Anisotropic cosmology? Dominik J. Schwarz Universität Bielefeld Minimal model and its limitations Origin of (an)isotropy Observational tests: CMB and SNIa 2nd Bethe Center Workshop, Bad Honnef 2010 The minimal cosmological model relies on ⋄ comological inflation: isotropy, homogeity and spatial flatness gaussian, scale-invariant and isentropic fluctuations A, n, (r) ⋄ the Einstein equation with a cosmological constant H0, Λ ⋄ the standard model of particle physics T0, Ωb, (Ων ) ⋄ the existence of dark matter Ωcdm = 1 − Ωb − ΩΛ and astrophysical parameters that encode complex physics τ, b, M, . . . The cosmic energy budget (WMAP 7yr + H0 + BAO) ΛCDM and massive ν s fit to CMB/BAO/SNIa: dark energy neutrinos atoms dark matter 72% dark energy 23% cold dark matter 5% atoms < 1% neutrinos all ±1% Komatsu et al. 2010 95% dark physics Supernovae Ia Union2: Amanullah et al. 2010 flatness and w ≈ −1 agrees also with SN Ia, LSS, clusters Conceptual limitations of the minimal model ⋄ 95% dark physics ⋄ cosmological constant problem: |Λ|κ < 10−120 ⋄ coincidence problems: Why is ΩΛ ∼ Ωm ∼ Ωb? Why is znl(λeq) ∼ zacc? ⋄ origin of cosmological inflation ⋄ origin of isotropy and homogeneity here: focus on aspects related to isotropy Cosmological principle(s) problem: initial conditions of the Universe perfect cosmological principle: maximally symmetric space-time steady state model, de Sitter model × cosmological principle: exact isotropy & homogeneity × Friedmann-Lemaı̂tre model; symmetry implies cosmic time; no LSS statistical cosmological principle: statistical isotropy & homogeneity perturbed FL; statistically isotropic and homogeneous perturbations Does cosmological inflation predict a CP? eternal inflation: CP not on global scale (multiverse) observable universe: inflation pushes pre-inflationary anisotropies and inhomogeneities far beyond apparent horizon, if number of e-foldings (N) large and start from smooth Hubble patch Bianchi space-times, except Bianchi IX, isotropise; CP temporarily e.g. Turner & Widrow 1986, Rothmann & Ellis 1986 general inhomogeneous models, perturbation theory: δǫ − ψ constant for kph ≪ H; What if ζ(t < tinfl ) ∼ 1? ζ ≡ 3(ǫ+p) What if N just ∼ 60? Pre-inflationary structure observable! Initial conditions at µ ∼ MP chaotic inflation: 4 initially inflaton field ϕ̇2 ∼ V (ϕ) ∼ MP 2 initially geometry H 2 ∼ k/a2 ∼ MP while geometric and kinetic terms describe space-time and inertia, the effective potential V encodes all information on interactions without potential, the single fundamental scale would be MP interactions introduce new scales, e.g. GF or ΛQCD 4? What if the inflaton potential is limited to V ∼ M 4 ≪ MP Example: effective Higgs potential " ! # 1 3 H 1 2 λ 4 φ + H ln 2 − + ... , V ≃ 24 16π 2 4 µ 2 1 2 H ≃ λφ , 2 at µ ≫ mZ Ford et al. 1993 Evolution of the quartic Higgs coupling λ running of λ can lead to λ < 0 at µ > M mH = 110 GeV mH = 115 GeV mH = 120 GeV mH = 130 GeV mH = 140 GeV mH = 150 GeV mH = 160 GeV mH = 170 GeV mH = 180 GeV mH = 190 GeV mH = 200 GeV 4 Quartic Higgs