Non-singlet baryons in gauge/ gravity duality Yolanda Lozano (U. Oviedo) Corfu, September 2012 martes 25 de septiembre de 2012 Motivation: Non-singlet baryons are predicted in N=4 SYM by the AdS/CFT correspondence. Do they also exist in more realistic theories? martes 25 de septiembre de 2012 Motivation: Non-singlet baryons are predicted in N=4 SYM by the AdS/CFT correspondence. Do they also exist in more realistic theories? How: Analyze the holographic description in various backgrounds with reduced supersymmetries and/or confining martes 25 de septiembre de 2012 Motivation: Non-singlet baryons are predicted in N=4 SYM by the AdS/CFT correspondence. Do they also exist in more realistic theories? How: Analyze the holographic description in various backgrounds with reduced supersymmetries and/or confining - Reduced SUSY: AdS5 × Y5 , Lunin-Maldacena β deformed, Frolov multi- β deformed - Confining: Maldacena-Nuñez martes 25 de septiembre de 2012 Results: - Non-singlet baryons exist in all these backgrounds - Same number of quarks in all AdS5 × Y5 Einstein manifolds with 5-form flux, independent of SUSY - More restricted number of quarks in MN - Stable against fluctuations - Non-singlet baryons at finite ‘t Hooft coupling martes 25 de septiembre de 2012 Results: - Non-singlet baryons exist in all these backgrounds - Same number of quarks in all AdS5 × Y5 Einstein manifolds with 5-form flux, independent of SUSY - More restricted number of quarks in MN - Stable against fluctuations - Non-singlet baryons at finite ‘t Hooft coupling (Based on arXiv:1203.6817, D. Giataganas,Y.L., M. Picos, K. Siampos, JHEP) martes 25 de septiembre de 2012 1. The baryon vertex in AdS5 × S 5 martes 25 de septiembre de 2012 1. The baryon vertex in AdS5 × S 5 Gauge invariant coupling of N external quarks martes 25 de septiembre de 2012 1. The baryon vertex in AdS5 × S 5 Gauge invariant coupling of N external quarks Through AdS/CFT external quarks are regarded as endpoints of F-strings in AdS AdS-Boundary x2 x3 x1 xN ... Quarks Vertex martes 25 de septiembre de 2012 1. The baryon vertex in AdS5 × S 5 Gauge invariant coupling of N external quarks Through AdS/CFT external quarks are regarded as endpoints of F-strings in AdS AdS-Boundary x2 x3 x1 xN ... Quarks Vertex Baryon vertex in the gravity side: D5-brane wrapped on the 5-sphere (Witten’98): SCS = 2π T5 martes 25 de septiembre de 2012 � R×S 5 P [F5 ] ∧ A = N TF 1 � R dtAt 1. The baryon vertex in AdS5 × S 5 Gauge invariant coupling of N external quarks Through AdS/CFT external quarks are regarded as endpoints of F-strings in AdS AdS-Boundary x2 x3 x1 xN ... Quarks Vertex Baryon vertex in the gravity side: D5-brane wrapped on the 5-sphere (Witten’98): SCS = 2π T5 � R×S 5 P [F5 ] ∧ A = N TF 1 � R dtAt N charge cancelled by N F-strings ending on the 5-brane martes 25 de septiembre de 2012 The strings stretching to the boundary behave as fermions, giving the antisymmetry of the baryon vertex. martes 25 de septiembre de 2012 The strings stretching to the boundary behave as fermions, giving the antisymmetry of the baryon vertex. However, within the gauge/gravity correspondence it is possible to construct bound states of k quarks with k < N (non-singlets) (Brandhuber, Itzhaki, Sonnenschein,Yankielowitz’98; Imamura’98) martes 25 de septiembre de 2012 The strings stretching to the boundary behave as fermions, giving the antisymmetry of the baryon vertex. However, within the gauge/gravity correspondence it is possible to