University of Kentucky UKnowledge Theses and Dissertations--Dietetics and Human Nutrition Dietetics and Human Nutrition 2017 CHANGES OF PERCENT BODY FAT, WAIST CIRCUMFERENCE AND FRUIT AND VEGETABLE INTAKE AMONG DIVISION I COLLEGIATE FEMALE SOFTBALL PLAYERS AFTER NUTRITION CURRICULUM PAIRED WITH TECHNOLOGY Rachel Thomas University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.076 Recommended Citation Thomas, Rachel, "CHANGES OF PERCENT BODY FAT, WAIST CIRCUMFERENCE AND FRUIT AND VEGETABLE INTAKE AMONG DIVISION I COLLEGIATE FEMALE SOFTBALL PLAYERS AFTER NUTRITION CURRICULUM PAIRED WITH TECHNOLOGY" (2017). Theses and Dissertations--Dietetics and Human Nutrition. 52. http://uknowledge.uky.edu/foodsci_etds/52 This Master's Thesis is brought to you for free and open access by the Dietetics and Human Nutrition at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Dietetics and Human Nutrition by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each thirdparty copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royaltyfree license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. REVIEW, APPROVAL AND ACCEPTANCE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above. Rachel Thomas, Student Dr. Janet S. Kurzynske, Major Professor Dr. Kelly Webber, Director of Graduate Studies CHANGESOFPERCENTBODYFAT,WAISTCIRCUMFERENCEAND FRUITANDVEGETABLEINTAKEAMONGDIVISIONICOLLEGIATE FEMALESOFTBALLPLAYERSAFTERNUTRITIONCURRICULUM PAIREDWITHTECHNOLOGY THESIS Athesissubmittedinpartialfulfillmentofthe requirementsforthedegreeofMasterofScienceinthe CollegeofAgriculture,Food,andEnvironmentalSciences attheUniversityofKentucky By RachelRusherThomas Lexington,Kentucky Director:Dr.JanetS.Kurzynske,PhD,RD,ExtensionProfessorofDieteticsand HumanNutrition Lexington, Kentucky 2017 Copyright© Rachel Rusher Thomas 2017 ABSTRACTOFTHESIS CHANGESOFPERCENTBODYFAT,WAISTCIRCUMFERENCEAND FRUITANDVEGETABLEINTAKEAMONGDIVISIONICOLLEGIATE FEMALESOFTBALLPLAYERSAFTERNUTRITIONCURRICULUM PAIREDWITHTECHNOLOGY Previousresearchhasfoundthatthequalityandintakeofcollegiateathletes’ diets does not meet the recommended standards. Little research has been completedinregardstothedietsofcollegiatefemalesoftballplayers.Thepurpose ofthisresearchstudywastodetermineifan11‐weeknutritioncurriculumpaired withatechnologycouldincreasefruitandvegetableconsumptionwhiledecreasing percent body fat and waist circumference. The sample included 14 female softball players. Paired t‐test were preformed to compare fruit and vegetable intake, body fat percentage, and waist circumference pre‐ and post‐intervention. Linear regressionmodelswereusedtodeterminecorrelationsbetweenchangeinfruitand vegetableconsumptionandbodyfatpercentage,andchangeinfruitandvegetable consumption and waist circumference. Results showed that an increase in fruit in vegetable consumption was associated with a significant increase in waist circumference (p=0.0328). Of the participants, 43% were freshmen and may be relatedtofreshmanyearweightgain.Basedonthecurrentfindings,moreresearch isneededwithstricterprotocols. KEYWORDS: Fruit, Vegetable, Nutrition Curriculum, College Softball Players, Waist Circumference,BodyFatPercentage RachelRusherThomas April19,2017 CHANGESOFPERCENTBODYFAT,WAISTCIRCUMFERENCEAND FRUITANDVEGETABLEINTAKEAMONGDIVISIONICOLLEGIATE FEMALESOFTBALLPLAYERSAFTERNUTRITIONCURRICULUM PAIREDWITHTECHNOLOGY By RachelRusherThomas JanetKurzynske,PhD,RD DirectorofThesis KellyWebber,PhD,MPH,RD,LD DirectorofGraduateStudies April19,2017 TABLE OF CONTENTS List of Tables…………………………………………………………………………………………………………………v List of Figures.………………………………………………………………………………………………………………vi Chapter One: Introduction…………………………………………………………………………………………….1 Problem Statement…………………………………………………………………………………………...2 Research Questions……………………………………………………………………………………………2 Hypotheses………………………………………………………………………………………………………..3 Justification……………………………………………………………………………………………………….3 Chapter Two: Literature Review……………………………………………………………………………………4 Determinants of Diet Quality…………………………………………………………………………….5 Meeting Recommendations of Fruit and Vegetable Consumption of Athletes………………………………………………………………………………………………...5 Nutrition Education……………………………………………………………………………….9 National Cancer Institute (NCI) Fruit and Vegetable Screener……………..14 Use of Technology and Tracking Intake………………………………………………..17 Determinants of Body Composition…………………………………………………………………23 Waist Circumference (WC)………………………………………………………………….23 Bod Pod®………………………………………………………………………………………………27 Summary…………………………………………………………………………………………………………30 Chapter Three: Methods……………………………………………………………………………………………..30 Study Design…………………………………………………………………………………………………...30 Participants……………………………………………………………………………………………………..31 Measurements………………………………………………………………………………………………..32 Procedures……………………………………………………………………………………………………...34 Analysis……………………………………………………………………………………………………………37 Chapter Four: Results………………………………………………………………………………………………….37 Demographics………………………………………………………………………………………………...37 Body Composition…………………………………………………………………………………………...41 Total of Fruit and Vegetable Intake………………………………………………………………….42 Fruit Intake………………………………………………………………………………………………………42 Vegetable Intake……………………………………………………………………………………………..43 Correlation Test Between Fruit and Vegetable Intake and Body Fat Percentage……………………………………………………………………………………………………..44 Correlation Test Between Fruit and Vegetable Intake and Waist Circumference………………………………………………………………………………………………..46 Chapter Five: Discussion……………………………………………………………………………………………..47 Limitations……………………………………………………………………………………………………...49 iii Chapter Six: Conclusion……………………………………………………………………………………………….50 References………………………………………………………………………………………………………………….51 Vita……………………………………………………………………………………………………………………………..54 iv LISTOFTABLES Table3.1,Outlineofnutritioncurriculum………………………………………………………….36 Table4.1,CharacteristicsofBodyCompositioninAugust2015………………………….38 Table4.2,CharacteristicsofFruitandVegetableconsumptioninAugust2015…...38 Table4.3,CharacteristicsofBodyCompositioninNovember2015…………………….39 Table4.4,CharacteristicsofFruitandVegetableconsumptionin November2015……………………………………………………………………………………..40 Table4.5,Pairedt‐test,waistcircumferenceandpercentbodyfat………………………41 Table4.6,Pairedt‐test,combinedfruitandvegetableintake……………………………....42 Table4.7,Pairedt‐test,fruitintake………………………………………………………………….....42 Table4.8,Pairedt‐test,vegetableintake………………………………………………………….....43 Table4.9,Linearregression,changeinbodyfatpercentagevs.changeinfruit andvegetableintake……….………………………………………………………………………45 Table4.10,Linearregression,changeinwaistcircumferencevs.changeinfruit andvegetableintake…………………………………………………….…………………………46 v LISTOFFIGURES Figure3.1,FruitandVegetableScreenerscoringtool………………………………………....33 Figure4.1,Scatterplotofchangeinbodyfatpercentagevs.changeinfruit andvegetableintake……………………………………………………………………………….44 Figure4.2,Scatterplotofchangeinwaistcircumferencevs.changeinfruit andvegetableintake………………………………………………………………...……………..46 vi CHAPTER1:INTRODUCTION Manyyoungadultshavepooreatinghabits(Laska,2014).Amongthe populationofyoungadultsiscollegestudents;particularlystudentathletes. Researchhasfoundthatfemalecollegiateathletesfailtomeettheirestimated energyandcarbohydrateneeds,whichcannegativelyimpactbothtrainingand recoveryalongwithoverallnutritionalstatus(Shriver,2012).Researchershavealso foundthatcollegiateathletesneedtobetargetedfornutritioneducationasitrelates tooptimizingperformance(Rosenbloom,2002). Collegiatefemalesoftballplayerslogmanyhoursoutsideoftheclassrooms onthefieldsandweightroomstryingtobettertheirperformance.Theperformance factorforsoftballplayersisnotfocusedonendurance,butisfocusedonstrength (Mala,2015).Otherfactors,includingqualityofdietplayaroleinoveralllevelof performance.Therehasbeenalimitedamountofworkcompletedtointervenewith collegiatefemalesoftballplayers’diet.In2014,theNationalCollegiateAthletic Associationderegulatedmeals,allowingforathletestomoreappropriatelyrecover andrefueltheirbodieswithwholefoodsthroughouttheday(Wilfert,2014).This deregulationwasuniversal,includingbothmaleandfemaleathletes.Littleresearch hasbeenpublishedonfemaleDivisionIcollegiateathletessincethechanges (Ludwig,2015). Thefocusofthisresearchistoidentifyifthereweresignificantchangesin fruitandvegetableintakeandbodycompositionoffemalecollegiatesoftballplayers afteran11‐weeknutritioncurriculumwithatechnologycomponentwascompleted duringpre‐season,afterthede‐regulationofmealsbytheNCAA. 1 PROBLEMSTATEMENT Manystudieshavebeencompletedtoexaminethedietqualityoffemale collegiateathletestodetermineiftheyaremeetingminimumnutritionguidelines (Ludwig,2015;Quatromoni,2008;Rosenbloom,2002;Shiver,2012).Studieshave alsobeencompletedtoexaminetherelationshipbetweenattendinganutrition curriculumbasedinterventionanditsimpactonoverallhealthamongcollege students(Quatromoni,2008;Richards,2006;Murphy,2001;Lua,2012;Kelly,2013; Plotnikoff,2015;Kicklighter,2010).Thesestudieshavefoundthatcollegeage studentsareinterestedinnutritioncurriculum,andintakeoffruitsandvegetables canbeimproved(Quatromoni,2008;Richards,2006;Murphy,2001;Lua,2012; Kelly,2013;Plotnikoff,2015;Kicklighter,2010).Littleresearchexistsexaminingthe relationshipbetweenfruitandvegetableintakeandnutritioncurriculumbased interventionsimpactonpercentbodyfatandwaistcircumferenceamongcollege athletes,specificallycollegiatefemalesoftballplayers.Thisstudyaimstohelpfill thisgap. RESEARCHQUESTIONS 1. Doesan11‐weeknutritioncurriculumdecreasebodyfatpercentagesof femalecollegiatesoftballplayers? 2. Doesan11‐weeknutritioncurriculumincreaseintakeoffruitsand vegetablesinfemalecollegiatesoftballplayers? 3. Doeswaist‐circumferencechangeincollegiatefemalesoftballplayers afteran11‐weeknutritioncurriculum? 2 4. Isthereacorrelationbetweenchangeinfruitandvegetableintakeand changeinbodyfatpercentageorchangeinwaist‐circumferenceafteran 11‐weeknutritioncurriculumforfemalecollegiatesoftballplayers? HYPOTHESES 1. An11‐weeknutritioncurriculumwilldecreasethebodyfatpercentagesof femalecollegiatesoftballplayersasmeasuredbytheBodPod®. 2. An11‐weeknutritioncurriculumwillincreasetheintakeoffruitsand vegetablesinfemalecollegiatesoftballplayersasmeasuredbyNational CancerInstitute(NCI)FruitandVegetableScreener. 