ReflectionsonPractice LessonPlanfor[3rdYear,Polynomialfactorisation] Forthelessonon[20/03/2015] At[PresentationSecondarySchool,WexfordTown],[DeirdreDeegan’s]class Teacher:[DeirdreDeegan] Lessonplandevelopedby:[SeanRossiter,MoO’Brien,DeirdreDeegan] 1. TitleoftheLesson:Usingarraystofactorisepolynomials 2. Briefdescriptionofthelesson:Studentswillusethearraymodeltohelpthemfactorise polynomialsofdegree2anddegree3. 3. AimsoftheLesson: I’dlikemystudentstodeveloptheirabilitytoworkinagroupandtousecooperativethinkingin formingsolutions. I’dlikestudentsofallabilitiestobeengagedwithandchallengedbythelessoncontent. I’dlikestudentstoexploretheareamodelasamethodfordivisionofcubicexpressions. I’dlikestudentstoextendtheirunderstandingoftheareamodelforitsuseindivisionofquadratic expressions. 4. LearningOutcomes: Asaresultofstudyingthistopicstudentswillbeableto: usetheareamodeltodividequadraticexpressionsoftheform1 bylinearexpressions oftheform whereb,c,d&earepositiveintegers. bylinearexpressions usetheareamodeltodividequadraticexpressionsoftheform oftheform wherea,b,c,d&eareintegers. explainverballythethinkingneededtofillouttheareamodel. explainverballytheneedfora3 2arrayfordivisionofacubicexpressionbyalinear expression. bylinear usetheareamodeltodividecubicexpressionsoftheform1 expressionsoftheform ,whereb,c,d,e&farepositiveintegers. bylinear usetheareamodeltodividecubicexpressionsoftheforma expressionsoftheform ,whereaisapositiveintegerandb,c,d,e&farepositiveintegers. 5. BackgroundandRationale Thedistributivepropertyofmultiplicationissomethingthatmanystudentsfindeasybutothersfind difficulttounderstand,torememberandtoapply.Theideaofdistributionisencounteredinfirstyear, firstwithnumbersandthenwithalgebraicexpressions.Theabilitytoapplythedistributiveproperty ofmultiplicationisimportantinallbranchesofmathsandstudentslackingthisabilityoftenstruggle tosolvemanybasicmathsproblems.Thearraymodelhasbeendemonstratedtobeaneffectivetool forhelpingstudentstoapplythedistributivepropertyofmultiplication.Ourstudentsarepresented withthismethodinfirstyear,alongwiththemoretraditionalapproachofapplyingthedistributive law.Studentsarenotforcedtouseonemethodoveranotherbutareencouragedtochoosethe methodwhichmakesmostsensetothem. Oneadvantageoftheareamodelisthatitalsooffersanalternativeapproachtocarryingoutalgebraic longdivision.Algebraiclongdivisionisaskillthatmanystudentsfinddifficulttomaster.Evenwhen thetechniqueispresentedalongsideanumericexample(toallowstudentsrecognisethesame process),manystudentsstillfinditdifficulttounderstand,torememberandtoapply.Thisproblemis exasperatedbytoday’sstudentsbeingoverlyreliantoncalculatorsfromayoungage.Becauseofthis manyofthemhavelittleexperienceofnumericlongdivisioninthefirstplace. Inthislessonwehopetopresentstudentswithanunderstandableandusablemethodforperforming algebraicdivisionusingtheareamodel.Wehopethatbygivingstudentsasolidunderstandingof multiplicationusinganareamodelthattheywillbeabletoapplysomesimpleproblemsolvingto carryoutthereverseprocessofdivision. 6. Research UnderSection4.6oftheJuniorCertificatemathssyllabusstudentsareexpectedto: 1. multiplyexpressionsoftheform o o where 2. divideexpressionsoftheform o o 3. factoriseexpressionsoftheform o , where ∈ o where , ∈ o where , , , o where , ∈ where , ∈ o o o where ∈ , , , , , ∈ where , , , , , ∈ arevariable ∈ 7. AbouttheUnitandtheLesson 1. Studentswillstartbybeingaskedtousetheareamodeltomultiplyapairoflinearexpressions. Thistaskaimstoremindstudentsoftheareamodelformultiplicationofbracketedterms. Whilethestudentspracticethetechnique,theteacherwillhighlighttheimportantfeaturesof theareamodelwhichstudentsneedtounderstandbeforetheycanhopetouseitfordivision. ThisactivitycoversthefirstlearningoutcomedetailedinSection6. 