construct bound states of k quarks with k < N (non-singlets) (Brandhuber, Itzhaki, Sonnenschein,Yankielowitz’98; Imamura’98) In AdS5 × S 5 : 5N/8 ≤ k ≤ N In AdS4 × CP 3 : 2N/3 ≤ k ≤ N martes 25 de septiembre de 2012 (Y.L., Picos, Sfetsos, Siampos’11) The strings stretching to the boundary behave as fermions, giving the antisymmetry of the baryon vertex. However, within the gauge/gravity correspondence it is possible to construct bound states of k quarks with k < N (non-singlets) (Brandhuber, Itzhaki, Sonnenschein,Yankielowitz’98; Imamura’98) In AdS5 × S 5 : 5N/8 ≤ k ≤ N In AdS4 × CP 3 : 2N/3 ≤ k ≤ N (Y.L., Picos, Sfetsos, Siampos’11) What happens in less supersymmetric and/or confining backgrounds? martes 25 de septiembre de 2012 The strings stretching to the boundary behave as fermions, giving the antisymmetry of the baryon vertex. However, within the gauge/gravity correspondence it is possible to construct bound states of k quarks with k < N (non-singlets) (Brandhuber, Itzhaki, Sonnenschein,Yankielowitz’98; Imamura’98) In AdS5 × S 5 : 5N/8 ≤ k ≤ N In AdS4 × CP 3 : 2N/3 ≤ k ≤ N (Y.L., Picos, Sfetsos, Siampos’11) What happens in less supersymmetric and/or confining backgrounds? And at finite ‘t Hooft coupling? martes 25 de septiembre de 2012 2. Gauge/gravity calculation of the energy (Brandhuber, Itzhaki, Sonnenschein,Yankielowitz’98; Imamura’98; Maldacena’98) AdS-Boundary ... Quarks Vertex Consider a uniform distribution of strings on an Mp shell Non-SUSY but we can ignore the backreaction In the probe brane approach: S = SDp + SN F 1 : SN F 1 = −N TF 1 with τ = t martes 25 de septiembre de 2012 σ=r � dt dr � |detP (G)| and the AdS direction ρ = ρ(r) 2. Gauge/gravity calculation of the energy (Brandhuber, Itzhaki, Sonnenschein,Yankielowitz’98; Imamura’98; Maldacena’98) AdS-Boundary ρ(0) = ρ0 ρ(L) = ∞ ... Quarks Vertex Consider a uniform distribution of strings on an Mp shell Non-SUSY but we can ignore the backreaction In the probe brane approach: S = SDp + SN F 1 : SN F 1 = −N TF 1 with τ = t martes 25 de septiembre de 2012 σ=r � dt dr � |detP (G)| and the AdS direction ρ = ρ(r) SDp = −Tp � R×Mp d p+1 ξ � |det P (G + 2πF − B)| In AdS5 × Y5 : 2 2 ρ R ds2 = 2 dx21,3 + 2 dρ2 + R2 ds2Y5 R ρ 4 4π N gs 4 , R = Vol(Y5 ) Bulk equation of motion: F5 = 4 R4 (1 + ∗)dVol(Y5 ) � ρ4 ρ4 R4 Boundary equation of motion: � martes 25 de septiembre de 2012 + ρ� 2 =c ρ0 � ρ40 R4 + ρ0 � 2 T5 R4 Vol(Y5 ) = N TF 1 4 � T R Vol(Y5 ) 5 2 Define 1 − β = N TF 1 with β ∈ [0, 1] The two equations can be combined into: Integrating: � ρ4 ρ4 R4 + ρ� 2 Size of the configuration: 2 R L= ρ0 On-shell energy: E = EDp + EN F 1 martes 25 de septiembre de 2012 = β ρ20 R2 � ∞ 1 dz z2 � β z4 − β2 � �� = N TF 1 ρ0 1 − β2 + ∞ 1 z2 dz � z4 − β2 � Binding energy: Ebin � �� = N TF 1 ρ0 1 − β2 + ∞ 1 � dz � z2 z4 − β2 � � −1 −1 where we have substracted the energy of the constituents (when the brane is located in ρ0 = 0 the strings become radial and correspond to free quarks) martes 25 de septiembre de 2012 Binding energy: Ebin � �� = N TF 1 ρ0 1 − β2 + ∞ 1 � dz � z2 z4 − β2 � � −1 −1 where we have substracted the energy of the constituents (when the brane is located in ρ0 = 0 the strings become radial and correspond to free quarks) As a function of L : Ebin √ λ = −f (β) L martes 25 de septiembre de 2012 with f (β) ≥ 0 Binding energy: Ebin � �� = N TF 1 ρ0 1 − β2 + ∞ 1 � dz � z2 z4 − β2 � � −1 −1 where we have substracted the energy of the constituents (when the brane is located in ρ0 = 