coupling λ ⇒ V complex at φ ∼ µ > M 5 3 2 1 complex inflaton potential would imply inflaton decay and no inflation 0 0 5 10 log10(Λ/GeV) 15 20 Hüske 2010 Initial conditions with two fundamental scales 4 modification of chaotic initial condition: V ∼ M 4 ≪ ϕ̇2 ∼ MP kinetic energy dominates initially, i.e., ϕ̇2/2 ǫ1 ≡ d˙H = 3 2 ≈3 ϕ̇ /2 + V nevertheless, as ϕ̇ ∝ a−3, inflation starts when ǫ1 < 1 slow-roll after a few e-foldings, iff ϕi > 3MP for M ∼ Mgut: ϕi ∼ 20MP and N ∼ 60 Observational constraints 0.4 0.35 ∆N = 50 0.3 ∆N = 60 ∆ N* for three of our models r 0.25 0.2 m2 φ2/2 s.r. approx. ∆N = 50 0.15 λφ4/24 s.r. approx. ∆N = 60 0.1 0.05 0 0.92 0.94 0.96 0.98 1 1.02 ns Ramirez & Schwarz 2009 Komatsu et al. 2009 N ∼ 60 is motivated and could fit CMB Motivations for testing isotropy ⋄ check the minimal model ⋄ pre-inflationary perturbations (if N ∼ 60 or less) ⋄ investigate the nearby LSS; do we live in a large void? ⋄ discover systematic errors here: CMB at large angular scales and SN Ia Hubble diagram Why are large angular scales interesting? 180 deg primordial 10 60 deg 4 Hubble 1000 1 deg decoupling comoving scale @MpcD LCDM 100 LSS 10 0.01 0.1 1 10 z 100 1000 s(z) = θ dc(z) Cosmological inflation — Generic CMB predictions I temperature fluctuations: P δT (e) = ℓm aℓmYℓm(e); 2ℓ + 1 degrees of freedom for each ℓ statistical isotropy: hδT (Re1) . . . δT (Ren)i = hδT (e1 ) . . . δT (en )i, • hδT (e)i = 0 and haℓm i = 0 • hδT (e1)δT (e2)i = f (e1 · e2) = 1 4π P ℓ (2ℓ ∀R ∈ SO(3), ∀n > 0 + 1)Cℓ Pℓ(cos θ), • haℓma∗ℓ′ m′ i = Cℓ δℓℓ′ δmm′ , Cℓ angular power spectrum cos θ ≡ e1 · e2 with gaussianity: no extra information in higher correlation functions P (best) estimator: Ĉℓ = 1/(2ℓ + 1) m |aℓm|2 (assumes statistical isotropy) cosmic variance: Var(Ĉℓ ) = 2Cℓ2/(2ℓ + 1) (assumes gaussianity) Cosmological Inflation — Generic CMB predictions II scale invariance, n ≈ 1: Cℓ ≈ 2πA/[ℓ(ℓ + 1)], at the largest scales A ≈ 1000µK 2 (obs.) angular 2-point correlation 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 0 50 100 Θ @degD 150 C(θ) without dipole (arbitrary units) What can we test? ⋄ statistical isotropy ⋄ gaussianity ⋄ approximate scale invariance violations may be due to secondary effects (e.g. ISW, Rees-Sciama), foregrounds, instrument, . . . no influence of secondaries between z1st h.c. and z ∼ 1 for θ > 60 deg A test of statistical isotropy — Multipole vectors alternative representation of multipoles Maxwell 1891, Copi, Huterer & Starkman 2003 one (real) amplitude Aℓ and ℓ headless (unit) vectors: 2ℓ + 1 degrees of freedom Tℓ(e) = ℓ X m=−ℓ aℓmYℓm(e) = Aℓ[v(ℓ,1) · · · v(ℓ,ℓ)]i1...iℓ [e · · · e]i1...iℓ [. . .] . . . symmetric, traceless tensor product 1 v(2,1) · v(2,2)] e.g. quadrupole: T2(e) = A2[(v(2,1) · e)(v(2,2) · e) − 3 Cosmic microwave background radiation WMAP quadrupole and octopole EQX EQX dipole dipole NEP NEP NSGP NSGP SSGP SSGP SEP SEP dipole dipole EQX -0.021 EQX 0.000 T (mK) 0.021 -0.038 0.000 T (mK) 0.038 3 great circles defined by multipole vectors are nearly normal to ecliptic 1 great