. βˆ’
A. ,
1
6
6
,
A. 12i βˆ’ 51j
6
√3
1
Q. Find the exact value of csc [tanβˆ’1 ( )]
(without a calculator)
√3
Q. Solve tan π‘₯ = 2 cos π‘₯ tan π‘₯ for
0 ≀ π‘₯ < 2πœ‹
πœ‹
5πœ‹
3
3
A. 0, , πœ‹,
A. 2
Q. Find the exact value of
4
tan [cosβˆ’1 (βˆ’ )] (without a calculator)
A. 15i βˆ’ 57j
Q. Solve cos 2π‘₯ βˆ’ sin π‘₯ = 1 for 0 ≀ π‘₯ < 2πœ‹
5
A. βˆ’
A. 0, πœ‹,
3
A.
√6βˆ’βˆš2
4
Q. Find the exact value of sin(75°)
A.
√6+√2
4
Q. Find the exact value of cos(105°)
A.
√2βˆ’βˆš6
4
Q. Find the exact value of sin 22.5°
A.
√2βˆ’βˆš2
2
Q. Find the exact value of cos 22.5°
A.
√2+√2
2
2βˆ’βˆš2
A. √
6
,
A. βˆ’10i + 41j
6
2+√2
Q. Solve the triangle with 𝐴 = 70°, 𝐡 =
55°, and π‘Ž = 12
Q. If 𝐯 = 2𝐒 + 3𝐣 and 𝐰 = 7𝐒 βˆ’ 3𝐣, evaluate
𝐯⋅𝐰
A. 𝐢 = 55°, 𝑏 β‰ˆ 10.5, and 𝑐 β‰ˆ 10.5
A. 5
Q. Solve the triangle with 𝐡 = 66°, π‘Ž = 17,
and 𝑐 = 12
Q. If 𝐯 = 2𝐒 + 4𝐣 and 𝐰 = 6𝐒 βˆ’ 11𝐣,
evaluate 𝐯 β‹… 𝐰
A. 𝑏 β‰ˆ 16.3, 𝐴 β‰ˆ 72°, and 𝐢 β‰ˆ 42°
A. βˆ’32
Q. Solve the triangle with π‘Ž = 26.1, 𝑏 =
40, and 𝑐 = 36.5
Q. If 𝐯 = 2𝐒 + 𝐣 and 𝐰 = 𝐒 βˆ’ 𝐣, evaluate
𝐯⋅𝐰
A. 𝐴 β‰ˆ 39°, 𝐡 β‰ˆ 78°, and 𝐢 β‰ˆ 63°
A. 1
Q. Use DeMoivre’s Theorem to evaluate
[2(cos 20° + 𝑖 sin 20°)]3 . Write your
answer in rectangular form.
Q. Write the first four terms of the
𝑛+2
sequence π‘Žπ‘› = (βˆ’1)𝑛
A. 4 + 4π‘–βˆš3
A. βˆ’ , , βˆ’ ,
Q. Use DeMoivre’s Theorem to evaluate
1
πœ‹
πœ‹
7
=
√2
2+√2
=
2βˆ’βˆš2
√2
𝑛+1
3 4
5 6
2 3
4 5
Q. Write the first four terms of the
(βˆ’1)𝑛+1
[ (cos + 𝑖 sin )] . Write your answer
2
14
14
in rectangular form.
1
A.
𝑖
sequence π‘Žπ‘› =
Q. Use DeMoivre’s Theorem to evaluate
(βˆ’2 βˆ’ 2𝑖)5 . Write your answer in
rectangular form.
Q. Write the first four terms of the
1
sequence π‘Žπ‘› = (π‘›βˆ’1)!
A. 128 + 128𝑖
A. 1, 1, ,
128
Q. Find the exact value of tan 22.5°
Q. If 𝐯 = 𝐒 βˆ’ 5𝐣 and 𝐰 = βˆ’2𝐒 + 7𝐣,
evaluate 3w βˆ’ 4v
7πœ‹ 11πœ‹
4
Q. Find the exact value of cos(75°)
Q. If 𝐯 = 𝐒 βˆ’ 5𝐣 and 𝐰 = βˆ’2𝐒 + 7𝐣,
evaluate 3v βˆ’ 6w
1
1 1
1
2
4 8
16
A. , βˆ’ , , βˆ’
1 1
2 6
2𝑛