Student Booklet General atg. s Specialist Circle Ge • etry Mensuration Contents: Maths OnLine Lessons & Work Sheets 1. Definitions and Terms 2. Chord Properties 3. Angles at the Centre 4. Angles on the same Arc 5. Cyclic Quadrilaterals 6. Angles in the Semi Circle 7. Tangent Properties 8. Mensuration Work Sheet Definitions and Terms - Worksheet 1 Draw a clear sketch to illustrate the following information in each question, using circles with centre 0 unless otherwise instructed. Q1 A, B and C are concylclic. Q2 Shade in the minor segment formed by the chord XY. Q3 The arc PQ subtends an angle of 100° at the centre. Q4 The arc IVIN subtends an angle of 40° at a point P on the circumference. Q5 AB and CD are two chords intersecting at X. Q6 PQRS is a cyclic quadrilateral. Q7 ST is a tangent touching the circle at T. SAB is a secant cutting the circle at A and B. Q8 AB is a common chord to two circles with centres 0 and C respectively. Q9 PTQ is a common tangent to two circles, centres 0 and C, that touch externally. Q10 The diameter AB subtends an angle at a point C on the circumference. Copyright @ MathsOnline.com.au . All rights reserved. Page 1 Chord Properties - Worksheet 2 Give answers correct to 1 decimal place where necessaly. Q1 Q5 A chord AB is drawn 7cm from the centre of a circle with radius 12cm. Calculate the length of AB. Q6 ANSWERS A) 3 cm B) 4 cm Q2 C) 4.8 cm D) 5 cm E) 6cm F) 7.2 cm AB = 8cm. C is the midpoint of AB. If the circle has radius 5cm, find the length of OC. A chord is drawn 24cm from the centre of concentric circles with radii 26cm and 30cm. Find the length of PR. H) 8 cm I) 8.4 cm J) 9.2 cm K) 9.7 cm Q7 Q3 G) 7.8cm L) 10.1cm M) 10.7cm N) 12 cm 0) 13 cm P) 15 cm The chord XY is 24cm long and is 5cm from the centre 0. Calculate the radius of the circle. Q4 PAB is an isosceles triangle inscribed in a circle of radius 26cm. M is the midpoint of AB. If PA = PB and AB = 48cm, calculate the length PM. Q) 16.8 cm R) 18 cm S) 19.5cm T) 21.4cm U) 22 cm V) 28 cm W) 30 cm X) 32 cm Y) 36cm OC = 9cm. Find the length of AB. Copyright @ MathsOnline.com.au . All rights reserved. Z) 44 cm Page 1 Angles at the Centre - Worksheet 3 Find the value of x in each diagram. Q1 ANSWERS A) 17° Q5 B) 30° C) 34° D) 38° E) 41 ° F) 45° G) 46° Q2 Q6 H) 50° I) 52° J) 58° K) 70° L) 72° M) 82° N) 108 ° Q3 ° 0)1 Q7 P) 112° Q) 116° R) 124° S) 134° T) 138 ° U) 148 ° V) 152° Q4 Q8 W) 156 ° X) 164° B Y) 170° Z) 220° A0//CB and LA = 24 ° . Find x. Copyright @ MathsOnline.com.au . All rights reserved. Page 1 Angles on the Same Arc - Worksheet 4 Find the value of x in each diagram. Q1 Q5 AABC is equilateral. ANSWERS A) 28 ° B) 30 ° C) 32 ° D) 35 ° E) 36 ° F) 38 ° G) 40 ° Q2 Q6 H) 42 ° I) 45 ° J) 46° K) 48 ° L) 50 ° M) 51 ° N) 53 ° ° 0)54 Q3 P) 58° Q) 60 ° R) 72 ° S) 80 ° T) 84° U) 90 ° V) 93 ° Q4 Q8 W) 97 ° X) 98 ° Y) 102 ° Z) 105° Copyright @ MathsOnline.com.au . All rights reserved. Page 1 Cyclic Quadrilaterals - Worksheet 5 Find the value of x in each diagram. Q1 (X ANSWERS A) 28 ° B) 30 ° C) 31 ° D) 34 ° E) 35 ° F) 38 ° G) 40 ° Q2 Q6 H) 42 ° I) 51 ° J) 54 ° K) 57 ° L) 60 ° M) 62° N) 65 ° Q3 Q7 ° 0)67 P) 72 ° Q) 74° R) 75 ° S) 85 ° T) 86 ° U) 92 ° V) 94 ° Q4 el0 W) 105° X) 115 ° Y) 121 ° Z) 136° Copyright @ MathsOnline.com.au . All rights reserved. Page 1 Angle in a Semi-Circle - Worksheet 6 Find the value ofx in each diagram, correct to 1 decimal place where necessary. Q1 Qf ANSWERS A) 26° B) 27° C) 28° D) 30° E) 32° F) 38° G) 42° Q2 Q6 H) 43° 1)44° J) 45 ° K) 46° L) 48° M) 54° N) 59° Q3 Q7 °0)85 P) 90° Q) 92° R) 115° S) 4.6cm T) 5.2cm U) 6cm V) 7.4cm Q4 Q8 W) 8cm X) 9cm Y) 9.8cm Z) 11.1cm Copyright @ MathsOnline.com.au . All rights reserved. Page 1 Tangent Properties Worksheet 7 Find the value of the