0 the strings become radial and correspond to free quarks) As a function of L : Ebin √ λ = −f (β) L with ⇒ - The configuration is stable f (β) ≥ 0 - Ebin ∼ √ 1/L dictated by conformal invariance - Ebin ∼ λ non-trivial prediction for the non-perturbative regime of the gauge theory martes 25 de septiembre de 2012 Universal behavior for all AdS5 × Y5 backgrounds, independent of SUSY martes 25 de septiembre de 2012 Universal behavior for all AdS5 × Y5 backgrounds, independent of SUSY Same thing in beta deformed LM backgrounds and multi beta deformed (Frolov) backgrounds (non-SUSY) → Based on conformality martes 25 de septiembre de 2012 Universal behavior for all AdS5 × Y5 backgrounds, independent of SUSY Same thing in beta deformed LM backgrounds and multi beta deformed (Frolov) backgrounds (non-SUSY) → Based on conformality In AdS4 × CP : Ebin 3 √ λ = −f (β) L with a different f (β) (Y.L., Picos, Sfetsos, Siampos’11) martes 25 de septiembre de 2012 Universal behavior for all AdS5 × Y5 backgrounds, independent of SUSY Same thing in beta deformed LM backgrounds and multi beta deformed (Frolov) backgrounds (non-SUSY) → Based on conformality In AdS4 × CP : Ebin 3 √ λ = −f (β) L with a different f (β) (Y.L., Picos, Sfetsos, Siampos’11) Confining background? Maldacena-Nuñez: Ebin ∼ L (Loewy, Sonnenschein’01) martes 25 de septiembre de 2012 Universal behavior for all AdS5 × Y5 backgrounds, independent of SUSY Same thing in beta deformed LM backgrounds and multi beta deformed (Frolov) backgrounds (non-SUSY) → Based on conformality In AdS4 × CP : Ebin 3 √ λ = −f (β) L with a different f (β) (Y.L., Picos, Sfetsos, Siampos’11) Confining background? Maldacena-Nuñez: Ebin ∼ L (Loewy, Sonnenschein’01) Non-singlets? martes 25 de septiembre de 2012 3. Reduce the number of quarks In AdS5 × S 5 : Baryon vertex classical solutions with number of quarks 5N/8 ≤ k ≤ N (non-singlet) (Brandhuber, Itzhaki, Sonnenschein,Yankielowitz’98; Imamura’98) Stable against fluctuations for 0.813 N ≤ k ≤ N (Sfetsos, Siampos’08) martes 25 de septiembre de 2012 3.1. The classical solution The boundary equation of motion changes: � ρ�0 ρ40 R4 + ρ�0 2 ⇒ 5N/8 ≤ k ≤ N . martes 25 de septiembre de 2012 T5 R4 Vol(Y5 ) N − k = + ≤1 k TF 1 k 3.1. The classical solution The boundary equation of motion changes: � ρ�0 ρ40 R4 + ρ�0 2 ⇒ 5N/8 ≤ k ≤ N . martes 25 de septiembre de 2012 T5 R4 Vol(Y5 ) N − k = + ≤1 k TF 1 k For k = 5N/8 the baryon reduces to free quarks 3.1. The classical solution The boundary equation of motion changes: � ρ�0 ρ40 R4 + ρ�0 2 ⇒ 5N/8 ≤ k ≤ N . T5 R4 Vol(Y5 ) N − k = + ≤1 k TF 1 k For k = 5N/8 the baryon reduces to free quarks Same for all Y5 , independent on SUSY martes 25 de septiembre de 2012 3.1. The classical solution The boundary equation of motion changes: � ρ�0 ρ40 R4 + ρ�0 2 ⇒ 5N/8 ≤ k ≤ N . T5 R4 Vol(Y5 ) N − k = + ≤1 k TF 1 k For k = 5N/8 the baryon reduces to free quarks Same for all Y5 , independent on SUSY In fact, same bound for beta and multi beta deformed martes 25 de septiembre de 2012 3.1. The classical solution The boundary equation of motion changes: � ρ�0 ρ40 R4 + ρ�0 2 ⇒ 5N/8 ≤ k ≤ N . T5 R4 Vol(Y5 ) N − k = + ≤1 k TF 1 k For k = 5N/8 the baryon reduces to free quarks Same for all Y5 , independent on SUSY In fact, same bound for beta and multi beta deformed Same analysis in Maldacena-Nuñez: 3N/4 ≤ k ≤ N martes 25 de septiembre de 2012 3.1. The classical solution The boundary equation of motion changes: � ρ�0 ρ40 R4 + ρ�0 2 ⇒ 5N/8 ≤ k ≤ N . T5 R4 Vol(Y5 ) N − k = + ≤1 k TF 1 k For k = 5N/8 the baryon reduces to free quarks Same for all Y5 , independent on SUSY In fact, same bound for beta and multi beta deformed Same analysis in Maldacena-Nuñez: 3N/4 ≤ k ≤ N ⇒ Non-singlet states in non-SUSY or confining backgrounds martes 25 de septiembre de 2012 3.2. Stability analysis Important in establishing the physical parameter space (Avramis, Sfetsos, Siampos’06-08) martes 25 de septiembre de 2012 3.2. Stability analysis Important in establishing the physical parameter space (Avramis, Sfetsos, Siampos’06-08) Ansatz for the fluctuations (for the strings): δxµ (t, ρ) = δxµ (ρ)e−iωt for xµ = r, θ, φ martes 25 de septiembre de 2012 3.2. Stability analysis Important in establishing the physical parameter space (Avramis, Sfetsos, Siampos’06-08) Ansatz for the fluctuations (for the strings): δxµ (t, ρ) = δxµ (ρ)e−iωt for xµ = r, θ, φ Expand the Nambu-Goto action to quadratic order and study the zero mode problem ↔ Critical curve in the parametric space separating the stable and unstable regions Stability reduced to an eigenvalue problem of the general Sturm-Liouville type Instabilities emerge from longitudinal fluctuations of the strings martes 25 de septiembre de 2012 For AdS5 × Y5 and beta deformed: Bound for the number of F-strings coming from stability: � N k≥ (1 + 1 − β 2 ) 1 + γc γc = 0.538 More restrictive than the bound imposed by the existence of a classical solution: � N k ≥ (1 + 1 − β 2 ) 2 For MN: Same bound for stability and existence of classical sol. martes 25 de septiembre de 2012 For AdS5 × Y5 and beta deformed: Bound for the number of F-strings coming from stability: � N k≥ (1 + 1 − β 2 ) 1 + γc γc = 0.538 More restrictive than the bound imposed by the existence of a classical solution: � N k ≥ (1 + 1 − β 2 ) 2 For MN: Same bound for stability and existence of classical sol. ⇒ Non-singlet states exist for λ >> 1 martes 25 de septiembre de 2012 For AdS5 × Y5 and beta deformed: Bound for the number of F-strings coming from stability: � N k≥ (1 + 1 − β 2 ) 1 + γc γc = 0.538 More restrictive than the bound imposed by the existence of a classical solution: � N k ≥ (1 + 1 − β 2 ) 2 For MN: Same bound for stability and existence of classical sol. ⇒ Non-singlet states exist for λ >> 1 Can we reach the finite ‘t Hooft coupling region? martes 25 de septiembre de 2012 5. Baryons at finite ‘t Hooft coupling Generalize the baryon vertex adding a magnetic flux. A non-trivial flux adds lower dim brane charges → Complementary description of the baryon in terms of D1-branes expanding by Myers dielectric effect martes 25 de septiembre de 2012 5. Baryons at finite ‘t Hooft coupling Generalize the baryon vertex adding a magnetic flux. A non-trivial flux adds lower dim brane charges → Complementary description of the baryon in terms of D1-branes expanding by Myers dielectric effect - Description in terms of the expanded brane (macroscopical) valid in the sugra limit: R >> 1 ⇔ λ >> 1 - Micro when martes 25 de septiembre de 2012 4πR2 << ls2 ⇔ λ << n2 n 5. Baryons at finite ‘t Hooft coupling Generalize the baryon vertex adding a magnetic flux. A non-trivial flux adds lower dim brane charges → Complementary description of the baryon in terms of D1-branes expanding by Myers dielectric effect - Description in terms of the expanded brane (macroscopical) valid in the sugra limit: R >> 1 ⇔ λ >> 1 - Micro when 4πR2 << ls2 ⇔ λ << n2 n ⇒ It allows to explore the region of finite λ martes 25 de septiembre