3. An11‐weeknutritioncurriculumwillresultindecreasewaist‐circumference asmeasuredbymanualwaist‐circumferencemeasurements. 4. Therewillbeanegativecorrelationbetweenchangeinfruitandvegetable consumptionandchangeinbodyfatpercentageandchangeinwaist‐ circumferenceafteran11‐weekintervention. JUSTIFICATION Researchhasyettobecompletedontheimpactofanutritioncurriculum pairedwithuseoftechnologyfocusingonfemalecollegiateathletesinimproving theiroverallfruitandvegetableconsumption.Evidencehasbeenoutlinedbythe AmericanCollegeofSportsMedicinethatindicatesthatdietqualityimpactsathletic performance(Thomas,2016).Limitedresearchhasbeendonewithfemale collegiateathletes,particularlysoftballplayers,andtheuseoftechnologypaired 3 withanutritioncurriculumtoimprovedietquality,particularlyafterthe deregulationofmeals.Thisderegulationallowsathletesaccesstofruitsand vegetablesatnoadditionalcost. CHAPTER2:LITERATUREREVIEW Whenmostpeoplethinkofcollegiateathletes,theythinkofhighperforming, lean,andnutritionallysoundathletes.Theaveragecollegiatefemalesoftballplayer doesnotfitintotheleancategory,yetresemblesthebodycompositionofatypical Americanofsimilaragerange(Carbuhn,2010).Becausethispopulationwantsto performattheiroptimalcapacity,meetingtheirindividualnutritionneedsis important.Multiplestudieshavelookedattheimpactofprovidinganutrition curriculumandoruseofdietarylogstoimproveandincreaseconsumptionoffruits andvegetablesamongvariouspopulations,particularlycollegestudents(Lua,2012; Plotnikoff,2015;Kicklighter,2013;Kelly,2012;Shriver,2013).Currentlythe researchoncollegiateathletesanddietaryintakeislimited.Researchthathasbeen completedonfemaleathlete’sdietaryintakehasfocusedoniftheyweremeeting therecommendeddailyintake,butdidnotfocusonincreasingintakeoffruitsand vegetables(Shriver,2013).Understandingifprovidingfemalecollegiatesoftball playerswithanutritioncurriculumcoupledwithatechnologycomponent,and estimatedneedsbasedonbodycompositionrecommendationsimprovestheirbody compositionduringpre‐seasonisofinterest. 4 DETERMINANTSOFDIETQUAILTY MEETINGRECOMMENDATIONSFRUITANDVEGETABLECONSUMPTIONOF ATHLETES TheaverageAmericandoesnotmeettherecommendedintakeoffruitsand vegetables(Shriver,2013).ArecentstudyconductedbyShriver,L.,andcolleagues focusedontheeatinghabitsoffemalecollegiateathletes,andiftheyareconsuming enoughfruitsandvegetablestomeetthecurrentsportsnutritionstandards (Shriver,2013).Themainpurposeofthestudywastoassesstheenergyand macronutrientintakesoffemalecollegiateathletescomparedtotheminimum sportsnutritionrecommendations,andtoexploretheeatinghabitsanddietary patternsinthetargetpopulation(Shriver,2013).Theresearchersrecruited participantsfromthreedifferentwomen’sathleticteamsbetweenJanuary2009and May2010(Shriver,2013).Anthropometricmeasurementsandbodycomposition weretakenoneachoftheparticipants.Theparticipantsalsocompleteda1‐day24‐ hourrecallthatwasadministeredbyatrainedresearchassistant(Shriver,2013). Afterthe24‐hourrecall,eachoftheparticipantswasprovidedwithinstructionson howtocompletea3‐dayfoodrecord,andwereaskedtodosoover2‐weekdays, and1–weekendday,andincludethetypeanddurationofphysicalactivitythey participatedinduringthosedays(Shriver,2013).Somethingimportanttonoteis thatduringthetimeofthestudyalltheparticipantswereeitherinlatepreseasonor earlyseasontraining,participatingintraining6daysperweekfrom1.5to2.5 hours,andwereweightstable(Shriver,2013). 5 Theresearchersfoundthatalmostalloftheathletestheysampledfailedto meettheirrecommendedenergyintakesfortheirestimatedneeds,withmostof themfailingtomeettheircarbohydrateneeds(Shriver,2013).Alimitationtothe presentstudyisthatthesamplesizeisrelativelysmall,andthetimecommitment neededbytheparticipantswastoodemandingformoretoparticipate.Another limitationistheydidnotfocusoniftheathletesweremaintaining,gaining,orlosing weight.Themainfindingofthisstudyisthatfemaleathletesshouldbeevaluatedfor theirestimatedenergyneeds,andiftheyaremeetingthemornot. In2014,theNCAAderegulatedthesnackruling,whichallowedforathletic departmentstoprovidesnacksandmealsaspartofparticipationonasportsteam (Wilfret,2014).Ludwigwantedtoassesstheconsumptionoffruitsandvegetables uponDivisionIathletesafterthederegulation.Thepurposeofthestudywasto determineiffruitandvegetableconsumptionincreased,andwiththeincreaseof fruitsandvegetablesthatbodyfatpercentagewoulddecreaseafterthederegulation (Ludwig,2015).Therewasatotalof27,maleandfemalecollegiateathletesincluded inthestudy,with19beingfootballplayers,andeightvolleyballplayers(Ludwig, 2015).ThebodycompositionusingtheBodPod®andintakeoffruitsandvegetables usingtheBlockDietaryDatasystems2005FoodFrequencyQuestionnairewas completedtwice(Ludwig,2015).Thefirsttimewaspre‐deregulation,andthenonce afterderegulation.Itwasfoundthattherewasnosignificantchangeinfruitor vegetableintakeforbothvolleyballandfootball(Ludwig,2015).Itwasfound however,thattheprobabilityofanincreaseinvegetablesrelatedtoadecreasein bodyfatpercentageforthefootballplayerswassignificant(p=0.0471)(Ludwig).It 6 wasalsofoundthattheprobabilitythattherewasanincreaseinfruitandvegetable intakerelatedtoadecreaseinbodyfatpercentageinthefootballplayerswas significant(p=0.0378)aswell(Ludwig,2015).Therewasnosignificantprobability fortherelationoffruitorvegetableintakeandbodyfatpercentagechangeamong thevolleyballplayers.Oneofthelimitationstothisstudywasthatitwasasmall, conveniencesample.Theresearcheralsoreportedthatthetight‐fittingclothingand swimcapsdifferedamongtheparticipantsduringtheBodPod®measurements, whichcouldhaveaffectedtheresults(Ludwig,2015).Thestudyconcludedthatthe increaseinfruitsandvegetablesresultedinadecreaseinbodyfatpercentage amongcollegiateathletes(Ludwig,2015). Thelaststudyofinterestfocusedondeterminingthedietandbody compositionofcollegiateathletes.Theresearcherwantedtodetermineifthere wereanydietaryexcessesanddeficienciesfoundamongathletes,iftherewasa relationshipbetweenbodyfatpercentageanddietquality,andiftherewasa differenceindietqualitybetweenmaleandfemaleathletes(Ireland,2013).Across‐ sectionalstudywascompletedoverayearandahalfperiod,with138collegiate athletesvolunteeringtoparticipateinthestudy,48beingmaleand90females (Ireland,2013).BodycompositionwasmeasuredthroughtheuseoftheBodPod®, whiletheBlock2005FoodFrequencyQuestionnairewasusedtoassessthe participantsdiets(Ireland,2013).ThedietqualitywascalculatedusingtheBlock 2005FoodFrequencyQuestionnaire,andtheHealthyEatingIndex2005(Ireland, 2013). 7 Alloftheparticipantshadameanbodyfatof17.8;whilethemale participantshadabodyfatof11.1,andthefemaleparticipantshadabodyfatof 24.1(Ireland,2013).Theaveragedietscorewas51,indicatingathletesdonothave ahighqualitydietscore(Ireland,2013).Theoverallaveragefruitconsumptionwas 1.7cups;whileformalesitwas1.8cups,andforfemales1.6cups(Ireland,2013). Theoverallaverageofvegetablesconsumedwas2.4cups;whileformalesitwas3.1 cups,and2.0cupsforfemales(Ireland,2013).Theoverallaverageofdietaryfiber was20.5grams;whileformalesitwas27.3gramsandforfemales16.8grams (Ireland,2013).Theoverallaverageofcaloriesfromsolidfats,alcoholicbeverages, andaddedsugarswas1231.3calories(Ireland,2013).Formales,thecaloriesfrom solidfats,alcoholicbeverages,andaddedsugarswas1844.6calories,and900.6 caloriesforfemales(Ireland,2013).Theyalsofoundanegativecorrelationbetween dietscoreandpercentbodyfat,andnocorrelationbetweenBMIanddietscore (Ireland,2013).Limitationsofthestudywereconveniencesampleandasmall samplesize.Itwasalsoreportedthattheresearcherwasnotawareiftheathletes wereinoroutofseasonduringthetimeofassessment.Theoverallfindingfromthe studywasthatathletesmaynotknowhowtochooseappropriatefooditemstohelp themachievetheirhighestathleticability. 8 NUTRITIONEDUCATION Providingnutritioneducationsisaneffectivewayofgivinghealthydietand nutritioninformationtoparticipants(Lua,2012).Astudywasconductedto determinetheeffectivenessofacommunity‐basededucationprogramaimedat changingtheconsumptionrateoffruitsandvegetablesinoverweightandobese adults.ParticipantshadtohaveaBMIofatleast25kg/m2tobeincludedinthestudy (WagnerMG,2016).Participantswereexcludediftheywerelessthan18yearsold, werecurrentsmokers,hadaBMIlowerthan25kg/m2,orhadahistoryofbariatric surgery(WagnerMG,2016).Thestudyinitiallystartedwithsixty‐seven participants,withonlyfifty‐fourcompletingthethreephasesofthe14‐weekstudy (WagnerMG,2016).Theparticipantswereassignedtoacontrolgroup,aneducation group,orafruitandvegetablegroupthatreceivedtheintervention. Participantsinthecontrolgroupreceivednointervention,butweregiven theoptiontoreceiveinformationaboutfruitsandvegetablesattheconclusionof theintervention(WangerMG,2016).Participantsinboththeeducationandfruits andvegetablegroupsreceivedinformationweeklyabouttheantioxidantcontentof fruitsandvegetables,therolesofantioxidantsintheinflammatoryprocess,and currentrecommendationsforfruitandvegetableconsumption(WangerMG,2016). Thefruitandvegetablegroupalsoreceivedrecommendationsforincorporating fruitsandvegetablesintotheircurrentmealplans,andofferedsamplesoffresh, frozen,orcannedfruitsandvegetablesateachweeklyeducationsession(Wangner MG,2016). 