Square & Square Roots Objective: Students will be able to square a number and find the square root of a number. Standards: 7NS 2.4 Squaring a Number 2• 2 2 2 4 =4 =2 9 = 32 = 3• 3 =9 =3 4•4 =4 16 2 = 16 5 5 2• 2 Draw a rectangle (we are going to define a square and why its called square & square root). This rectangle has an area of 4. What would be the dimensions? [2 & 2] Show multiplying 2 times 2, writing it using exponents and getting 4. This is called “squaring a number”. 4 4 = 3• 3 9 4 =2 2 3 3 Taking a Square Root 25 5•5 16 = 4•4 =4 The inverse of squaring a number is taking the square root. We write like this 4 . We need to think: “what number multiplied by it self equals 4? “ We know that 2 times 2 is 4. Because 2 times 2 equals 4, then the square root of 4 is 2. 25 = 52 = 5•5 = 25 =5 Continue for the rest of the squares (9, 16, 25 & 36). Think-Pair-Share: * What shape did we draw in all the cases? [a square] 6 6 36 6•6 36 = 62 = 6•6 = 36 =6 * Why do you think raising a number to the second power is called squaring a number? *When we use the we only want the positive square root. This is called the Principal Square Root MCC@WCCUSD 11/04/2011 Simplifying Expression with Square Roots *Remember: the represents the Principal Square Root (a positive square root). When we have x 2 , the square root must be x , since we don’t know if x is a positive or negative Example 1 Simplify. Generic Square Decomposition ? ? m10 m•m•m•m•m•! m•m•m•m•m Traditional m10 m10 = m•m•m•m•m•m•m•m•m•m = = m5 • m5 (m • m • m • m • m)• (m • m • m • m • m) = m5 • m5 = (m ) 5 2 = m5 = m5 You Try 1 Simplify. b8 ? ? b ! m 8 10 b•b•b•b• ! b•b•b•b = b•b•b•b•b•b•b•b = (b • b • b • b)• (b • b • b • b) = b4 • b4 b8 = b4 • b4 = (b ) 4 2 = b4 = b4 MCC@WCCUSD 11/04/2011 Example 2 Simplify. Generic Square Area Model x + x + x! ? ? Decomposition x x2 ! + 2 x! x ! + x2 ! x 2 !9x 3• 3• x • x x2 ! x2 ! x2 ! x2 ! Traditional 9x 2 9x 2 = 3• 3• x • x = 32 • x 2 x2 ! = 3x • 3x (3x) x2 ! = 3x = 2 = 3x ! You Try 2 Simplify. Generic Square Area Model ? y 2 y ! y4 ! + y4 y2 ? ! = 22 g•33• g2 g32g•y g3• y gy gy y• y• y• y ! + 36 y 4 ! 2 + y 2 y4 ! y4 ! + y 2 y4 ! y4 ! + y 2 y4 ! y4 ! + y 2 y4 ! y4 ! Decomposition + y ! y4 ! y2 y4 y4 y4 y4 y4 y4 !4 !4 !4 !4 !4 y4 y ! + y2 + y 2 ! y ! y ! y ! y ! ! 36y 4 36y 4 y4 + y2 2 Traditional ! ! y4 y4 y4 y4 y4 y4 !4 y !4 y !4 y !4 y !4 y !4 y ! ! ! ! ! ! = 2 • 2 • 3• 3• y • y • y • y = (2 • 3• y • y )• (2 • 3• y • y ) = 6y 2 • 6y 2 = 6y 2 • 6y 2 = (6y ) 2 2 = 6y 2 = 6y 2 MCC@WCCUSD 11/04/2011 Example 3 Simplify. Generic Square Decomposition 100a 30b 24 ? ? 