pronumeral in each diagram, correct to 1 decimal place where necessary. Qi 20cm Q5 ANSWERS Q6 68' 0 • A) 4 cm N) 16.8cm B) 4.7 cm 0) 17.7cm C) 5 cm P) 17.9 cm D) 5.1 cm Q) 18.2cm E) 7 cm R) 21.5 cm F) 8 cm S) 23.3 cm G) 8.9 cm T) 24.2cm H) 9.3 cm U) 74 cm I) 10 cm V) 80 cm J) 10.6 cm W) 82 cm K) 11 cm X) 44° L) 11.5 cm Y) 64° M) 15.5 cm Z) 68° Q3 PT is a tangent to the circle touching it at T. PT = 8cm and PO = 12cm. Find the length of diameter AB. Q7 10cm 7cm 0 OC = 18cm. Find x. Q4 12cm Copyright @ MathsOnline.com.au . All rights reserved. Page 1 Mensuration Work sheet 8 I. Calculate, in degrees(2 dit.t....4), the magnitude of the angle subtended at the centre of a circle of radius length 8 cm by an arc whose length is 15 cm. 2. Find the length of an arc of a ci'rcle of radius 15 cm if the arc subtends an angle of 70° at the centre. 3. An arc of a circle subtends an angle of 52 ° at the circumference. lithe radius length of the circle is 12 cm, calculate the arc length. 4. The area °fa sector OA B of a circle, centre 0, radius length 20 cm is 240 cmz. Calculate (a) the magnitude or the angle 408, (b) the length of arc AB, (c) the length of the chord AB. 5. A chord PQ, 24 cm long, is 5 cm from the centre of the circle. Calculate the length of the arc PQ. 6. A point P is 8 cm distant from the centre of a circle of radius length 5 cm. Find the length of the major arc between the points of contact of the tangents drawn from P to the circle. 7. A chord AB of a circle with centre 0 has length 16 cm. lithe radius of the circle is 10 cm, calculate (a) the magnitude of angle A08, (b) the length of the minor arc AB. (c) the area of the minor segment formed by the chord AB. 8. The minute hand of a clock is 20 cm long. Calculate (a) the arc length along which the tip of the hand travels in 16 min. (b) the shortest distance between the initial and final positions of the tip of the hand. 9. An arc AB subtends an angle of 06.271 vat the centre of a circle of radius 15 Ctn. Calculate the difference in the lengths of the chord AS and the minor arc AB. 10. From a circular piece of metal 6 cm in diameter, a sector of angle 30' is removed. Find the area remaining. Express your answer in terms of n. II. A chord subtends an angle of 126-).06 at the centre of a circle of radius 16 cm. Find the difference in length between the chord and the arc. 12. Two circles of radii 6 cm and 8 cm have their centres 10 cm apart. Calculate the length of the arc of the smaller circle cut off by the larger circle. 13. The minute hand of a clock is 3 cm in length. What area is swept out by the hand in an interval of 40 min? Express your answer in terms of n. 14. A circular metal plate is cut into two segments along a chord equal in length to the radius. What is the ratio of the areas of the two segments? 15. A sheep, grazing in a paddock, is tethered to a stake by a rope 20 m long. If the stake is 10 m from a fence, find the area over which the sheep can graze. 16. Two tangents, PA and PB, are drawn to a circle with centre 0 and radius 5 cm from an external point, P. If PO = 13 cm, calculate the area hounded by the tangents and the minor arc AB. II. A trcel5t-lesSLn ittat po_sces ) t.,31x110,...t crosst %-isal?) , 6314.--S k 3. vk ana tn 01)0,rt , cta. t..4. at, ta, izkAssti, di; 5 whi:Dsra cluars art ox-Dv.Aci CtAtTe.S 0.rt 3 .1 5 t-'■ . 0, Ac ttsiz bat. 11 . 111, 0 Cd-a-A-S o, cia ct.U.A.s ,Qsu\sti., k0 (4A ) Leure_ ta,4)5 eAr‘tres I cp-t ()foot CoScAp-tp_ tu.e. ojø col-tto rt. tb C._ SAC Work Sheet 1-7 Calculator Active SAC Work Sheet 1 - 8 Calculator Active Mensuration Work sheet 8 7 (6) 2-4- c-/-1 C) g . ( 0,) M. 11 : tb • . _ • 6 crA i i.ktt- ' . (6) 21 '5 cm (21V PA 12 ."7 0 crAl •55 IT 4- Z2 - 6- (c-)
© Copyright 2026 Paperzz