9 Apre‐andpost‐testweregiventoassessdemographicsandfoodintake usingathree‐dayfoodlog(WagnerMG,2016).Theinterventionconsistedof10,30‐ minutesessionsthatlastedfor10weeks,foratotalof300minute,where informationonthebenefitsoffruitsandvegetables,howtoproperlystore,clean, andpreparethem,andvariousothersfactorswhenincorporatinghealthyeating intothedietwereaddressed.Attheconclusionofthepost‐test,90.7%(WagnerMG, 2016)oftheparticipantsintheinterventiongroupincreasedtheirintakeoffruits andvegetables. Similartoanystudy,limitationstothisstudyshouldbenoted.The researchersutilizedconveniencesamplingbyfocusingonoverweightandobese adults.Anotherlimitationnotedisthattheresearchersdidnottakeintoaccount seasonalavailabilityofvariousfruitsandvegetables(WagnerMG2016),whichmay havebeenlimitedsincethestudywasduringthefallandwintermonths.Atypical seasonlasts12weeks,werethestudywasovera14‐weekperiod,andavailability variesbylocationandclimate.Becausetheparticipantsknewwhatthestudywas about,areporting,andsocialacceptabilitybiascouldhaveoccurred,causingthe participantstoincreaseintakeoffruitsandvegetableswithlittleinfluencefromthe intervention.Lastly,becauseparticipantsdroppedout,thesamplesizeforthethree groupswasnotequal(WagnerMG,2016). Overall,theresearchersfoundthatanutritioneducationthateitherdoesor doesnotprovidefruitsandvegetablestoparticipantstosamplecanbehelpfulin increasingfruitandvegetableintake.Theresearchersalsofoundthatevenafter providinganintervention,mostoftheparticipantsdidnotconsumethe 10 recommendedservingsoffruitsandvegetables,eventhoughtheirintakedid increase(WagnerMG,2016).Thisstudyalsosuggestedthatfurtherresearchshould bedoneoninterventionsfocusedondecreasingtheintakeofhigh‐energyfoods. Knowingtheeffectivenessofnutritioninterventionsamongthecollege studentagepopulationisimportantinunderstandingwhattypeofintervention worksbestwiththisagegroup.Luaandcolleaguescompletedareviewinorderto provideasummaryofstudiesontheeffectivenessofnutritioneducation interventionsusedbycollegestudentsindevelopednations(Lua,2012).Asearch throughrelevantdatabaseswasconductedforarticlespublishedbetween1990and 2011(Lua,2012).Atbaseline,52articlesweregeneratedwithonly14meetingthe inclusioncriteria(Lua,2012).Tobeincluded:participantshadtobe18‐24years old;studydesignwascross‐sectional,exploratory,longitudinal,orrandomized controltrials;andavailableinfull‐textform(Lua,2012).Studieswereexcludedif therewerepublishedinanyotherlanguagethanEnglish,werereviews,orabstracts (Lua,2012). Theresearchersfoundthestudiesusedoneofthreemethodsofintervention: web‐basededucation,dietarysupplements,andeducationallectures(Lua,2012). Todetermineifdietarychangesoccurredinthestudiesreviewed,theresearchers foundthestudiesreportedtheuseof:foodfrequencyquestionnaires,3‐daydietary record,and24‐hourrecallquestionnaire(Lua,2012).Itshouldbenotedthatofthe 1668participantsfromall14studies,n=1113oftheparticipantswerefemale,and manyofthestudieswereconductedintheUnitedStates(Lua,2012).After conductingthereviewofpreviousresearchstudies,theresearchersconcludedthat 11 significantandbeneficialchangesindietaryhabitsamongcollegestudentsaftera nutritionintervention;particularlynutritioneducationcombinedwithproviding supplements(seatangles)isthemosteffectivemethod(Lua,2012). Limitationstothestudyincludeselectionbiasbasedononlyselectingstudies inEnglishandfromdevelopednations(Lua,2012).Overallthestudyconcludedthat providedanutritioneducationtocollegestudentsiseffectiveatimprovingdiet quality. Knowingwhichmethodsofdeliveryforprovidinganutritioneducationto collegestudentsisimportant,butitisalsoimportanttoclarifythedirectionsfor researchandpractice.Kellyandcolleaguesconductedasystematicreviewofdietary interventionswithcollegestudents.Theresearchersaimwastofacilitatea narrativesynthesisofthecurrentliteratureevaluatingnutritionanddietary interventionsincollegesettings,andtodeterminespecificprogramsandfactors associatedwithhealthfuldietarychangesamongthestudentpopulationinan attempttoprovidedirectionforfutureresearchandpractice(Kelly,2013).Atotal of936abstractswereidentifiedfromtheinitialsearch,withn=14meetingthe inclusioncriteria(Kelly,2013).Ofthe14includedstudies,n=6wererandomcontrol trials,n=1wasquasiexperimental,andn=7werenon‐experimental(Kelly,2013). Theinterventionsusedinthesestudieswerein‐person,online,or environmental/point‐of‐purchasemessages(Kelly,2013).Theresearchersfound thatthemostusedtheoreticalapproachwastheSocialCognitiveTheory(Kelly, 2013).Theresearchersalsoconcludedfromtheirfindingsthatinterventions includingcombinationofface‐to‐face,online,andenvironmentalcomponentscould 12 likelybethemosteffectivemethodofinterventionforcollegestudents(Kelly, 2013).Limitationstothestudyincludedthesamplesizeofstudiesincluded.Overall thestudysuggeststhatinterventionsinvolvingself‐regulationstrategieshavethe greatestpotentialofinitiatingdietarychangesamongcollegestudents(Kelly,2013). Manystudieshavefoundthatnutritioneducationcanimprovethediet qualityofparticipants,anditisworththetimeandcosttoimplementthe intervention.ArecentstudyconductedbyPemandcolleaguesfocusedonwhat factorsinfluencenutritionknowledge,theefficacyofnutritioneducation,fruitand vegetableintake,energyintake,physicalactivity,BMI,nutritionknowledgeand attitudesofadultsbeforeandafteranutritioneducationintervention(Pem,2016). Atbaseline,theparticipantscompletedafoodfrequencyquestionnaire(FFQ) thatwasadaptedfromtheNutritionalEpidemiologygroupatLeedsUniversitythat contained67items(Pem,2016).Thenutritionaleducationprogramwaspartially designedfromadultlearningtheoryandconsistedoffoursteps:assessinglearner needs,settingeducationalobjectives,choosingandimplementingawiderangeof methods,andassessingthelearningthatoccurred(Pem,2016).Theadultsinthe interventiongroupattendedtwo,two‐hoursessionsthatfocusedonlecturing, handouts,andpicturecollages,withthefinalsessionfocusingonsummarizingthe topicsdiscussed(Pem,2016). Thetwelve‐weekinterventionfoundthatatbaselinethecontroland randomizedinterventiongroupdidnotdifferindietaryintakepatterns. Confoundingvariableswerecontrolledforinthepost‐interventionassessment,with resultsshowingthattheinterventiongroupsignificantlyincreasedtheirintakeof 13 fruitsandvegetables,anddecreasedtheirconsumptionofhigh‐energyfoods comparedtothecontrolgroup(Pem,2016). Overall,thenutritionalknowledgeincreasedamongtheinterventiongroup. Theresearchersfoundthatprovidingthenutritionaleducationintervention resultedinanoverallincreaseinfruits,nutritionalknowledge,attitudestowards healthiereating,andsignificantdecreaseinhigh‐energyfoods(Pem,2016).There wereseverallimitationstothisstudy.Nosignificantchangesinanthropometrics occurredoveratwelve‐weekperiod(Pem,2016).Asecondlimitationwasthatthe culturalinfluenceonfoodchoiceswasnotconsidered(Pem,2016).Finally, measuringthefoodfrequencyoverthreedaysdoesnotfullyrepresentusualintake becauseitdoesnotshowlongtermdietaryhabitswhichcansometimesbe influencedtofestivalchanges(Pem,2016).Educatingapopulationonproper nutritioncanimprovetheoveralldietqualityandbeliefsinapopulation,asfoundin thisstudy. NationalCancerInstitute(NCI)FRUITANDVEGETABLESCREENER Determiningintakeofmacronutrientsatthebeginningofaninterventionis importantinordertodetermineiftheinterventionwassignificantinimprovingdiet quality.GreeneandcolleaguesconductedastudytodeterminetheuseoftheNCI (NationalCancerInstitute)FruitandVegetableScreenerwithfiveethnicallyandage diverseadultpopulations(Greene,2008).Themainfocuswastodeterminethe correlationbetweenfruitandvegetableintakeestimatesfromthescreener comparedthemultiple24‐hourrecallsandserumcarotenoidlevels(Greene,2008). 14 Thescreenerwasadministeredatvarioussitesacrossthecountrytopullfrom differentdemographicpopulations.Thescreenerincludednineteenitemsthatasked abouttheconsumptionoftendifferentfruitsandvegetablesoveratwelve‐month period. TodeterminethevalidityoftheNCIFruitandVegetableScreener,the screenerwasevaluatedintheEatingatAmerica’sTableStudy(EPI,2001).The purposeofthestudywastoexaminethecross‐sectionalcapacityofthefruitand vegetablescreenerand1‐itemmeasuretoestimatethefruitandvegetableservings relatedtomultiple24‐hourrecallsattwodifferenttimepoints(Peterson,2008). Thestudyalsofocusedontheperformanceofthetwoscreeningmethodsto measurechangeinfruitandvegetableintakebycomparingmeantreatmenteffects witha24‐hourrecallatfollow‐up(Peterson,2008). Thestudyofinterestconcentratedonfiveofthefifteenlocationsthatwere partofTheBehaviorChangeConsortium(Peterson,2008).Atotalof315 participantsparticipatedandtooka24‐hourrecallandfruitandvegetablescreener atbothbaselineandfollow‐up(Peterson,2008).Thefruitandvegetablescreener consistedof19‐itemsthataskingaboutthefrequencyoftheusualconsumptionof 10categoriesoffruitsandvegetablesoverthepastmonth(Peterson,2008).The24‐ hourrecallwasconductedovertelephonebytrainedinterviewers(Peterson,2008). Theresultsofthisstudyindicatedthatthefruitandvegetablescreener overestimatedtheintakeoffruitsandvegetablescomparedtothe24‐hourrecall (Peterson,2008).Theresultsaftertheinterventionshowedthatthecorrelationof thefruitandvegetablescreenertothe24‐hourrecallimprovesovertimeas 15 participantslearnhowtobetterestimatetheirintakeoffruitsandvegetables (Peterson,2008).Thisissignificantinprovingthevalidityofafruitandvegetable screener.Thestudybeingreviewedhadseverallimitations.Becausetherewasonly 3dayscountedinthe24‐hourrecall,thisresultsinpossibleerror.Anotherissueis thevariationissamplepopulationsinwhichthedifferentinstrumentswereusedon. Overallthestudyindicatedthatlargersamplesizeisneededtoexamthedifferences infruitandvegetableconsumptionviatheuseofscreenersacrossvarioussample populations. TheNCIwantedtoknowthetest‐retestreliabilityofthreedifferentdietary assessment‐screeningtools.Yaroch,andcolleagueswantedtoevaluatethree differentshortfruitandvegetablescreeners,a2‐itemserving,a2‐itemcup,and a16‐itemfruitandvegetablescreenerinadultsbyusingmultiple24‐hourrecallsas thereferencetool(Yaroch,2012).Anothergoalofthestudywastodeterminethe test‐retestreliabilityofthescreeningtoolsovera2‐3weekperiod(Yaroch,2012). Thesamplingpopulationforthestudycamefromadults18yearsandolderwho wereapartoftheSynovate’sConsumerOpinionPanelinthefallof2006(Yaroch, 2012).Astratifiedrandomsamplingwasdoneofhouseholdsonthepanel,with oversamplingtakenfromAfrican‐Americanhouseholds(Yaroch,2012). Forthevaliditystudyofthevariousscreeners,1,263participantswere initiallycontacted,with254participantsreturningatleast2ofthe3screeners (Yaroch,2012).Aseparategroupwasaskedtoparticipateinthetest‐retestto determinethereliabilityofthescreeners.Ofthe663participantsinvitedto participate,only401returnedthefirstsurvey,and335returnedthesecond,forthe 16 2‐3weektimeperiodofthestudy(Yaroch,2012).Thestudyfoundthatshort dietaryscreenerscouldbeusefultodeterminetheestimatesandrankindividuals ontheirintakeoffruitsandvegetables.Thecurrentstudyfoundthatoverall;the16‐ itemscreenerprovidedtheleastamountofbiaswhendeterminingfruitand vegetableintake,bothwithandwithoutfriedpotatoes(Yaroch,2012).Themedian fruitandvegetableintakewasnotsignificantlydifferentforthe24‐hourrecall comparedtothe16‐itemscreener(Yaroch,2012). Limitationsfromthisstudyshouldbenoted.Becausethestudywascross‐ sectional,theresearcherswerenotabletotestthescreeners’sensitivitiestochange infruitandvegetableintakeovertime,andaconveniencesamplewasused(Yaroch, 2012).Thestudyconcludedthateventhoughfruitandvegetablescreenersarecost‐ effectiveandeasytouse,theyshouldnotbeusedwhenwantingtoobtainaprecise