MATH 209, Lab 8 Richard M. Slevinsky∗ Part I Problems Z 1 Z 2x Z y 2 x y z dz dy dx; 1. Evaluate 0 x 0 We find: Z 1 Z 2x Z y Z 2 x y z dz dy dx = 0 x 1 Z 2x 0 0 Z x 1 Z 2x = 0 Z x y z2 y 0 dy dx, x y 3 dy dx, x 1 = 0 x y4 4 2x dx, x 1 x5 (24 − 1) dx, 4 0 6 4 1 24 − 1 x (2 − 1) 15 5 = = = = . 4·6 24 24 8 0 Z = ZZZ n o p 2 x dV where E = (x, y, z) ∈ R3 : 0 ≤ x ≤ 4 − y 2 , 0 ≤ y ≤ 2, 0 ≤ z ≤ y ; 2. Evaluate E We find: √ ZZZ Z 2Z 4−y 2 Z y 2 x dV = 2 x dz dx dy, E 0 Z 0 √ 2Z 0 4−y 2 = 0 0 Z 2Z √ [2 x z]y0 dx dy, 4−y 2 = 2 x y dx dy, 0 Z = 0 2 0 Z = x2 y √4−y2 0 dy, 2 y(4 − y 2 ) dy, 0 (4 − y 2 )2 = − 4 2 = 4. 0 3. Find the volume of the tetrahedron enclosed by the coordinate planes and the plane 2 x + y + z = 4. The plane is z = 4 − 2 x − y and is therefore above the xy-plane in the first octant. Projecting the plane ∗ Contact: [email protected] 1 onto the xy-plane (z = 0 plane), we find 2 x + y = 4, or y = 4 − 2 x. When y = 0, x = 2. Therefore, the region of the tetrahedron is E = (x, y, z) ∈ R3 : 0 ≤ z ≤ 4 − 2 x − y, 0 ≤ y ≤ 4 − 2 x, 0 ≤ x ≤ 2 , and we find: ZZZ Z 2 Z 4−2 x Z 4−2 x−y V = dV = dz dy dx, E 0 0 0 Z 2 Z 4−2 x (4 − 2 x − y) dy dx, = 0 0 2 Z = 0 y2 (4 − 2 x)y − 2 4−2 x dx, 0 2 (4 − 2 x)2 dx, 2 0 2 (4 − 2 x)3 43 16 = − = = . 2·2·3 0 4·3 3 Z = Exercises 3 1. Le B be the rectangular box B = (x, y, z) ∈ R : 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c . Evaluate ZZZ (x y 2 + B z 3 ) dV ; ZZZ (3 + 2 x y) dV , where E is the region lying above the xy-plane and below the sphere 2. Evaluate E x2 + y 2 + z 2 = 4; 3. Find the volume of the region E = (x, y, z) ∈ R3 : 0 ≤ x ≤ 5, 0 ≤ y ≤ 3 x, y ≤ z ≤ x + 2 . Part II Problems 1. Use cylindrical coordinates to find the volume of the region lying in the first octant, bounded above by the paraboloid z = 4 − x2 − y 2 and lying within the cylinder x2 + y 2 = 2 x; In cylindrical coordinates, the two functions are z = 4 − r2 and r2 = 2 r cos θ or r = 2 cos θ. Therefore, the region in the problem is E = (r, θ, z) : 0 ≤ z ≤ 4 − r2 , 0 ≤ r ≤ 2 cos θ, 0 ≤ θ ≤ π/2 , and we find: ZZZ Z V = π/2 Z 2 cos θ Z dV = E 4−r2 r dz dr dθ, 0 Z 0 π/2 Z 2 cos θ = 0 0 r(4 − r2 ) dr dθ, 0 2 cos θ (4 − r2 )2 dθ, = − 2·2 0 0 Z π/2 2 4 (4 − 4 cos2 θ)2 − dθ, = 4 4 0 Z π/2 2 4 42 sin4 θ = − dθ, 4 4 0 Z π/2 =4 (1 − sin4 θ) dθ. Z π/2 0 2 To integrate the sin4 θ term, we expand using the angle doubling identity: 2 ! Z π/2 Z π/2 1 − cos 2θ 1− dθ, (1 − sin4 θ) dθ = 4 4 2 0 0 Z π/2 Z π/2 1 − cos 2θ + cos2 2θ 1 − cos 2θ + (1 + cos 4θ)/2 1− =4 1− dθ = 4 dθ, 4 4 0 0 Z π/2 Z π/2 cos 4θ 5/2 + cos 2θ − (4 − 1 + cos 2θ − (1 + cos 4θ)/2) dθ = = dθ, 2 0 0 sin 2θ sin 4θ π/2 5π = 5θ/2 + = − . 2 8 4 0 2. Find the volume of the region that lies inside the cone φ = α and the sphere ρ = a; The region can be characterized as E = {(ρ, θ, φ) : 0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ α}. Therefore, we find: Z α Z 2π Z a ZZZ ρ2 sin φ dρ dθ dφ, dV = V = 0 0 0 E Z α Z 2π 3 a Z ρ a3 α = sin φ dφ, sin φ dθ dφ = 2π 3 0 3 0 0 0 = 2π ZZZ z 3. Compute a3 2πa3 (1 − cos α) [− cos φ]α0 = . 3 3 p x2 + y 2 + z 2 dV where E is the region in problem 2. E The p region in problem 2 is E = {(ρ, θ, φ) : 0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ α}. Since z = ρ cos φ and ρ = x2 + y 2 + z 2 , we find: ZZZ p Z α Z 2π Z a 2 2 2 z x + y + z dV = ρ cos φ ρ ρ2 sin φ dρ dθ dφ, E 0 0 0 Z α Z 2π Z a ρ4 cos φ sin φ dρ dθ dφ, = 0 0 0 Z a5 α = 2π cos φ sin φ dφ. 5 0 Since sin 2φ = 2 sin φ cos φ: ZZZ p Z a5 α sin 2φ 2 2 2 z x + y + z dV = 2π dφ, 5 0 2 E a5 − cos 2φ α πa5 (1 − cos 2α) = 2π = . 5 4 10 0 Exercises ZZZ x2 dV where E is the interior of the unit sphere centered on the origin; 1. Compute E 2. Consider the plane y = z and the paraboloid z = x2 + y 2 . Convert these equations to cylindrical coordinates. Solve them simultaneously to determine the r and θ values where these two surfaces intersect. Find the volume of the region that lies between these two surfaces; 3. Find the volume of the region that lies between the paraboloids z = 10−x2 −y 2 and z = 2 x2 + y 2 − 1 . 3
© Copyright 2026 Paperzz