de 2012 5. Baryons at finite ‘t Hooft coupling Generalize the baryon vertex adding a magnetic flux. A non-trivial flux adds lower dim brane charges → Complementary description of the baryon in terms of D1-branes expanding by Myers dielectric effect - Description in terms of the expanded brane (macroscopical) valid in the sugra limit: R >> 1 ⇔ λ >> 1 - Micro when 4πR2 << ls2 ⇔ λ << n2 n ⇒ It allows to explore the region of finite λ - Complementary at finite n . Should agree at large n martes 25 de septiembre de 2012 The magnetic flux modifies the dynamics: martes 25 de septiembre de 2012 The magnetic flux modifies the dynamics: In AdS5 × Y p,q : 2 2 ρ R ds2 = 2 dx21,3 + 2 dρ2 + R2 ds2Y p,q R ρ 4 4π N gs 4 R = , Vol(Y p,q ) ds2Y p,q 1 = ds (M4 ) + ( dψ + σ)2 3 2 k µ = δψµ : Reeb vector M4 : Local Kähler-Einstein metric martes 25 de septiembre de 2012 The magnetic flux modifies the dynamics: In AdS5 × Y p,q : 2 2 ρ R ds2 = 2 dx21,3 + 2 dρ2 + R2 ds2Y p,q R ρ 4 4π N gs 4 R = , Vol(Y p,q ) ds2Y p,q 1 = ds (M4 ) + ( dψ + σ)2 3 2 k µ = δψµ : Reeb vector M4 : Local Kähler-Einstein metric 1 Take F = N J with J = dσ the Kähler form: 2 4 p,q 2 2 � T R Vol(Y ) 4π N 5 2 1−β = (1 + ) 4 N TF 1 R β≤1⇒ martes 25 de septiembre de 2012 Nmax ↔ β = 0 Binding energy: Ebin � �� = N TF 1 ρ0 1 − β2 + ∞ 1 � dz � z2 z4 − β2 � � −1 −1 - Ebin negative and decreases monotonically with β - Ebin = 0 for β = 0 (N free radial strings stretching from ρ0 to ∞ plus a Dp-brane at ρ0 ) Ebin ! qTF1 Ρ0 ! 0.5 1.0 !0.1 1.5 2.0 2.5 3.0 L 2 Nmax ∼ √ λ !0.2 !0.3 !0.4 !0.5 !0.6 martes 25 de septiembre de 2012 Ebin √ λ = −f (β) L Non-singlets: The bound for the number of quarks is modified ( (k, N ) parameter space bounded by the values for which the baryon vertex reduces to free quarks): 5 N2 k ≥ N + 2 Vol(Y p,q ) 8 8π martes 25 de septiembre de 2012 Non-singlets: The bound for the number of quarks is modified ( (k, N ) parameter space bounded by the values for which the baryon vertex reduces to free quarks): 5 N2 k ≥ N + 2 Vol(Y p,q ) 8 8π kmin is maximum for the 5-sphere, the most SUSY case 16 3 3 5 π = Vol(S ) > π = Vol(T 1,1 ) > Vol(Y 2,1 ) ≈ 0.29π 3 27 Y p,q with largest volume martes 25 de septiembre de 2012 Non-singlets: The bound for the number of quarks is modified ( (k, N ) parameter space bounded by the values for which the baryon vertex reduces to free quarks): 5 N2 k ≥ N + 2 Vol(Y p,q ) 8 8π kmin is maximum for the 5-sphere, the most SUSY case 16 3 3 5 π = Vol(S ) > π = Vol(T 1,1 ) > Vol(Y 2,1 ) ≈ 0.29π 3 27 Y p,q with largest volume In the probe brane approx all configurations are non-SUSY. martes 25 de septiembre de 2012 Non-singlets: The bound for the number of quarks is modified ( (k, N ) parameter space bounded by the values for which the baryon vertex reduces to free quarks): 5 N2 k ≥ N + 2 Vol(Y p,q ) 8 8π kmin is maximum for the 5-sphere, the most SUSY case 16 3 3 5 π = Vol(S ) > π = Vol(T 1,1 ) > Vol(Y 2,1 ) ≈ 0.29π 3 27 Y p,q with largest volume In the probe brane approx all configurations are non-SUSY. Spike solutions non-SUSY for T 1,1 , Y p,q and MN (Areán, Crooks, Ramallo’04; Canoura, Edelstein, Pando Zayas, Ramallo,Vaman’05; Imamura’04) martes 25 de septiembre de 2012 Important to obtain information at finite ‘t Hooft coupling. martes 25 de septiembre de 2012 Important to obtain information at finite ‘t Hooft coupling. Micro description: D1’s expanding into a fuzzy M4 . Only known for the S 5 1,1 (Janssen,Y.L., Rodriguez-Gomez’06) and the T martes 25 de