Q. Find π β1 (π₯) given π(π₯) = 4π₯ β 3 A. π β1 (π₯) = π₯+3 4 2 Q. Find π β1 (π₯) given π(π₯) = + 5 π₯ A. π β1 (π₯) = 2 Q. Expand log 6 (36π₯ 3 ) Q. Convert 15° to radians A. 2 + 3 log 6 π₯ A. βπ₯ 64 Q. Expand log 4 ( ) 2 2 Q. Find π β1 (π₯) given π(π₯) = π₯ β 2 3 3 3 π₯ Q. Expand ln β π A. π β1 (π₯) = π₯ + 3 A. ln π₯ β Q. Given π(π₯) = π₯ 2 + 3, π(π₯) = 4π₯ β 1, find (π β π)(π₯) Q. Solve 125π₯ = 25 for π₯ 2 1 3 3 A. π₯ = A. 16π₯ 2 β 8π₯ + 4 Q. Given π(π₯) = βπ₯, π(π₯) = π₯ + 1, find (π β π)(π₯) 2 Q. Given π(π₯) = βπ₯ β 1, π(π₯) = π₯ + 3, find (π β π)(π₯) A. βπ₯ + 2 Q. Evaluate log 5 1 25 (without a calculator) Q. Solve 9 π₯+2 = 27βπ₯ for π₯ Q. Evaluate log16 4 (without a calculator) 4 5 Q. Evaluate ln A. β4 π 4 (without a calculator) A. 4 Q. Convert 5π 3 (without 3 Q. Determine the amplitude, period, and phase shift of π¦ = 2 sin(π₯ β π) to degrees A. Amplitude = 2, Period = 2π, Phase Shift = π Q. Convert 7π 5 Q. Determine the amplitude, period, and 3 π phase shift of π¦ = cos (2π₯ + ) to degrees 3 2 4 A. Amplitude = , Period = π, Phase Shift A. 252° =β 5π 6 π 2 8 Q. Determine the amplitude, period, and π phase shift of π¦ = β3 sin ( π₯ β 3π) 3 A. Amplitude = 3, Period = 6, Phase Shift =9 Q. Find the reference angle for 265° Q. Solve log 3 (π₯ β 1) β log 3 (π₯ + 2) = 2 for π₯ 22π β3 2 A. β Q. Solve 3 + 4 ln(2π₯) = 15 for π₯ 2 (without 7π A. 150° π3 6 β3 2 Q. Find the exact value of sin a calculator) A. π₯ = ln 3 A. No Solution 1 9 Q. Convert 315° to radians A. 11π 7π Q. Convert 1 2 Q. Find the exact value of cos a calculator) Q. Solve π 2π₯ β π π₯ β 6 = 0 for π₯ A. π₯ = A. β2 A. ββ3 A. 300° 3 A. π₯ = β A. βπ₯ + 1 A. 1 π 12 Q. Convert 140° to radians A. 1 A. log 4 π₯ β 3 π₯β5 Q. Find the exact value of tan 120° (without a calculator) to degrees 1 A. 85° A. Q. Find the reference angle for β410° A. 50° Q. Solve log 4 (2π₯ + 1) = log 4 (π₯ β 3) + log 4 (π₯ + 5) for π₯ Q. Find the reference angle for β A. π₯ = 4 A. Q. Find the exact value of cosβ1 (β ) 2 (without a calculator) 3 3 Q. Find the exact value of tanβ1 1 (without a calculator) A. 11π 2π π 4 Q. Find the exact value of sinβ1 (β (without a calculator) π 3 A. β π 3 β3 ) 2 1 Q. Find the exact value of tan [sinβ1 (β )] 2 (without a calculator) Q. Solve sin 3π₯ = 1 for 0 β€ π₯ < 2π Q. If π― = π’ β 5π£ and π° = β2π’ + 7π£, evaluate 6v β 3w π 5π 9π A. β A. , 1 6 6 , A. 12i β 51j 6 β3 1 Q. Find the exact value of csc [tanβ1 ( )] (without a calculator) β3 Q. Solve tan π₯ = 2 cos π₯ tan π₯ for 0 β€ π₯ < 2π π 5π 3 3 A. 0, , π, A. 2 Q. Find the exact value of 4 tan [cosβ1 (β )] (without a calculator) A. 15i β 57j Q. Solve cos 2π₯ β sin π₯ = 1 for 0 β€ π₯ < 2π 5 A. β A. 0, π, 3 A. β6ββ2 4 Q. Find the exact value of sin(75°) A. β6+β2 4 Q. Find the exact value of cos(105°) A. β2ββ6 4 Q. Find the exact value of sin 22.5° A. β2ββ2 2 Q. Find the exact value of cos 22.5° A. β2+β2 2 2ββ2 A. β 6 , A. β10i + 41j 6 2+β2 Q. Solve the triangle with π΄ = 70°, π΅ = 55°, and π = 12 Q. If π― = 2π’ + 3π£ and π° = 7π’ β 3π£, evaluate π―β π° A. πΆ = 55°, π β 10.5, and π β 10.5 A. 5 Q. Solve the triangle with π΅ = 66°, π = 17, and π = 12 Q. If π― = 2π’ + 4π£ and π° = 6π’ β 11π£, evaluate π― β π° A. π β 16.3, π΄ β 72°, and πΆ β 42° A. β32 Q. Solve the triangle with π = 26.1, π = 40, and π = 36.5 Q. If π― = 2π’ + π£ and π° = π’ β π£, evaluate π―β π° A. π΄ β 39°, π΅ β 78°, and πΆ β 63° A. 1 Q. Use DeMoivreβs Theorem to evaluate [2(cos 20° + π sin 20°)]3 . Write your answer in rectangular form. Q. Write the first four terms of the π+2 sequence ππ = (β1)π A. 4 + 4πβ3 A. β , , β , Q. Use DeMoivreβs Theorem to evaluate 1 π π 7 = β2 2+β2 = 2ββ2 β2 π+1 3 4 5 6 2 3 4 5 Q. Write the first four terms of the (β1)π+1 [ (cos + π sin )] . Write your answer 2 14 14 in rectangular form. 1 A. π sequence ππ = Q. Use DeMoivreβs Theorem to evaluate (β2 β 2π)5 . Write your answer in rectangular form. Q. Write the first four terms of the 1 sequence ππ = (πβ1)! A. 128 + 128π A. 1, 1, , 128 Q. Find the exact value of tan 22.5° Q. If π― = π’ β 5π£ and π° = β2π’ + 7π£, evaluate 3w β 4v 7π 11π 4 Q. Find the exact value of cos(75°) Q. If π― = π’ β 5π£ and π° = β2π’ + 7π£, evaluate 3v β 6w 1 1 1 1 2 4 8 16 A. , β , , β 1 1 2 6 2π
© Copyright 2026 Paperzz