measurementoffruitandvegetableintake(Yaroch,2012). USEOFTECHNOLOGYANDTRACKINGINTAKE Smartphoneshavedramaticallychangedthewaywecommunicatewitheach other,andkeepupwithourindividualbehaviorsofdailyliving.Researchhasbeen donetoshowhowtheuseofsmartphonescanaffecthealthpromotionandtracking ofdietaryintake(Bert,2013;Rusin,2013;Carter,2013;Forster,2015).Thefirst studyofinterestwasconductedbyBertandcolleaguestodeterminetheavailability ofsmartphoneapplicationsusedtopromotehealth,andtheadvantagesand disadvantagesofthem.Abibliographicsearchwasconductedthroughmultiple sciencebasedresearchdatabases,witharticlesthatwereselectedbytitle,abstracts, 17 andthenfull‐text(Bert,2013).Thedatabasesearchingresultedin4,669results wereinitiallyfound,withonly32meetingtheinclusioncriteriaandspecifically focusingonhealthpromotion(Bert,2013).Thearticleswereclassifiedintofour categories:nutrition,fitnessandphysicalactivity,lifestyles,andhealthinelderly (Bert,2013). Limitationstothisstudywerementioned.Theresearchersdidnotconduct anexhaustivesearchbecauseofthelanguagerestrictionofonlyusingEnglishand Germanarticles,andthecriteriaofonlyincludingfull‐textavailabilityofthearticles (Bert,2013).Anotherlimitationmentionedisthatthedatabasesusedwereonly scientificliteraturefocused,andthecontinuousupdatingoftechnologyandphone applicationsleadstogapsinthecurrentresearch(Bert,2013).Overall,the researchersconcludedthattheuseofsmartphonesinthepromotionofhealthhas manypositiveaspectsthatcouldpotentiallybefurtherresearched.Therelative cheapness,smallsize,andwideavailabilityofsmartphonesmakethemapotentially strongtoolinimprovinghealthpromotion(Bert,2013). Keepingtrackonone’sdietiskeytoidentifyingchangesthatnutritionally needtobemadetoimprovenutritionalhealth.Rusinandcolleaguesconducteda studytosummarizetheexistingapproachestoself‐managefoodintakerecording andtoanalyzethefunctionalityofinputmethods(Rusin,2013).Theresearchers usedelectronicdatabasestolocatepublicationswithsystemsforrecordingfood intake.Theyalsowantedtoknowmoreaboutthedifferentmobileapplications availableforfoodloggingthatwereavailablefreeofcharge,withafreetrial,orona 18 “freemium”basis(Rusin,2013).Theresearchersfoundthattheelectronicsystems usedforrecordingfoodintakemostcommonlyusetextdatainput. Afewdrawbackswerefoundtoenteringfoodintakeintotheelectronic sources.Someofthedatabasesrequiredtheuserstocalculatethecaloriesandor carbohydratesofthefoodconsumed.Anotherdrawbackisobtaininginformationon thenutritionalqualitiesoffoods,particularlymealswithdifferingpreparationstyles (Rusin,2013).Also,theusersmustbeabletoestimatetheportionsizetheyare consumingtoaccuratelyrecordtheirintake. Rusinandcolleaguesalsolookedattheuseofautomaticmodeofinputting foodintake.Thisistheprocesswherethemobileapplicationallowstheusertoscan thebarcodeofthefooditem,allowingforminimaluserinput(Rusin,2013).The mainlimitationofthestudywasthelackofevidenceabouttheusefulnessof functionalitiesformstheselectionofapplications(Rusin,2013).Overallthestudy, whichlookedatresearchfrom1998to2012suggestingthathavingthedatabase keeptrackoffoodsmostcommonlyenteredbytheuser,wassomethingthatcould beimproved(Rusin,2013).Someoftheseimprovementshavebeenmadetomobile applicationssincethepublicationofthisstudy. AstudyconductedbyCarterandcolleagues,andfocusedonthedifferencein adherencetoasmartphoneapplicationcomparedtowebsiteandpaperdiaryfor weightlossinapilotrandomizedcontroltrialstudyintheUnitedKingdom.The researchersdevelopedamobileapplicationforthestudycalledMyMealMate, containingalargeUnitedKingdom‐brandedfooddatabase,andwasscaledagainst thecommerciallyknownmobileapplicationMyFitnessPal(Carter,2013).Theaim 19 ofthisstudywastotesttheacceptabilityandfeasibilitybeforetestinginalarger trial.Participantswererecruitedviaadvertising,andtobeeligiblehadtohavea BMIof≥27kg/m2,betweentheagesof18to65yearsold,willingtocommitment necessaryneededtimeandeffortforthestudy,employedbyalargeemployerin Leed,notpregnant,breastfeeding,orplanningtobecomepregnant,nottakinganti‐ obesitymedicationsormedications/insulinfordiabetes,neverhadsurgeryfor weightloss,nottakingtheantidepressantsertraline,andabletoreadandwritein English,abletoaccesstheinternet,andwillingtoberandomizedintooneofthree groups(Carter,2013). Theinterventionusedinthestudyusedamobileapplicationthatallowedthe userstosetaweightlossgoalandself‐monitordailycalorieintaketoreachtheir goal(Carter,2013).Theinterventiongroupwasassignedtothemobileapplication, thesecondgroupwasassignedtoaself‐monitoringwebsiteandthethirdwas assignedafooddiaryaccompaniedbyacalorie‐countingbook(Carter,2013).The studyinitiallyhad128participateswhometalleligibilityrequirement(Carter, 2013)andcompletedinitialassessments.Duringthe6‐weekfollow‐up measurements,only94participantsreturned,andonly79returnedattheendofthe 6‐monthtrialperiod(Carter,2013).Theresearchersfoundthatsignificantlyfewer, (p=0.001)peopledroppedoutofthemobileapplicationgroupcomparedtothe diaryandwebsitegroups.Theyalsofoundthatweightlossinthegroupassignedthe mobileapplicationwascomparablytoreportedweightlossinlargemulticenter randomizedcontroltrialstudiesofpopularcommercialdietprograms(Carter, 2013). 20 Limitationstothestudywerethatmostoftheparticipantswerewhite, female,andemployedinmanagerial/professionaloccupations(Carter,2013).Other limitationswerethemobileapplicationsuggestedforusewasaprototype(Carter, 2013).Lastly,7participantsfromthesmartphonegroup,and7participantsfrom thediarygroupreportedusingawebsite(Carter,2013).Ofthediarygroup,there was4participantsusingthesmartphoneapp,and2fromthewebsitegroup reportingtheyhaveusedasmartphoneapp(Carter,2013).Lastly,therewasone participantoriginallyrandomizedtothediarygroupwhousedasmartphoneapp forthedurationofthetrial(Carter,2013),potentiallyaffectingtheoveralloutcome oftheresults.Theresearch,asawhole,showedtheuseofamobileapplication couldbebothacceptableandfeasibleinaweightlossintervention. Forsterandcolleaguesconductedaresearchstudytodeterminetheroleof newtechnologiesindietaryassessment.Theresearchersfocusedonthegrowing researchthatimplieshowprovidingindividualswithspecificpersonalizedfeedback canbemoreeffectivethangenericinformationinimprovingoveralldietaryquality (Forster,2015).Theobjectivesoftheresearchweretoexaminethecurrentrangeof newtechnologiesdevelopedforassessingdietaryintake,andtoassessthe utilizationandefficacyofthesenewtechnologies(Forster,2015).Because technologyissowidespread,thereareseveralmethodsatwhichtheylookedat. Theseincludedonlinewebsite‐baseddietaryassessments,mobileapplication dietaryassessments,andwearablesensortechnologies(Forster,2015).Oneofthe limitationstothisstudyisthemainauthorwasfinanciallysupportedforher researchbyoneoftheonlinefoodfrequencyquestionnaires(Forster,2015).Overall 21 theresearchersfoundthatmoreresearchisneededontheuseofpersonalized feedbackanditsuseinmotivatinguserstoreachtheirweightlossgoals(Forster, 2015). Itiswellknownthattechnologyiswidelyusedamongthecollege‐age population.AstudyconductedbyAnderson‐Billandcolleaguesaimedtoexamine thesocialcognitivedeterminantsofnutritionandphysicalactivityamongweb‐ healthuserswhowereenrolledinanonlinesocialcognitivebasednutrition, physicalactivity,andweightgainintervention(Anderson‐Bill,2011).Participants wererecruitedviaweb‐basedemaillistservs,onlineandprintadvertisements,and directmailings(Anderson‐Bill,2011).Theparticipants(n=1307)wereincludedin thestudyiftheywerebetweentheages18to63yearsold,hadahighnormalto obeseBMI,currentlynotactive,andotherwisenotedashealthy.Allcomponentsof thebaselineassessmentwerecompletedby731oftheparticipants(Anderson‐Bill, 2011).Backgroundinformationwastakenontheparticipantsviathewebsite,and theywerethenredirectedtoNutritionQuesttocompletetheBlock2005Food FrequencyQuestionnaire(Anderson‐Bill,2011).Oncethequestionnairesand surveyswerecompleted,theresearchersmailedtheparticipantsadigitalbathroom scaleandapedometerfortrackingdailystepstakenforoneweek(Anderson‐Bill, 2011).Theresultsfoundthatthesewebusers’dietaryconsumptionwashigherin fatandlowerinfruits,vegetables,anddietaryfibercomparedtotherecommended intakevalues(Anderson‐Bill,2011).Theresearchersfoundthattheweb‐health usersshowedhighlevelsofself‐efficacyformakingchangesandofexpectationsthat changewouldhavehealthbenefits(Anderson‐Bill,2011).Nolimitationswere 22 identified,butattritionisevidentbasedonthenumberofparticipantswhodropped out.Thisstudyconcludesthattheself‐efficacycontributestohigherlevelsof physicalactivityandlowerdietaryfatintake,butnotincreasedlevelsoffiber,fruits, andvegetablesamonginternethealthusers(Anderson‐Bill,2011). DETERMINATIONOFBODYCOMPOSITION WAISTCIRCUMFERENCE(WC) Itiswellunderstoodthatwaistcircumferenceisastrongindicatorof morbidityandmortalityrelatedtoobesity.AccordingtotheCenterforDisease ControlandPrevention(CDC),waistcircumferencegreaterthan40inchesfor males,andgreaterthan35inchesfornon‐pregnantfemales,areindicatorsforhigh risksofdevelopingobesityrelatedhealthconditions(CDC,2015).TheCDC recommendedmethodofmeasuringwaistcircumferencewhiletheparticipantis standing:“placethetapemeasurearoundthemiddlejustabovethehipbones, measurehorizontallyaroundthewaist,keeptapemeasuresnugbutnot compressing,andtakethemeasurementonceparticipantbreathesout”(CDC, 2015). Multiplestudieshavebeenconductedtocomparerecommendedmethodsof measuringwaistcircumference.Alargecohortstudywith1,898participantswas conductedtocomparewaistcircumference‐iliaccrest(WC‐IC)andwaist circumference‐midline(WC‐mid)indeterminingcentralobesity(Ma,2012).The WC‐ICwasmeasuredbyusingthehorizontalplaneatthesuperiorborderofthe rightiliaccrest(Ma,2012).WC‐midwasmeasuredbyusingthehorizontalplane 23 midwaybetweenthelowestribandtheiliaccrest(Ma,2012).Todetermine reproducibilityofthemeasurementmethods,3trainednursesmeasured10males and10femalesover3consecutivedays(Ma,2012).ThemeasurementsofWC‐IC valuesweresignificantlyhigherforbothmalesandfemalesthentheWC‐mid,with thedifferencebeinggreaterinfemalestheninmales(p<0.001)(Ma,2012).The studyfoundthatWC‐midisoverallabettermeasurementofcentralobesity. Limitationstothisstudyarethatonlytwotypesofwaistcircumference measurementswerecompared.Perthestudiesliteraturereview,thereareatleast eightdifferentwaystomeasurewaistcircumference,butthetwomethodsusedare