circle nearly normal to supergalactic plane x Schwarz et al. 2004, Copi et al. 2007 WMAP quadrupole plus octopole EQX dipole NEP NSGP SSGP SEP dipole EQX -0.057 ecliptic is close to nodal line power asymmetry for [2,3] and [6,7] 0.000 T (mK) 0.057 Schwarz et al. 2004, Copi et al. 2007 Schwarz et al. 2004, Freeman et al. 2006 Internal and external correlations of quadrupole and octopole – quadrupole-octopole (qo) alignment at 99.6%C.L. – dipole-qo alignement at 99.7%C.L. – ecliptic-qo alignment at 95%C.L. – ecliptic North-South asymmetry – ecliptic is close to nodal line Copi et al. 2007 full-sky maps violate statistical isotropy at large angular scales Angular two-point correlation P Ĉpixel(θ) ≡ e1e2=cos θ T (e1 )T (e2 ) or Ĉpower (θ) ≡ 1/(2π) P ℓ (2ℓ + 1)Ĉℓ Pℓ (cos θ) full sky: Ĉpixel(θ) = Ĉpower (θ) cut sky: Ĉpixel(θ) 6= Ĉpower (θ) with cut sky: hĈpixel(θ)i = hĈpower (θ)i, iff statistically isotropic similar for angular power spectrum estimators e.g. pseudo-Cℓ vs. maximal likelihood estimator WMAP angular correlation function Sakar et al. 2010 P b C(θ) ≡ Pixel(ij) TiTj , with ei · ej = cos θ = µ b does not assume statistical isotropy estimator C compare to 105 MC cut sky maps Rα Sα = −1 dµ C 2 (µ) cut sky ) < 0.1% P (S1/2 Status of CMB large angle anomalies Copi et al. 2010 observed microwave radiation at > 60 deg disagrees with prediction vanishing 2-point correlation is inconsistent at 99.9%CL quadrupole and octopole aligned with each other at > 99%CL correlated with equinox/dipole at > 99%CL correlated with ecliptic at > 95%CL alignments extend up to multipoles ℓ ∼ 10 Land & Magueijo 2005 systematics or unexpected physics? Solar system dust, large scale structure, cosmology, . . . How to find the origin of disagreement some ideas: ⋄ cosmological explanation: N ∼ 60 could explain lack of correlation d-q-o alignment could be pre-inflationary ecliptic alignment would be fluke ⋄ nearby LSS (z < 0.1): Rees-Sciama effect of 100 Mpc structures gives alignment lack of correlation hard to explain, e.g. systematic ... look at other cosmological probes, e.g. SN Ia (An)isotropy of the low z Hubble diagram Hubble diagrams from opposite hemispheres Schwarz & Weinhorst 2007 Constitution set (SALT2) Hicken et al 2009 at z < 0.2 ¡Dq0 ¥ ¡DH0 ¥ 0 6.08 0 CMB dipole EQNP CMB dipole EQNP MASP MANP 4.31 MASP MANP EQSP |∆H0| systematic effect or bulk flow? EQSP |∆q0| Kalus & Schwarz (in prep.) (An)isotropy of the low z Hubble diagram 4 4 2 N N 2 0 q0 q0 0 -2 -2 S S -4 -4 -6 -6 -8 60 62 64 66 68 H0*Mpc*skm 70 72 74 60 MLCS31 65 H0*Mpc*skm 70 SALT2 ∆H0 H0 ∼ 0.05 at z < 0.2 Schwarz & Weinhorst 2007, Kalus & Schwarz (in prep.) Comparison to other directions on sky Quasar Alignment CMB Octopole CMB Quadrupole CMB dipole MLCS2k2 3.1 SP EQNP MLCS2k2 1.7 SP SALT SP Weinhorst B Union2 SALT2 SP Velocity Flows SALT2 NP Weinhorst A Weinhorst C SALT NP MLCS2k2 1.7 NP EQSP MLCS2k2 3.1 NP Schwarz & Weinhorst 2007, Kalus & Schwarz (in prep.) Conclusions ⋄ cosmological inflation does not predict global isotropy ⋄ if N ∼ 60 or