Integer Exponents and the Quotient Rule

Integer Exponents and the Quotient Rule
Example 1:
π’™πŸπŸŽ
π’™πŸ•
=
π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™
π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™
=
The Quotient Rule: When dividing terms of the same base, subtract
the exponents.
π’™πŸπŸŽ
π’™πŸ•
= π’™πŸπŸŽβˆ’πŸ• =
Example 2:
π’™πŸ•
π’™πŸπŸŽ
=
π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™
π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™βˆ™π’™
=
Using the Quotient Rule:
πŸ•
π’™πŸπŸŽ
= π’™πŸ•βˆ’πŸπŸŽ = π’™βˆ’πŸ‘ =
𝟏
π’™πŸ‘
NOTE:
πŸπŸ’ = 𝟐 βˆ™ 𝟐 βˆ™ 𝟐 βˆ™ 𝟐 = πŸπŸ”
πŸπŸ‘ = 𝟐 βˆ™ 𝟐 βˆ™ 𝟐 = πŸ–
𝟐𝟐 = 𝟐 βˆ™ 𝟐 = πŸ’
𝟐𝟏 = 𝟐 = 𝟐
𝟐𝟎 = 𝟏
πŸβˆ’πŸ =
πŸβˆ’πŸ =
(Any base raised to the ZERO Power is 𝟏)
𝟏
𝟐
𝟏
πŸβˆ™πŸ
=
𝟏
πŸ’
1
Example 3:
a.)
πŸ‘βˆ’πŸ’ =
b.)
πŸ”πŸŽ =
c.)
(βˆ’πŸ)βˆ’πŸ’ =
d.)
βˆ’πŸβˆ’πŸ’ =
e.)
f.)
𝟏
πŸβˆ’πŸ‘
π’™πŸπŸ
π’™πŸ‘
=
=
2
Integer Exponents and
the Quotient Rule
Practice Problems
Simplify each expression. Write your answers with positive exponents
only.
1.
2.
π’™πŸπŸ’
π’™πŸ–
π’™πŸ–
π’™πŸπŸ’
3.
πŸ“πŸŽ
4.
(βˆ’πŸ‘)πŸ‘
5.
βˆ’πŸ‘πŸ‘
6.
(βˆ’πŸ‘)βˆ’πŸ‘
7.
βˆ’πŸ‘βˆ’πŸ‘
3