thoserecommendedbytheWorldHealthOrganization,NCEP,ATPIII,andIDF(Ma, 2012).Basedonthisstudy,thelocationofwaistcircumferencemeasurementhasa moresignificantimpactinfemalescomparedtomalesindefiningcentralobesity (Ma,2012). Asecondstudyreviewedfocusedondeterminingthebestmeasurementfor waistcircumferenceasitrelatestoobesity‐relatedmorbidityandmortality.Apanel ofexpertsinthefieldofobesityidentificationandobesity‐relatedepidemiology weregatheredtoreviewpublishedscientificliteratureandtherelationshipsof waistcircumferencewithmorbidityfromcardiovasculardisease(CVD)and diabetes,andwithmortalityfromallcauses,andfromCVD(Ross,2008).Overa sixthmonthperiodarticlesweresearchedforonPubMed,andaftermanuallysifting through,120articleswithatotalof236samples(Ross,2008)mettheinclusion criteria.Theassociationofsamplesize,sex,age,raceandethnicityonthe relationshipofwaistcircumferenceinmultivariatemodelswasalsoexaminedfor 24 thesignificantornon‐significantdifferences,andthepositiveornegative associations(Ross,2008). Themeasurementprotocolsinallofthestudieswereeitherbasedonbony landmarksorexternallandmarks(Ross,2008).Thedataforthestudiesincluded: midpoint(35studies),minimalwaist(32studies),umbilicus(34studies),iliaccrest (5studies),1inchaboveumbilicus(2studies),lastrib(1study),andlargest abdominalcircumference(3studies)(Ross,2008).Itshouldbenotedthat12ofthe studieshadparticipantsmeasuringtheirownwaistcircumference,andthatexcept fortheminimalwaisttheprotocolforeachoftheotherwaistcircumference measurementswasconsistentacrossallthestudiesincluded(Ross,2008). Ofallthestudiesexamined,29focusedonwaistcircumferenceandall‐cause mortality(Ross,2008).Overhalf(54%)ofthesamplesinthesestudiesshoweda statisticallysignificantassociationwhentheWCprotocolsrequired:measurement atminimalwaist,umbilicus,midpoint,or1inchabovetheumbilicus(Ross,2008). Therewasanon‐significantassociationfor44%ofthesampleswhentheprotocol forWCwas:umbilicus,midpoint,orminimalwaist(Ross,2008). Onelimitationofthestudyisthat101ofthe120studiesincludedinthe review,reportedwaistcircumferenceasbeingmeasuredattheumbilicus,midpoint, orminimalwaist(Ross,2008),possiblyskewingtheresults.Theotherlimitations tothestudyinvolvednotbeingabletoconductameta‐analysisandthemethodused tocalculatethestatisticalsignificantassociationofthestudies(Ross,2008).The studyconcludedthatamongtheeightprotocolsthepanelidentified,theWC 25 measurementprotocolusedhasnosubstantialinfluenceontheassociationbetween WCandmorbidityormortality(Ross,2008). EventhoughWCmeasurementhasbeenvalidatedasastrongpredictorfor obesityrelateddiseases,littlehasbeendonetolookintoerrorsofmeasurement. MultiplestudieshavefoundthatlessvariabilityoccursinWCmeasurementswhen theyareperformedbyatrainedhealthprofessionalratherthanaphysician (Verweij,2012).Becauseofthevariabilityinmeasurements,afewpotentialissues ariseforthevalidityofwaistcircumferencestudies.Theseissuesinclude:onlyafew ofthestudiesareactuallyreliable,manystudiesreportreliabilitybutnotan absolutemeasurementoferror,anditisnotclearwhatisknownasclinically significantchangeinWC(Verweij,2012). Verweijandcolleaguesreviewedcurrentliteraturetoexplaindifferencesin reliabilityandmeasurementerrorofWC.Theyalsowantedtodocumentwhyitis importanttodetermineerrorsinWC.Theaimsoftheirliteraturereviewwereto: discusswhatisalreadyknownaboutmeasurementerrorsandthecontributing factors;discusswhatisknownaboutclinicalrelevantchangesinWC;discusshow knowledgeaboutclinicallyrelevantchangesmayhelpexplaintheimportanceand impactofmeasurementerror;andproviderecommendationsforfutureresearch (Veweij,2012).Theresearchersreportedtheimportanceofmeasurementerror,is thatitprovidesanadvantageoverreliabilityforclinicalinterpretationasitis displayedontheactualmeasurementscaleandnotasadimensionlessvalue between0and1(Veweij,2012).Theliteraturereviewwasconductedusing PubMed,searchingforstudiesbetweentheyearsof1975andFebruary2011,with 26 thesearchresultingin559studies,andonly9ofthemreportingintra‐orinter‐ observermeasurementerror(Veweij,2012).Thestudyoverallreportedintra‐ observermeasurementerrorwas0.7to9.2cm,and1.4to15cmforinter‐observer error(Verweij,2012).Theresearchersreportedthatareductionofwaist circumferenceof>5%couldbeconsideredaclinicallyrelevantchangeinsome patientsfortheshortterm,andamaintainedwaistcircumferencereductionof>3% forthelongtermforsomepatients(Verweij,2012).Theresearchersalsofoundthat smallerintra‐andinter‐observererrorwasfoundinstudieswithlargersample sizes. Theresearchersfoundthatbecauseofthesmallnumberofstudies,a conclusioncannotbemadeontheeffectsofmeasurementerrors,resultingina significantlimitation.Basedonthefindingsofwhatwasnotablefromtheliterature review,theresearchersconcludedthattrainingresearchassistants,repeatedWC measurementswithaveragetaken,andadoptingastandardprotocol(Verwij,2012), areallwaystoreducemeasurementerrors. BODPOD® Bodycompositionisavaluablemeasureindeterminingtheoverallhealthof apatientorclient.TheBodPod®isaneggshapedchamberthatderivesbody compositioninformation,particularlypoundsofleanbodymassandpoundoffat massbyair‐displacementplethysmography(Tseh,2010). Knowingthevalidityoflabmeasurementsisimportantinachievingproper measurementsofbodycompositioninresearch.Wagner,D.,andHeyward,V.,tested 27 thevalidityandreliabilityofvariouslabandfieldtechniquesformeasuringbody composition.Thelaboratorymethodsexaminedinthestudywere hydrodensitometry,airdisplacementplethysmography(BodPod®),isotope dilution,anddual‐energyx‐rayabsorptiometry(Wagner,1999).Thefield measurementsassessedwerebioelectricalimpedanceanalysis,near‐infrared interactance,skinfoldmeasurements,andanthropometry(Wagner,1999).Eachof thelaboratoryandfieldmethodswasassessedforitsstrengthsandlimitations.A briefdescriptionofthemethods,andbackgroundinformationonhowthevalidation ofeachmethodwasdevelopedwasprovidedindetail. Thestudyofthevariousmethodswasreviewedandcompared.Bodydensity wascomparedfromthemeasurementstakenbytheBodPod®andhydrostatic weighing.Theresearcherfoundthatbodydensitymeasuredbythetwomethods washighlycorrelatedwithameandifferenceinpercentbodyfatof0.3%(Wagner, 1999).Theresearchersfoundthelaboratorymethodstobemoreprecisethanthe fieldmethods(Wagner,1999).Nolimitationsforthisstudywereprovided.The studyprovidesevidencethattheBodPod®isamoreprecisemeasureofbody compositionwhencomparedtofieldmethods. Inastudyconductedby,M.Malavolti,andcolleagues,theytestedthe accuracyandvalidityofawearableenergyexpendituremonitorcomparedtoa metaboliccartSensorMedicsVmaxwithventilatedcanopy(SM‐29N),andassessed bodycomposition,percentagefatmass,andpercentagefatfreemassusingskinfold thicknessmeasurements,bio‐electricalanalysis,andairdisplacement plethysmography(BodPod®),andcomparedtheresultsinnormalweight,healthy 28 adults(Malavolti,2007).Thestudywasalmostevenlysplitbetweenmaleand femaleparticipantswhowere30+/‐14years,andhadaBMI23+/‐3kg/m2 (Malavolti,2007).TomoreaccuratelyassesstheREEoftheparticipants,astudy screeningandprotocolprocedurewasputinplace.Theparticipantswereaskedto beexaminedbyaphysiciantoruleoutanymedicalconditionsorillnessesthatmay affecttheresults,andtofollowtheirnormaldiettheweekbeforetheywereaskedto comeinforthestudy.Themeasurementsforeachoftheparticipantsweretakenin themorningafteranovernightfast,andaftertheparticipanthadvoided(Malavolti, 2007). Restingenergyexpenditurewasmeasuredusingthewearableenergy expendituremonitorandSM‐29N,byfollowingrecommendedfactorystandardsfor bothmeasurementdevices.Thesameresearcherusingproceduresasstatedinthe AnthropometricStandardizationReferenceManualmeasuredtheanthropometrics ofallparticipants(Malavolti,2007).Bioimpedanceanalysiswasconductedusingan eight‐polar‐electrodeimpedance‐meter(Malavolti,2007).Lastly,bodydensitywas testedbyairdisplacementplethysmographyusingtheBodPod®.TheBodPod® measurementsweretakenpermachineaccuracyrecommendations,with participantsbeinginstructedtowearaswimcaptominimizeeffectofhairvolume, removealljewelry,andwearatight‐fittingswimsuit(Malavolti,2007). Becausetherewerenostatisticaldifferencesinageorgender,theresults wereclusteredintoonesample.Theresultsfoundthatthemeasurementsoffatfree masstakenbytheBodPod®weremorecloselycorrelatedwithrestingenergy expendituremeasuredbywearableenergyexpendituremonitorthenrestingenergy 29 expenditurebySM‐29N.Thefindingsofthestudyconcludedthatmeasurements takenbytheBodPod®werereliableandavalidtechniquethatcanquicklyand safelybedoneonadiversepopulationofparticipants. SUMMARY Collegestudents,particularlycollegeathletes,havepoordietaryintakes. Dietaryintakeiscriticalforperformanceandforoptimalbodycomposition.Thereis aneedforinterventionstoimprovedietaryintakeandbodycompositioninthis population.Theuseoftechnologytoimprovedietaryintakeispromising.Oneofthe mostaccuratewaystoassessbodycompositionisbyusingtheBodPod®.Oneofthe quickestandeasiestwaystoassessdietaryintakeistheNCIFruitandVegetable Screener.Thisstudyseekstodeterminetheeffectivenessofatechnologyenhanced 11weeknutritioncurriculuminchangingfruitandvegetableintake,assessedbythe NCIFruitandVegetableScreener,andbodycomposition,assessedbytheBodPod®, incollegiatefemaleathletes. CHAPTER3:METHODS STUDYDESIGN Thisstudywaspre‐experimental,usingaonegroupbeforeandafterdesign. Dataforthisstudywascollectedaspartofalargerresearchprojectconductedin collaborationwithresearchersfromtheDepartmentofDieteticsandHuman NutritionattheUniversityofKentucky(UK).Thestudywasapprovedbythe 30 UniversityofKentuckyNon‐medicalInstitutionalReviewBoard(IRB).Thelarger datacollectionconsistedofdeterminingbodycompositionusingtheBodPod®, collectionofanthropometricsincludingweight,height,andwaistmeasurement,and onestandardizedsurvey:theNationalCancerInstitute(NCI)FruitandVegetable ScreenerofseveralNCAAsportsteams. PARTICIPANTS Thepopulationofinterestforthisparticularstudyconsistedofa conveniencesampleoffemalecollegiateathletesonthesoftballteamwho participatedinan11‐weeknutritioncurriculumthatwasindependentfromthis researchandhadconsentedtoparticipateinthelargerresearchprojectwith measurementstakenpre/posttothenutritioncurriculum.Thetotalsamplesize consistedof25participantsages18‐21.Allparticipantsatbaselinewereincludedin thedataanalysis,butifaparticipantwasmissingpre‐orpost‐data,theywere excludedfromtheparticularanalysistest.Forthepre‐interventionassessment therewere21participantsand18participantsofthemwereincludedinthepost‐ interventionassessment.Forthecorrelationtesttherewere14participantsfor changeinfruitandvegetableconsumptionvs.changeinbodyfatpercentage,and13 participantsincludedinchangesinfruitandvegetableconsumptionvs.changesin waistcircumference.Participantswereexcludediftheydidnothavebothpre‐and post‐interventiondata.Participantswerealsoexcludediftheywereanoutlierbased onthefruitandvegetablescreener.Athletesundertheageof18werenot permittedtoparticipateinthisstudy. 