2. Studentsarethenpresentedwithaquadraticexpressionandoneofitsfactors.Theyareasked tofindthemissingfactorbyworkingbackwardsusingtheareamodel.Asstudentsbecome comfortablewithusingtheareamodelfordivisiontheyarechallengedtofindthefactorsof moredifficultquadraticexpressions.Thisactivitycoversfirstpartofthesecondlearning outcomedetailedinSection6. 3. Studentsarepresentedwiththedivisionofacubicexpressionbyalinearexpression.Thefirst thingtheyaretaskedwithisdeterminingthesizeofarrayneeded.Withteachersupportthey arethenchallengedtodescribetheprocessinastep‐by‐stepway.Tosolidifystudents’learning theyareaskedtocompleteamatchingactivitybasedondivisionofacubicexpressionbya linearexpression.Thisactivitycoverstheremainingpartofthesecondlearningoutcome detailedinSection6. 8. FlowoftheUnit: #oflesson periods Lesson 1 2 Evaluationofandoperationsonalgebraicexpressions‐revisionand extensionofsecondyearmaterial Terms,coefficientsandexpressions Generatingalgebraicexpressionsfromsimplecontexts Evaluatingexpressions Addingandsubtractingalgebraicexpressions Multiplyingtermsandexpressions,andusingtheassociativeand distributivepropertiestosimplifyexpressions 2x40min. 1x40min. 3 Dividingaquadraticexpressionbyalinearexpression Dividingacubicexpressionbyalinearexpression 9. FlowoftheLesson TeachingActivity 1.Introduction Theteacherexplainswhattheaimsoftoday’s lessonare. 1.Tofactorisequadraticexpressions. 2.Todivideacubicexpressionbyalinear expression. Theteacherexplainsthatwearegoingtorevise someimportantpriorknowledge. Studentsarepresentedwiththeexpression 1 2 andremindedthatthereare variouswaysofexpandingthebrackets. Studentsareaskedtoconsiderhowtousethearea modeltoexpandthepairofbrackets. Theteacherasksindividualstudentstodescribe howtousetheareamodeltoexpandthebracket pair. Theteacherasksstudentswhereeachbracketed termshouldgoonthediagram. Theteacherasksstudentshowtocompletethe fourentriesinthearray. Theteacherasksstudentshowtousethefour entriestowritedowntheiranswerintheform: . Theteacherhighlightsthefactthatwhenthearray isusedinthisway,liketermsendupalongoneof thediagonals,thehighestordertermendsupin thefirstspaceandthenumbertermendsupinthe finalspace. 2.PosingtheTask Theteacherwritesanewproblemontheboard: 6 8 2 andasksstudentsifit wouldbepossibletousetheareamodeltoanswer thisquestion. Theteacherasksindividualstudentstodescribe howthearraycouldbesetuptocompletethis division. Withthesupportofstudents,heteacher demonstrateshowthearraycanbecompletedto findthequotient. 2x40min. (ofwhichthe firstlessonis theresearch lesson) PointsofConsideration Theteacherwritesthelearningoutcomesonthe boardforstudentstosee. Theteacherwritesthequadraticexpressionon theboard. Theteacherprojectsanemptyarrayonthe board. Theteacherfillsinthedifferentpartsofthe arrayasstudentsdescribetheprocess. Canstudentsdescribehowtousethearray correctly? Theteachercirclestheliketermsonthe diagonal. Theteacherwritesouttheanswertothe . questionintheform: Theteachermaysupportstudentsintheir thinkingbyremindingthemthatdivisionisthe inverseprocessofmultiplication. Theteachergivesstudentssometimetodiscuss howthiscouldwork. Itisimportanttosupportandencourage studentswhoaregivingfeedbacktotheclass. Dostudentsunderstandwherethedivisoris placedinthearray? Dostudentsunderstandthatthedividendis placedinthefourspacesinthearray? Canstudentscommunicatethatthehighest orderterminthedividendwillgointhefirst spaceofthearraywhilethenumbertermwillgo inthelastspace? Dostudentsunderstandthatthe termofthe dividendissplitacrossthetworemaining spaces? 