10 •10 • a15 • a15 • 1512 15 12 b g•ab ga gb gb 10 g10 100a 30b 24 = 10 • 10 • a15 • a15 • b12 • b12 100a 30b 24 12 Traditional ! = 12 (10 • a 15 • b12 )(10 • a15 • b12 ) = 10a15b12 ! = (10a b = (10a b 15 12 )(10a 15 12 b )! ) 15 12 2 = 10a15b12 You Try 3 Simplify. ? 169a 64b18 ? ! 13•13• a 32 • a 32 • 13g13 ga b 9 •b 9 32 ga 32 169 x 64 y18 169 x 64 y18 9 gb gb 9 = 13 • 13 • x32 • x32 • y 9 • y 9 = (13x 32 (13x 32 = (13 • x32 • y9 )(13 • x32 • y9 ) ! = = (13x = 13x 32 y 9 32 y 9 )(13x32 y 9 ) y 9 )(13x 32 y 9 ) y ) 9 2 = 13x32 y 9 MCC@WCCUSD 11/04/2011 ! Squares and Square Roots Number 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 Squaring a Number Expanded Notation Perfect Square 22 = 2•2 =4 = 9! 3 2 4 2 = 3• 3 = 4 • 4! ! 6 ! 7 ! 8 ! 9 ! 5 2 2 2 2 2 ! ! 12 ! 13 ! 14 ! 15 ! 16 ! 17 ! 18 ! 10 2 112 2 2 2 2 2 2 2 = 5 • 5! = 6 • 6! = 7 • 7! = 8 • 8! = 9 • 9! = 10 •10 ! = 11•11! = 12 •12 ! = 13•13 ! = 14 •14 ! = 15 •15 ! = 16 •16 ! = 17 •17 ! = 18 •18 ! 20 2 = 19 •19 = 20 • 20 ! 25 2 = 25 • 25 ! 19 2 = 16 ! = 25 ! = 36 ! = 49 ! = 64 ! = 81! = 100 ! = 121! = 144 ! = 169 ! = 196 ! = 225 ! = 256 ! = 289 ! = 324 ! = 361! = 400 ! = 625 ! Taking the Square Root 4 9 ! 16 ! 25 ! 36 ! 49 ! 64 ! 81 ! 100 ! 121 ! 144 ! 169 ! 196 ! 225 ! 256 ! 289 ! 324 ! 361 ! 400 ! 625 ! Identify Factor Pairs = 2•2 = 3• 3 = 4•4 = = = = = = = = = = = = = = = = = Square Root (Principle) =2 = 3! ! 5•5! 6•6! 7• 7! 8•8! 9•9! 10 •10 11•11 ! ! 12 •12 13 •13 = 4! ! ! ! 15 •15 ! 16 •16 ! 17 •17 ! 18 •18 ! 19 •19 ! 20 • 20 ! 25 • 25 ! 14 •14 = 5! = 6! = 7! = 8! = 9! = 10 ! = 11! = 12 ! = 13 ! = 14 ! = 15 ! = 16 ! = 17 ! = 18 ! = 19 ! = 20! = 25! MCC@WCCUSD 11/04/2011 Squares and Square Roots Number 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 Squaring a Number Expanded Notation Perfect Square 22 = 2•2 =4 32 = 3• 3 = 4 • 4! 42 5 2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Taking the Square Root Identify Factor Pairs 4 = 2•2 9! = 3• 3 ! 25 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 16 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Square Root (Principle) =2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! MCC@WCCUSD 11/04/2011 CAHSEE Released Test Questions: MCC@WCCUSD 11/04/2011 MCC@WCCUSD 11/04/2011 CST Math 7 Released Test Questions: MCC@WCCUSD 11/04/2011 MCC@WCCUSD 11/04/2011 Warm-Up ! y" ! CST:%Grade%7NS1.2%%%%%%%%%%%%%%%%%%%%%%%% % Review:%Grade%7%%%%%%%%%%%%%%%%%%%%%%% Classify!each!expression!as!rational!or! irrational.!! !! a.!!! 96 ! ! ! b.!! 70 ! ! ! c.!! 40 ! % ! % ! x" ! ! ! Current:%Grade%7%%%%%%%%%%%%%%%%%%%%%%%% Other:%Grade%4MG%1.4%%%%%%%%%%%%%%%%%%%%%%%% Simplify.!! Find%the%area%of%the%square.%% ! % !! (3x ) 3 2 % ! % ! 6% in ! % ! % ! % 6 in % MCC@WCCUSD 11/04/2011
© Copyright 2025 Paperzz