31 MEASUREMENTS Allmeasurementsandsurveysusedforthisstudywerecompletedinthe NutritionAssessmentLaboratoryattheUniversityofKentuckyDepartmentof DieteticsandHumanNutrition.Themeasurementsincludeddataonbody compositioncollectedfromtheBodPod®,includingweight;andheightandwaist measurementsthatwerecollectedmanually. Themaindata‐collectinginstrumentusedwastheBodPod®.TheBodPod® ismanufacturedbyCOSMED,Inc.,andisonlyusedforresearchpurposesby researchersfromtheDepartmentofDieteticsandHumanNutrition.Themachineis servicedannually,followingmanufacturerprotocol,andisproperlycalibratedper manufacturerinstructionsbeforeeachtestingsession. Measurementofheightandweightiscompletedthroughtheuseofthe calibratedscalewhichispartoftheBodPod®systemandproperlymountedwall‐ measuringstadiometer.Allparticipantsworeswimwearortightathleticclothing andnoshoesforallmeasurements.Themeasurementofwaistwascompleted manuallywiththeaverageofthreemeasurementstaken. TheNCIFruitandVegetableScreenerisastandardizedandvalidatedsurvey. Providingthistypeofquestionnaireisstandardprocedureusedbydietitiansto assessthenutritionalstatusofparticipants.Thescreenerwasevaluatedfor performanceintheEatingatAmerica’sTableStudy,whichwasdesignedtovalidate theDietHistoryQuestionnaire(DHQ)(NIH,).ToscoretheNCIFruitandVegetable Screener,ascoringguideisprovidedwithvaluesforeachofthequestions.The 32 frrequencyoffdailyintak keismeasurredonanavverage,andisgivenasccoreof0‐5.0 0, dependingontheresponseofneverto5ormooretimespeerdayoffru uitsand vegetablesco onsumedin nthepastmonth.Particcipantswerreaskedtorreportbothraw andcookedffruitsandveegetables. Insco oringthescrreener,thefruitsandvvegetablesaaredividedu upinto caategories,andgivenscoresbasedonthecateggoryclassiffication,and dthenumbeerof portionsizessbasedonccupequivaleents,seeFiggure1.Thecategoriesffromthe sccreenerthatwereanalyzedforthiisstudyare:100%fruitjuice,fruitt,lettucesallad, othervegetaables,French hfries,otheerwhitepottatoes,andttomatosaucce.Thecateegory notanalyzed dincludecoo okeddriedbeans.Thescoringoftthescreenerrwascompleted byusingStattisticalAnallysisSoftwaare(SAS)Prrogram9.4.TheNCIhasspreviouslyy developedprrogrammingcodesfordataanalyssistoscoretthescreeneer. Fiigure3.1.FruiitandVegetab bleScreeningttoolscoringfoorcupequivallentforeachccategory. 33 PROCEDURES Priortotestingofbodycomposition,theathleteswereinstructedtofollow guidelinesoutlinedbytheBodPod®manufacturertoallowforaccuratedata collection.Participantswereaskedtorefrainfromexercise,eatinganddrinkingfor twohoursprior,andtousetotherestroomimmediatelybeforetestingtoallowfor moreaccuratedatacollection.Theparticipantswererequiredtowearatightly fittingswimsuitorexerciseshortsandsportsbratop,andaswimcap.Alljewelry andeyeglasseswereremovedimmediatelypriortodatacollection. TheproceduresforoperatingtheBodPod®,werefollowedasoutlinedinthe manufacturer’smanual.Atthebeginningofeachtest,IDoftheparticipantalong withheightwasmanuallyenteredintotheBodPod®bytheresearcher.Lung volumewaspredictedforeachparticipant.Priortoeachgroupbeingtested,theBod Pod®requiredatwo‐pointcalibrationtest.Thefirstcalibrationwascompletedwith thechamberempty.Thesecondcalibrationtestwascompletedsotheinstrument couldmeasureanobjectofaknownvalue.Theobjectofknownvaluewasa manufacturerprovidedhollowcylinderofapproximately49.974liters.Immediately followingthetwo‐pointcalibrationthetotalbodymassofeachparticipantwas measuredandautomaticallyrecorded.Thetotalbodymassmeasurementofthe participantwastakentwiceduringtwo50‐secondintervals,withthemachinebeing openedbetweeneachmeasurement.Theparticipantwasaskedtorelax,breathe normally,remainquiet,andtositstillduringthemeasurementperiods. 34 Thewaistwasmeasuredthreetimesattheparticipant’snaturalwaist.The naturalwaistwasdeterminedbyfindingwheretheparticipantbends,andtaking themeasurementfromtherewithatapemeasure.Theaverageofthethree measurementswastaken. UponenteringtheNutritionAssessmentLaboratory,theparticipantwas askedtocompletethe10‐questionNCIFruitandVegetableScreener. Priortothefinaltestingofbodycomposition,an11‐weeknutrition curriculumwasprovidedtothesoftballteambythesportsteamdietitian.Oncea weektheteamwouldmeetasagroupwiththedietitianforabout20minuteseach session.Adiscussionoverthepreviousweekwouldtakeplacefollowedbyashort lessonandanassignmentforthecomingweek.Thecurriculumandassignmentsare outlinedinTable1.Theathleteswereaskedtotracktheirfoodintakeduringthe11‐ weekperiodelectronicallybyeithertheuseoftheirphoneorcomputer,throughan App,suchasMyFitnessPal®.Attheconclusionofthe11‐weeknutritionintervention, bodycomposition,waist,andheightmeasurementswerereassessedusingthesame methodsaspreviouslyidentifiedpre‐curriculum.TheNCIFruitandVegetable screenerwasalsocompletedagainduringthefollow‐upmeasurements. 35 Table3.1.Outlineof11‐weeknutritioncurriculumprovidedtofemalecollegiate softballteam. Lesson Assignment Week1 WatchThatSugar Eachathletewillbeassignedacalorieamount Movie totryandattainfortheweekbasedonbody compositionmeasurements;10%ofcalories fromaddedsugar;writedowncommonlyeaten foods,andfindsubstitutestostaywithinsugar allotment. Week2 Whatfoodsare Eachathleteassignedaratioofmacronutrients carbohydratesand basedonbodycompositiongoals.Willcontinue whatisaservingsize? totryandmeetsugarrecommendation;no athletewillbeallowedtofollowadietthatis lessthan40%carbohydrate. Week3 Whatisfiberandwhat Continuestayingwithincarbohydrate aredifferenttypesof requirementsassignedinweek2;trackdaily fiber? fiberintakewithgoalofreaching25g/day. Week4 Cookingclass:cooking Cookadinnerusingwholegrains. withwholegrains Week5 Anti‐oxidantandphyto‐ Eachathlete’scarbohydrategoalsaredivided nutrients:howtoget intothreegroupstotryandstaywithin: vitaminsandmineral sugar/starch,fruits,vegetables. throughfood Week6 Fats:Howmuchfatwe Goalforfatintakeisbrokendowninto need,thedifferent MUFA/PUFAandSFA;athletewilltrytostay types,andhowweget withingoalamount. theminourdiet. Week7 FieldTrip:OliveOil ‐‐‐ Store;tastetesting Week8 GroceryStoreTour: ‐‐‐‐ ScavengerHunton LabelReading Week9 CookingClass:Healthy Eatonemealadaywithnodistractions‐no PartyFoods‐ phone,television,orotherpeople.Writeone IntroductiontoMindful paragraphaboutexperienceandevaluate Eating;videoon hungerpreandpostmeal. mindfulness Week ‐‐‐ Continuemindfuleating.Eatonemealwith 10 non‐dominatehandandputforkdownbetween bites;writeaboutexperienceandevaluate hungerpreandpostmeal. Week ‐‐‐ Makeonemealspecial;Makespecialin 11 whateverwayathletedeems.Postonepicture perdayonTwitter,tweetedatRD,oremailed toRDabouthowtheymadethedaybetter. 36 ANALYSIS ThestatisticalanalysisprogramusedwasSAS9.4.Thedatawasanalyzedfor differencesbetweenpre‐interventionandpost‐intervention.Descriptive informationsuchasmean,standarddeviation,minimumvalue,andmaximumvalue weredetermined.Apairedt‐testwascompletedtodeterminethesignificanceof changeinbodycompositionofthefemaleathletesbetweenpre‐andpost‐ intervention.Correlationtestswereruntodeterminetherelationshipofthechange inintakeoffruitsandvegetablesvs.changeinwaist,andchangeinintakeoffruits andvegetablesvs.changeinpercentbodyfat. CHAPTER4:RESULTS DEMOGRAPHICS Duringthepre‐interventiondatacollection,21participantswereincluded. Forpostinterventiondata,participantswereexcludediftheydidnotcompletepre‐ interventionassessment.Therewere18participantsincludedinthepost‐ interventiondataassessment.Allparticipantsduringbothsetsofdatacollections werefemale.Table4.1,4.2,4.3,and4.4displaythecharacteristicsofthe participantsateachdatacollectionforbothbodycompositionandintakeoffruits andvegetables. 37 Table4.1:CharacteristicsofBodyCompositionofSoftballplayersinAugust2015. n Minimum Maximum Mean Standard Deviation Waist(cm) 21 62.33 97.07 74.13 8.23 Height(cm) 21 160.0 176.5 168.04 4.21 Age(years) 21 18.24 21.48 19.89 1.17 PercentBodyFat 21 16.5 38.0 25.59 5.78 (%) BodyMass(kg) 21 59.33 102.66 74.06 11.01 Thesampleincluded21softballplayersatbaseline.Asshownintable4.1, themeanwaistwas74.13±8.23cm,themeanheightwas168.04±4.21cm,meanage was19.89±1.17years,themeanpercentbodyfatwas25.59±5.78%,andthemean bodymasswas74.06±11.01kg. Table4.2:CharacteristicsofFruitandVegetableintakeinAugust2015. Standard n Minimum Maximum Mean Deviation Fruitand Vegetableintake 20 0.76 6.18 2.66 1.49 (cups) SumofFruits 20 0.22 3.21 1.25 0.80 (cups) JuiceIntake(cups) 20 0.0 1.63 0.35 0.37 FruitIntake(cups) 20 0.11 3.00 0.90 0.75 SumofVegetables 20 0.28 3.68 1.40 0.90 (cups) LettuceSalad 20 0.03 1.00 0.31 0.26 Intake(cups) OtherVegetable 19 0 2.25 0.54 0.59 Intake(cups) TomatoSauce 20 0.02 1.00 0.17 0.22 Intake(cups) VegetableSoup 20 0 0.5 0.13 0.17 Intake(cups) FrenchFries 18 0 0.25 0.07 0.07 (cups) WhitePotatoes 20 0.02 0.94 0.22 0.26 (cups) 38 Thesampleincluded20softballplayerswhocompletedthefruitand vegetablescreener.Themeanforcombinedintakeoffruitsandvegetableswas 2.66±1.49cups.Foreachcomponentreportedonthemeanintakeforjuicewas 0.35±0.37cups,themeanintakeforfruitwas0.91±0.75cups,themeanintakefor lettucesaladwas0.31±0.26cups,themeanintakeforothervegetableswas 0.54±0.59cups,themeanintakefortomatosaucewas0.17±0.22cups,themean intakeforvegetablesoupwas0.13±0.17cups,themeanintakeforFrenchfrieswas 0.07±0.07cups,andthemeanintakeofwhitepotatoeswas0.22±0.26cups.The individualquestionspertainingtofruitsweresummedforafruitintaketotal.The participantsconsumedameanintakeof1.25±0.80cupsoffruits.Theindividual questionspertainingtovegetableswerealsocombinedtodetermineasumof vegetableintake.Themeanintakeofvegetableswas1.40±0.90cups Table4.3:CharacteristicsofbodycompositionofsoftballplayersinNovember2015. Standard n Minimum Maximum Mean Deviation Waist(cm) 17 61.93 94.23 72.40 7.96 Height(cm) 18 161.3 175.3 168.13 3.55 Age(years) 18 18.47 21.71 20.13 