less, observable anisotropy ⋄ CMB shows several anomalies on largest angular scales ⋄ Hubble diagram at z < 0.2 anisotropic, could be systematic effect deviations correspond to 0.1 mag effect of acceleration is 0.2 mag, compared to a q0 = 0 model back up slides Just enough inflation (λϕ4) 1.1 2 1 ε1 0.9 1 εV ε2 0.8 0.1 0.7 0.08 0.6 0.06 0.5 0.04 0 ε1 -1 0 5.1e+19 0.3 0.4 0.2 ε1* 0.02 0.4 4εV - 2ηV 5.2e+19 5.3e+19 5.4e+19 5.5e+19 ε2* 0 ε2 -0.2 -3 5.6e+19 GeV 0.2 4εV - 2ηV -2 εV -0.4 -4 5.1e+19 5.2e+19 0.1 5.3e+19 5.4e+19 5.5e+19 5.6e+19 GeV 0 -5 0 1e+19 2e+19 φ 3e+19 4e+19 5e+19 6e+19 0 1e+19 GeV ǫn+1 ≡ d ln ǫn/dN , ǫ1 = d˙H, inflation ⇔ ǫ1 < 1 2e+19 φ 3e+19 4e+19 5e+19 GeV Ramirez & Schwarz 2009 6e+19 Primordial fluctuations 1e-05 power-law approximation 1e-10 amplitude at first order 1e-15 1e-20 power-law approximation with running ∆2R(k) 1e-25 1e-08 1e-30 1e-35 ∆2R (k=k*) 1e-09 1e-40 1e-45 1e-50 1e-10 1e-55 1e-05 1 1 10 100000 100 1e+10 k/k* 1e+15 1e+20 1e+25 Ramirez & Schwarz 2009 Physical interpretation of multipole vectors monopole: no vector dipole: trivial d = v(1,1) quadrupole: √ (2,1) (2,2) the two vectors define a plane, extrema at ±(v ±v )/ 2 natural to define “oriented area”: w(2;1,2) = ±(v(2,1) × v(2,2)) general multipole: real and imaginary parts of spherical harmonic function Yℓm have ℓ − |m| vectors equal ±z, |m| vectors in x-y plane Attempts of cosmological explanations for lack of correlation angular 2-point correlation 2.0 scale-invariant no quadrupole IR cut-off in PHkL 1.5 1.0 0.5 0.0 -0.5 -1.0 0 50 100 150 Θ @degD cosmic topology Aurich, Lustig, Then & Steiner 200n IR cut-off in P (k), but ISW regenerates IR power Ramirez & Schwarz 2009 How to resolve the issue? – more data and better systematics from WMAP – Planck has different systematics (e.g. scan strategy, one beam on sky) – Planck adds information in Wien regime (e.g. solar system dust?!) – exploit frequency, time and polarisation information – correlation with non-CMB probes (e.g. radio galaxies, clusters) make progress by exclusion of wrong possibilities e.g. additive axial effect is excluded x Rakić & Schwarz 2007 Main problem: additive extra foreground conflicts with low power 0 0.8 0.8 WMAP(3yr) 0.75 0.75 0.7 0.65 0.6 0.55 0.4 0.4 0.35 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 trunc Sfull [0.1mK]4 left: CMB only, right: additional axial effect 0.008 0.01 0.012 0.014 0.8 WMAP(3yr) 0.75 0.7 0.65 0.6 0.6 0.55 0.55 0.5 0.5 0.45 0.006 0.65 0.5 0.45 Sww 0.5 0.45 0.004 0.7 0.6 0.55 0.002 0.75 0.7 0.65 Sww 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.8 0.45 0.4 0.4 0.35 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 0.002 0.004 0.006 0.008 0.01 trunc Sfull [0.1mK]4 0.012 0.014 Rakić & Schwarz 2007 (An)isotropy of the low z Hubble diagram Hubble diagrams from opposite hemispheres Schwarz & Weinhorst 2007 Constitution set Hicken et al 2009: ∆(χ2/dof) at z < 0.2 £ 2 DΧmin dof § £ 0 0.5 CMB dipole EQNP 2 DΧmin dof § 0 0.5 MASP CMB dipole EQNP MASP MANP EQSP EQSP MANP MLCS31 SALT2
© Copyright 2026 Paperzz