septiembre de 2012 The fuzzy T 1,1 The T 1,1 is a U(1) bundle over S 2 × S 2 ⇒ Take the D1’s 2 2 × Sfuzzy wrapped on the U(1) fibre and expanding into a Sfuzzy martes 25 de septiembre de 2012 The fuzzy T 1,1 The T 1,1 is a U(1) bundle over S 2 × S 2 ⇒ Take the D1’s 2 2 × Sfuzzy wrapped on the U(1) fibre and expanding into a Sfuzzy Substituting in Myers action for D1-branes: SDBI = − Qij � = δji � � � � � STr e−φ |det P [Eµν + Eµi (Q−1 − δ)ij E jk Ekν ] detQ| i + [X i , X k ]Ekj 2π martes 25 de septiembre de 2012 The fuzzy T 1,1 The T 1,1 is a U(1) bundle over S 2 × S 2 ⇒ Take the D1’s 2 2 × Sfuzzy wrapped on the U(1) fibre and expanding into a Sfuzzy Substituting in Myers action for D1-branes: SDBI = − � � � � � STr e−φ |det P [Eµν + Eµi (Q−1 − δ)ij E jk Ekν ] detQ| i = + [X i , X k ]Ekj 2π N ρ0 (m + 1)2 � 36π 2 m(m + 2) � = 1+ 8π m(m + 2) R4 Qij EnD1 � δji martes 25 de septiembre de 2012 The fuzzy T 1,1 The T 1,1 is a U(1) bundle over S 2 × S 2 ⇒ Take the D1’s 2 2 × Sfuzzy wrapped on the U(1) fibre and expanding into a Sfuzzy Substituting in Myers action for D1-branes: SDBI = − � � � � � � STr e−φ |det P [Eµν + Eµi (Q−1 − δ)ij E jk Ekν ] detQ| i = + [X i , X k ]Ekj 2π N ρ0 (m + 1)2 � 36π 2 m(m + 2) � EnD1 = 1+ 8π m(m + 2) R4 1 i J i for each S 2 where X = � m(m + 2) Qij δji martes 25 de septiembre de 2012 The fuzzy T 1,1 The T 1,1 is a U(1) bundle over S 2 × S 2 ⇒ Take the D1’s 2 2 × Sfuzzy wrapped on the U(1) fibre and expanding into a Sfuzzy Substituting in Myers action for D1-branes: SDBI = − � � � � � � STr e−φ |det P [Eµν + Eµi (Q−1 − δ)ij E jk Ekν ] detQ| i = + [X i , X k ]Ekj 2π N ρ0 (m + 1)2 � 36π 2 m(m + 2) � EnD1 = 1+ 8π m(m + 2) R4 1 i J i for each S 2 where X = � m(m + 2) Qij δji martes 25 de septiembre de 2012 Agreement with macro descrip. in large m The F1 in the micro description SCS = � includes SCS 1 = π � � i � � � STr P e 2π (iX iX ) Cq e−B2 e2πF q � � � dt STr (iX iX )2 ik F5 At martes 25 de septiembre de 2012 The F1 in the micro description SCS = � includes SCS 1 = π � � i � � � STr P e 2π (iX iX ) Cq e−B2 e2πF q � � � dt STr (iX iX )2 ik F5 At 2 (m + 1) =N m(m + 2) martes 25 de septiembre de 2012 � dt At The F1 in the micro description SCS = � includes SCS 1 = π � � i � � � STr P e 2π (iX iX ) Cq e−B2 e2πF q � � � dt STr (iX iX )2 ik F5 At 2 (m + 1) =N m(m + 2) martes 25 de septiembre de 2012 � dt At → N � dt At The F1 in the micro description SCS = � includes SCS 1 = π � � i � � � STr P e 2π (iX iX ) Cq e−B2 e2πF q � � � dt STr (iX iX )2 ik F5 At 2 (m + 1) =N m(m + 2) � dt At → N � dt At Similar micro analysis in MN in terms of D1’s expanding into a fuzzy S 2 martes 25 de septiembre de 2012 6. Conclusions - Non-singlet baryons are predicted by gauge/gravity duality in less supersymmetric and/or confining backgrounds - They are stable against fluctuations - At finite ‘t Hooft coupling: Microscopical description of the vertex Complete this analysis with α� corrections to the NG action of the strings (or microscopic spike), α� corrections to the background martes 25 de septiembre de 2012 6. Conclusions - Non-singlet baryons are predicted by gauge/gravity duality in less supersymmetric and/or confining backgrounds - They are stable against fluctuations - At finite ‘t Hooft coupling: Microscopical description of the vertex Complete this analysis with α� corrections to the NG action of the strings (or microscopic spike), α� corrections to the background Thanks! martes 25 de septiembre de 2012
© Copyright 2026 Paperzz