1.26 PercentBodyFat 18 14.0 32.6 23.07 4.81 (%) BodyMass(kg) 18 59.71 100.04 72.59 10.27 Thefinalsampleincludedatotalof18femalesoftballplayers,butonly17 participantsforwaistatfollowup.AsshowninTable4.3,meanwaistwas 72.40±7.96cm,themeanheightwas168.15±3.55cm,meanagewas20.13±1.25 39 years,themeanpercentbodyfatwas23.07±4.81%,andthemeanbodymasswas 72.59±10.27kg. Table4.4:CharacteristicsofFruitandVegetableconsumptioninNovember2015. Standard n Minimum Maximum Mean Deviation Fruitand VegetableIntake 16 0.77 5.45 3.11 1.30 (cups) SumofFruit 16 0.17 3.35 1.61 0.89 (cups) JuiceIntake 16 0 2.00 0.31 0.54 (cups) FruitIntake 16 0.11 3.000 1.29 0.83 (cups) Sumof 16 0.59 3.52 1.50 0.83 Vegetables(cups) LettuceSalad 16 0 0.79 0.28 0.21 Intake(cups) OtherVegetable 16 0.16 3.0 0.81 0.81 Intake(cups) TomatoSauce 16 0 0.32 0.12 0.08 Intake(cups) VegetableSoup 16 0 0.21 0.08 0.07 Intake(cups) FrenchFries 16 0 0.16 0.05 0.04 (cups) WhitePotatoes 15 0.05 0.38 0.15 0.11 (cups) ThecharacteristicsoffruitandvegetableintakeinNovember2015are summarizedinTable4.4.Therewere16participantswhocompletedthefruitand vegetablescreener.Themeanintakeforfruitsandvegetableswas3.11±1.30cups. Forjuicethemeanintakewas0.31±0.54cups,forfruitthemeanintakewas 1.29±0.83cups,forlettucesaladthemeanintakewas0.28±0.21cups,forother 40 vegetablesthemeanintakewas0.81±0.81cups,fortomatosaucethemeanintake was0.12±0.08cups,forvegetablesoupthemeanintakewas0.13±0.17cup,for Frenchfriesthemeanintakewas0.05±0.04cups,andforwhitepotatoesthemean intakewas0.15±0.11cups.Thetotaloffruitswascombinedagain,andthe participantsconsumedameanintakeof1.61±0.89cupsoffruit.Thetotalof vegetableswascombinedaswell,andtheparticipantsconsumed1.50±0.83cupsof vegetables. BODYCOMPOSITION Table4.5:Differenceinwaistcircumferenceandbodyfatpercentamongfemale collegesoftballplayersfollowingan11‐weeknutritioneducationcurriculum. Pairedt‐test n Mean StandardDeviation Pr>|t| Difference WaistNovember2015 17 ‐1.7318 2.18 0.0048 ‐1.9056 2.3232 0.0029 WaistAugust2015 PercentBodyFatNovember2015 18 PercentBodyFatAugust2015 Thepairedt‐testforbothwaistcircumferenceandpercentbodyfatof softballplayersbetweenAugust2015andNovember2015revealedstatistical significance(p<0.05).Onaveragewaistcircumferencedecreasedby1.73cmand percentbodyfatdecreasedby1.91%.Theseresultsindicatetherewasachangein bodycompositionamongsoftballplayersafteran11‐weeknutritioncurriculum coupledwithatechnologycomponent. 41 TOTALOFFRUITANDVEGETABLEINTAKE Table4.6:Differenceinsumoffruitandvegetableintakeamongfemalecollege softballplayersfollowingan11‐weeknutritioneducationcurriculum. Pairedt‐test n Mean Difference Standard Deviation Pr>|t| FruitandVegetableIntake November2015 16 0.3708 1.5059 0.3403 FruitandVegetableIntakeAugust 2015 Therewasnosignificantdifferenceinfruitandvegetableintake(incups)for softballplayersbetweenAugust2015andNovember2015afterapairedt‐testwas performed.Onaveragealltheparticipatingsoftballplayersincreasedcombined fruitandvegetableintakeby0.45cups.Theseresultsindicatethatalthoughthere wasanincreaseinfruitandvegetableintake,theincreasewasnotsignificantafter an11‐weeknutritioncurriculumcoupledwithatechnologycomponent. FRUITINTAKE Table4.7:Differenceoffruitjuiceintake,fruitintake(wholeorcutup),andsumof classificationsoffruitgroupintakeamongfemalecollegesoftballplayersfollowing an11‐weeknutritioneducationcurriculum. Pairedt‐test n SumofFruitNovember2015 16 SumofFruitAugust2015 JuiceIntakeNovember2015 16 JuiceIntakeAugust2015 FruitIntakeNovember2015 16 FruitIntakeAugust2015 Mean StandardDeviation Pr>|t| Difference 0.2514 0.9354 0.2994 ‐0.0478 0.3356 0.5776 0.2991 0.8707 0.1896 42 Therewasnosignificantdifferenceinfruitintakebasedonclassificationtype orsumofbothjuicesandfruitamongsoftballplayersbetweenAugust2015and November2015afterapairedt‐testwasperformed.Foralltheparticipants,the meanintakeoffruitjuicedecreasedby0.05cups,meanintakeoffruitincreasedby 0.38cups,andthemeanintakeofthesumoffruitjuiceandfruitincreasedby0.45 cups.Theseresultsindicatetherewasnotasignificantincreaseinfruit consumptionaftera11‐weeknutritioncurriculumcoupledwithatechnology component. VEGETABLEINTAKE Table4.8:Statisticsofpairedt‐testanalysisofvegetableintakebasedonsum,and classificationofvegetabletypesamongfemalecollegesoftballplayersfollowingan 11‐weeknutritioneducationcurriculum. Pairedt‐test SumVegetableIntakeNovember 2015 SumVegetableIntakeAugust2015 LettuceSaladIntakeNovember2015 LettuceSaladIntakeAugust2015 OtherVegetableIntakeNovember 2015 OtherVegetableIntakeAugust2015 TomatoSauceIntakeNovember 2015 TomatoSauceIntakeAugust2015 VegetableSoupIntakeNovember 2015 VegetableSoupIntakeAugust2015 FrenchFryIntakeNovember2015 FrenchFryIntakeAugust2015 WhitePotatoIntakeNovember2015 WhitePotatoIntakeAugust2015 43 n Mean Difference Standard Deviation Pr>|t| 16 0.1195 1.0373 0.6517 16 ‐0.0303 0.2975 0.6900 16 0.2603 0.8966 0.2637 16 ‐0.0515 0.2111 0.3540 16 ‐0.0324 0.1767 0.4747 14 ‐0.0136 0.0654 0.4509 15 ‐0.0198 0.1708 0.6600 Thereewasnosiggnificantchaangeinvegeetableintak keofsoftballplayers betweenAug gust2015andNovemb ber2015followingthe11‐weeknu utrition educationcu urriculum.O Onaverage,allthesoftb ballplayers’’consumptiionof vegetablesin ncludedintthestudyinccreasedby0.12cups,intakeofletttucesalad decreasedby y0.03cups,intakeofotthervegetaablesincreassedby0.26cups,intak keof to omatosauceedecreaseb by0.05cups,intakeof vegetablesoupdecreasedby0.03 3 cu ups,intakeofFrenchfrriesdecreassedby0.01cups,andin ntakeofwhitepotatoess decreasedby y0.02cups.Theseresu ultsindicateethatvegettableintakeamongthe so oftballplayeersdidnotsignificantly yincreaseaafteran11‐w weeknutrittioncurricu ulum co oupledwith hatechnolo ogycomponent. CORRELATIO C ONTESTBETWEENFRU UITANDVE EGETABLEIN NTAKEAND DBODYFAT T PERCENTAGE P E Figure4.1:Scatterploto ofchangeinfruitandveegetableinttakeversuschangeinb body faatpercentag geamongfeemalecolleggesoftballp playersfollo owingan11‐weeknutriition educationcu urriculum. 44 Table4.9:Linearregressionanalysisofchangeinfruitandvegetableintakeversus changeinbodyfatpercentageamongfemalecollegesoftballplayersfollowingan 11‐weeknutritioneducationcurriculum. ChangeinFruit R‐Square n Correlation andVegetable Y‐Intercept Prob>|t| Intake(slope) 0.23 14 0.484 0.26 0.81 0.0794 Participantswhodidnothavepre‐andpost‐dataforthefruitandvegetable screenerandbodyfatpercentagewereexcludedfromthecorrelationtest.The correlationofbodyfatpercentageandfruitandvegetableintakeofsoftballplayers’ presentedinascatterplot(Figure4.1)revealedapositivecorrelationbetweenthe variables(0.484). However,thecorrelationbetweenfruitandvegetableintakeandpercent bodyfatwasnotsignificant(p=0.0794). 45 CORRELATIO C ONTESTBETWEENFRU UITANDVE EGETABLEIN NTAKEAND DWAIST CIRCUMFERE C ENCE Figure4.2:Scatterplotb betweenfruitandvegettableintakeeandwaistcircumferen nce ch hangeamon ngfemaleco ollegesoftballplayersffollowingan n11‐weekn nutrition educationcu urriculum. Table4.10:L T Linearregreessionanaly ysisofchanggeinwaistccircumferen nceandchaange in nfruitandv vegetablein ntakeincupsforsoftballlplayersfrromAugust2015to November2 N 015. Ch hangeinFru uitand R‐Square R VegetableIn V ntake Y Y‐Intercept Prob>|tt| n Corrrelation (slope)) 0.35 13 0.59 0 0.42 1.02 0.0328 Amon ngthesoftbaallplayers,therewasaapositiveco orrelation(0 0.59279), betweenthechangeinffruitandveggetableintaakeandchan ngeinwaisttcircumfereence. TheR‐Squar T evaluewassmoderatelystrong(0 0.351403),aandtheprob babilitythattan in ncreaseinin ntakeoffruitsandvegeetablesrelattedtoanin ncreaseinw waist ciircumferenccewassignificant(p=0 0.0328). 46 Duetothisbeingaconveniencesample,accesswasunabletobeprovidedto reviewthechangeindietaryintakethatwastrackedelectronically.Therefore,these resultscannotbereported. CHAPTER5:DISCUSSION Thepurposeofthisstudywastodetermineifofferingan11‐weeknutrition curriculumcoupledwithatechnologycomponentincreasedtheconsumptionof fruitsandvegetableswhiledecreasingwaistcircumferenceandbodyfatpercentage amongcollegiatesoftballplayers.Thisstudycomparedfruitandvegetableintakeof softballplayerstowaistcircumference,andfruitandvegetableconsumptionto bodyfatpercentagebothbeforeandaftertheofferingofan11‐weeknutrition curriculumcoupledwithatechnologycomponent.Theobjectiveofthisstudywasto determineiftherewasanimpactofanutritioncurriculumbasedinterventionon fruitandvegetableintakeonpercentbodyfatandwaistcircumferenceincollege athletes,specificallycollegiatefemalesoftballplayers. Thehypothesesofthisresearchareofferingan11‐weeknutritioncurriculum willdecreasebodyfatpercent,increasetheintakeoffruitsandvegetables,decrease waist‐circumference,andresultinanegativecorrelationforchangesinbodyfat percentageandwaist‐circumferencecomparedtofruitandvegetableintake.Based onthepairedt‐test,bothwaistcircumferenceandbodyfatpercentagehada statisticallysignificantdecrease.Mostresearchwilldemonstratethatanincreasein fruitandvegetableconsumptionwillresultinalowerbodyfatpercentageand waist‐circumferenceduetoreplacinghighcaloricfoodswithfruitsandvegetables 47 thatarelowercalorie.However,inthisresearch,statisticallytherewasno significantchangeinfruitandvegetableintake.Inthefall,softballplayersarein training.Thedecreaseinbothwaist‐circumferenceandpercentbodyfatmaybe morereflectiveofthetraininglevelthanfruitandvegetableconsumption. Overthe11‐weekperiod,theparticipantsonaverageincreasedtheirintake ofwholefruitby0.38cups,anddecreasedtheirfruitjuiceintakeby0.05cups.This reductionofjuiceandincreaseofwholefruitmayberelatedtothelessontaught duringthethirdweekonincreasingtheintakeoffiber. Overthe11‐weekperiod,thesumoffruitandvegetableconsumption increasedby0.45cups.Althoughnotstatisticallysignificant,isstillencouraging particularlywhencoupledwiththechangeinseasons.Thefirstsetofdatawas collectedinAugust,whichisstillapeakfruitandvegetableseason.Thesecondset ofdatawascollectedinNovemberwhenfreshfruitsandvegetablesarenotas readilyavailable.Unfortunately,bothfruitandvegetableconsumptioncontinuedto remainbelowUSDArecommendationsforthisagerangeoffemales.Fruitintake was1.61cups,whiletheUSDArecommendationis2cups(USDA,2016).Vegetable intakewas1.50cupswhiletheUSDArecommendationis2.5cupsforfemalesages 19‐30(USDA,2016). Linearregressionmodelswerealsousedtodeterminethecorrelation betweenachangeinbodyfatpercentageandfruitandvegetableintake,anda changeinwaistcircumferenceandfruitandvegetableintakeinsoftballplayers. Therewasapositivetrendforbothbodyfatpercentageandfruitandvegetable intake,andwaistcircumferenceandfruitandvegetableintake.However, 48 statisticallyonlytherelationshipbetweenwaistcircumferenceandfruitand vegetableintakewassignificant.Asfruitandvegetableintakeincreased,waist circumferenceincreased.Oftheparticipantsincluded,43%werefreshman,andthe durationofthestudywasfromAugusttoNovember.Studiesshowfreshmanyearof collegeisassociatedwiththegreatestgainsinweightandbodyfatduetonewly foundfoodindependence,socialcomparisonwithpeers,andtheinfluenceoffriends andfamily(Smith‐Jackson,2012,Gropper,2012).Itcanbeassumedthatformanyof theparticipants,thiswastheirfirsttimeawayfromhomeandacontrolledfood environment.Thismayhaveimpactedtheresults. LIMITATIONS Thestudyhadseverallimitationsthatcouldhaveaffectedtheresultsfound. Participantlimitationsincludethatthiswasaconveniencesample,only14 participantsmetinclusioncriteriaand43percentweretruefreshmen.Itcannotbe assumedthatthesecollegiatesoftballplayersrepresentallcollegiatesoftball players. Otherlimitationsincludedthatdatawasnotavailableforparticipant attendancenorthefoodrecordsduringthe11‐weekintervention.TheFruitand VegetableScreenerwasadministeredintwodistinctfoodseasons.Anthropometric measurementsweretakenintwodissimilarperformanceseasons. Fortheselimitations,theresultsofthisstudycannotbegeneralizedtoa largerpopulation.Forfutureresearch,havingaccesstohowmanynutritionlessons eachparticipantattended,foodlogs,andexerciselogscouldaidinknowingif 49 attendancetonutritionlessonsiscorrelatedtochangesinbodyfatpercentage, waistcircumference,andfruitandvegetableintake. CHAPTER6:CONCLUSION Thisstudysuggeststheremaybeapositivetrendbetweenfruitand vegetableintakeandwaistcircumference,andfruitandvegetableintakeand percentageofbodyfatamongthesefemalesoftballplayersafteran11‐week nutritioncurriculumwithatechnologycomponent.Asfruitandvegetable consumptionincreased,therewasasignificantincreaseinwaistcircumference. Furtherresearchisneededtodeterminewhytherewasanincreaseinbodyfat percentageandwaistcircumferenceasfruitandvegetableintakeincreased.Ideally, adecreaseinwaistcircumference,bodyfatpercentage,andincreaseinfruitand vegetableintakecanplayaroleinoptimizingathleticperformanceamongcollegiate athletes.Sincethisstudydidnotcontrolforthenumberofsessionstheathletes attended,oriftheyattendedanyatall,furtherresearchisneededtodeterminethe effectsofattendingnutritionsessionswithatechnologycomponentonfruitand vegetableintake,waistcircumferenceandbodyfatpercentageamongfemale collegiatesoftballplayers. 50 References "AssessingYourWeight."CentersforDiseaseControlandPrevention.Centersfor DiseaseControlandPrevention,15May2015.Web.10Mar.2016. AllAbouttheFruitGroup.(2016).RetrievedDecember27,2016,from https://www.choosemyplate.gov/fruit AllabouttheVegetableGroup.(2016).RetrievedDecember27,2016,from https://www.choosemyplate.gov/vegetables Anderson‐Bill,E.S.,Winett,R.A.,&Wojcik,J.R.(2011).SocialCognitive DeterminantsofNutritionandPhysicalActivityAmongWeb‐HealthUsers EnrollinginanOnlineIntervention:TheInfluenceofSocialSupport,Self‐ Efficacy,OutcomeExpectations,andSelf‐Regulation.JournalofMedical InternetResearch,13(1).doi:10.2196/jmir.1551 Bert,F.,Giacometti,M.,Gualano,M.R.,&Siliquini,R.(2014).Smartphonesand healthpromotion:areviewoftheevidence.JMedSyst,38(1),9995. doi:10.1007/s10916‐013‐9995‐7 Carbuhn,A.F.,Fernandez,T.E.,Bragg,A.F.,Green,J.S.,&Crouse,S.F.(2010).Sport andtraininginfluenceboneandbodycompositioninwomencollegiate athletes.JStrengthCondRes,24(7),1710‐1717. doi:10.1519/JSC.0b013e3181d09eb3 Carter,M.C.,Burley,V.J.,Nykjaer,C.,&Cade,J.E.(2013).Adherencetoa smartphoneapplicationforweightlosscomparedtowebsiteandpaper diary:pilotrandomizedcontrolledtrial.JMedInternetRes,15(4),e32. doi:10.2196/jmir.2283 EpidemiologyandGenomicsResearchProgram.(2001).RetrievedDecember27, 2016,fromhttps://epi.grants.cancer.gov/eats/ Forster,H.,Walsh,M.C.,Gibney,M.J.,Brennan,L.,&Gibney,E.R.(2016). Personalisednutrition:theroleofnewdietaryassessmentmethods.Proc NutrSoc,75(1),96‐105.doi:10.1017/S0029665115002086 Greene,G.W.,Resnicow,K.,Thompson,F.E.,Peterson,K.E.,Hurley,T.G.,Hebert,J. R.,...Nebeling,L.(2008).CorrespondenceoftheNCIFruitandVegetable Screenertorepeat24‐Hrecallsandserumcarotenoidsinbehavioral interventiontrials.JNutr,138(1),200S‐204S. http://uknowledge.uky.edu/foodsci_etds/34 Gropper,S.S.,Simmons,K.P.,Connell,L.J.,&Ulrich,P.V.(2012).WeightandBody CompositionChangesduringtheFirstThreeYearsofCollege.JObes,2012, 634048.doi:10.1155/2012/634048 Ireland,AmandaN.,"OVERALLDIETQUALITYOFCOLLEGIATEATHLETES"(2013). ThesesandDissertations‐‐DieteticsandHumanNutrition.14. http://uknowledge.uky.edu/foodsci_etds/14 Kelly,N.R.,Mazzeo,S.E.,&Bean,M.K.(2013).Systematicreviewofdietary interventionswithcollegestudents:directionsforfutureresearchand practice.JNutrEducBehav,45(4),304‐313.doi:10.1016/j.jneb.2012.10.012 Kicklighter,J.R.,Koonce,V.J.,Rosenbloom,C.A.,&Commander,N.E.(2010).College freshmenperceptionsofeffectiveandineffectiveaspectsofnutrition 51 education.JAmCollHealth,59(2),98‐104. doi:10.1080/07448481.2010.483709 Laska,M.N.,Hearst,M.O.,Lust,K.,Lytle,L.A.,&Story,M.(2014).Howweeatwhat weeat:identifyingmealroutinesandpracticesmoststronglyassociatedwith healthyandunhealthydietaryfactorsamongyoungadults.PublicHealth Nutrition,18(12),2135‐2145.doi:10.1017/s1368980014002717 Lua,P.L.,&WanPutriElena,W.D.(2012).Theimpactofnutritioneducation interventionsonthedietaryhabitsofcollegestudentsindevelopednations: abriefreview.MalaysJMedSci,19(1),4‐14. Ludwig,Emily,"FRUITANDVEGETABLECONSUMPTIONOFDIVISIONI COLLEGIATEFOOTBALLANDVOLLEYBALLPLAYERSPRE‐ANDPOST‐ DEREGULATIONOFSNACKSBYTHENCAA"(2015).Thesesand Dissertations‐‐DieteticsandHumanNutrition.Paper34. Ma,W.Y.,Yang,C.Y.,Shih,S.R.,Hsieh,H.J.,Hung,C.S.,Chiu,F.C.,...Li,H.Y.(2013). MeasurementofWaistCircumference:midabdominaloriliaccrest?Diabetes Care,36(6),1660‐1666.doi:10.2337/dc12‐1452 Mala,L.,Maly,T.,Zahalka,F.,Bunc,V.,Kaplan,A.,Jebavy,R.,&Tuma,M.(2015).Body compositionofelitefemaleplayersinfivedifferentsportsgames.JHum Kinet,45,207‐215.doi:10.1515/hukin‐2015‐0021 Malavolti,M.,Pietrobelli,A.,Dugoni,M.,Poli,M.,Romagnoli,E.,DeCristofaro,P.,& Battistini,N.C.(2007).Anewdeviceformeasuringrestingenergy expenditure(REE)inhealthysubjects.NutrMetabCardiovascDis,17(5),338‐ 343.doi:10.1016/j.numecd.2005.12.009 Murphy,M.,Osborn,L.,&Gorman,M.(2001).Theeffectofgroupnutritioneducation onthedietaryhabitsofdivisioniuniversityfemaleathletes.Journalofthe AmericanDieteticAssociation,101(9).doi:10.1016/s0002‐8223(01)80291‐1 Pem,D.,Bhagwant,S.,&Jeewon,R.(2016).APreandPostSurveytoDetermine EffectivenessofaDietitian‐BasedNutritionEducationStrategyonFruitand VegetableIntakeandEnergyIntakeamongAdults.Nutrients,8(3),127. doi:10.3390/nu8030127 Peterson,K.E.,Herbert,J.R.,Hurley,T.G.,Resnicow,K.,Thompson,F.E.,Greene,G. W.,...Nebeling,L.(2008).Accuracyandprecisionoftwoshortscreenersto assesschangeinfruitandvegetableconsumptionamongdiversepopulations participatinginhealthpromotioninterventiontrials.TheJournalof Nutrition,138(1),218S‐225S.doi:18156428 Plotnikoff,R.C.,Costigan,S.A.,Williams,R.L.,Hutchesson,M.J.,Kennedy,S.G., Robards,S.L.,...Germov,J.(2015).Effectivenessofinterventionstargeting physicalactivity,nutritionandhealthyweightforuniversityandcollege students:asystematicreviewandmeta‐analysis.IntJBehavNutrPhysAct, 12,45.doi:10.1186/s12966‐015‐0203‐7 Quatromoni,P.A.(2008).Clinicalobservationsfromnutritionservicesincollege athletics.JAmDietAssoc,108(4),689‐694.doi:10.1016/j.jada.2008.01.008 Richards,A.,Kattelmann,K.K.,&Ren,C.(2006).Motivating18‐to24‐Year‐Oldsto IncreaseTheirFruitandVegetableConsumption.JournaloftheAmerican DieteticAssociation,106(9),1405‐1411.doi:10.1016/j.jada.2006.06.005 Rosenbloom,C.A.,Jonnalagadda,S.S.,&Skinner,R.(2002).Nutritionknowledgeof 52 collegiateathletesinaDivisionINationalCollegiateAthleticAssociation institution.JAmDietAssoc,102(3),418‐420. Ross,R.,Berentzen,T.,Bradshaw,A.J.,Janssen,I.,Kahn,H.S.,Katzmarzyk,P.T.,... Després,J.(2008).Doestherelationshipbetweenwaistcircumference, morbidityandmortalitydependonmeasurementprotocolforwaist circumference?ObesityReviews,9(4),312‐325.doi:10.1111/j.1467‐ 789x.2007.00411.x Rusin,M.,Arsand,E.,&Hartvigsen,G.(2013).Functionalitiesandinputmethodsfor recordingfoodintake:asystematicreview.IntJMedInform,82(8),653‐664. doi:10.1016/j.ijmedinf.2013.01.007 Shriver,L.H.,Betts,N.M.,&Wollenberg,G.(2013).DietaryIntakesandEating HabitsofCollegeAthletes:AreFemaleCollegeAthletesFollowingtheCurrent SportsNutritionStandards?JournalofAmericanCollegeHealth,61(1),10‐ 16.doi:10.1080/07448481.2012.747526 Smith‐Jackson,T.,&Reel,J.J.(2012).Freshmenwomenandthe"Freshman15": perspectivesonprevalenceandcausesofcollegeweightgain.JAmColl Health,60(1),14‐20.doi:10.1080/07448481.2011.555931 Thomas,D.T.,Erdman,K.A.,&Burke,L.M.(2016).PositionoftheAcademyof NutritionandDietetics,DietitiansofCanada,andtheAmericanCollegeof SportsMedicine:NutritionandAthleticPerformance.JAcadNutrDiet, 116(3),501‐528.doi:10.1016/j.jand.2015.12.006 Tseh,W.,Caputo,J.L.,&Keefer,D.J.(2010).ValidityandReliabilityoftheBODPOD ®S/TTrackingSystem.InternationalJournalofSportsMedicine,31(10), 704‐708.doi:10.1055/s‐0030‐1255111 Wagner,D.R.,&Heyward,V.H.(1999).Techniquesofbodycomposition assessment:areviewoflaboratoryandfieldmethods.ResQExercSport, 70(2),135‐149.doi:10.1080/02701367.1999.10608031 Wilfert,M.,M.Ed.(2014).NutritionalSupplements–WhatNow?Retrieved December27,2016,fromhttp://www.ncaa.org/health‐and‐safety/sport‐ science‐institute/nutritional‐supplements‐what‐now Yaroch,A.L.,Tooze,J.,Thompson,F.E.,Blanck,H.M.,Thompson,O.M.,Colon‐ Ramos,U.,...Nebeling,L.C.(2012).Evaluationofthreeshortdietary instrumentstoassessfruitandvegetableintake:theNationalCancer Institute'sfoodattitudesandbehaviorssurvey.JAcadNutrDiet,112(10), 1570‐1577.doi:10.1016/j.jand.2012.06.002 53 VITA RachelThomasisfromOwensboro,Kentucky.ShewasawardedaBachelorof ScienceinDieteticsfromtheUniversityofKentuckyin2015.Shehasheld professionalpositionsofDieteticInternandTeachingAssistantattheUniversityof Kentucky. 54
© Copyright 2026 Paperzz