3.AnticipatedStudentResponses Studentsshouldhavelittledifficultyidentifying Theteachermayneedtoleadthediscussionso wherethedivisorisplacedinthearray. thatstudentsthinkabouttheimportantaspects Studentsmayhavedifficultyunderstandingthat ofusinganarraytodividetwoexpressions. thedividendmustgointhefouremptyspacesin Theteachermayneedtoaskstudentsspecific thearray. questionssuchas“Whatmustgointhefirst Studentsshouldhavelittledifficultyidentifying spaceofthearray?”followedby“Whatdoesthis meanforthefirstterminouranswer?”,followed thatthe termofthedividendshouldgointhe by“Whatotherinformationcanwenowfillinto firstspaceofthearray. Studentsmayhavedifficultyidentifyinghowtouse thearray?”andsoon. Theteachershouldhighlightthefactthatthe thearraytofindthequotient. arraymodelcanbeusedtocheckthatthe Studentsmaystrugglewiththeideaofusingthe sumofthe termsonthediagonaltocompletethe answeriscorrect. quotient. Theteacherdistributescopiesoftheworksheet Studentsmaynotseethattheycanchecktheir toeachstudent. answerusingtheremainingentryinthearray. Theteachercirculatestheroomtocheckthatall StudentsaredirectedtocompleteQuestion1–3 studentsareabletocompletetheworksheet. ontheirworksheetindividually.Theyaretoldto Studentswhofinishquicklyareencouragedto comparetheiranswerstothoseoftheirpartner’s attemptmoredifficultexamples. andtocheckeachsolutionifdifferencesexist. 4.ComparingandDiscussing Didallstudentscompletetheworksheet? Theteachertakeseachquestionfromthe Didallstudentsanswerallquestionscorrectly? worksheetandasksstudentstoholduptheir Canstudentsdescribetheprocesstheyusedto answersontheirshow‐meboards. answerthesequestions? Theteacherasksindividualstudentstodescribe Theteacherwritesupeachstudent’sdescription howtheyusedthearraytoanswereachquestion. ontheboard. Theteacheremphasizesthelocationofthe divisor,dividendandquotientandtheexistence ofliketermsalongonediagonal. 5.Posingthetask Canstudentsapplytheirpriorknowledgeto Theteacherpresentsstudentswithanother solvethisproblem? 2 15 5 and divisionproblem: Canstudentssplitthe 2 termcorrectlyalong asksthemtoattemptsolvingitontheirshow‐me thediagonal? boards. Aftersometimetheteacherasksstudentstohold Theteachercirculatesaroundtheroomtohelp studentswhoarehavingdifficultieswiththe uptheiranswers. task. Theteacherasksindividualstudentstodescribe eachstepoftheprocessofdividingthequadratic expressionbythelinearexpressionandwritesup thesolutionontheboard. TheteacherasksstudentstocompleteQuestion4 toQuestion6oftheirworksheet,againworking individuallyandthencheckingtheiranswerswith theirpartner. 6.AnticipatedStudentResponses Theteacherneedstosupportstudentswhohave Studentscorrectlyusetheareamodeltocomplete difficultieswithintegeroperations. thedivisionexercises. Studentswhocompletetheworkquicklymay Somestudentsmyfindusingintegersdifficultdue tonotknowinghowtocorrectlyadd/subtract integersormultiplyintegers. 7. Theteachertakeseachquestionontheworksheet andasksstudentstoholduptheiranswersontheir show‐meboards. Theteacherasksindividualstudentstoexplain howtheysolvedeachquestionusingthearea model. Theteacherasksstudentswhythisactivitywas harderthanthelast. 8.Posingthetask Theteacherwritesthefollowingdivisiononthe board: 5 7 3 3 andasks studentswhatisdifferentaboutthisproblem comparedtotheotherstheyhavedone. Theteacherasksstudentstodrawtheoutlineof thearrayneededtosolvethisproblem. Theteacherasksstudentstoholduptheirshow‐ meboards. Theteacherasksstudentswhytheyneedabigger arraythistime? Theteacherasksstudentstofillinasmuch informationontheirarray. Theteacherexplainstheprocessofdividingacubic expressionbyalinearexpression,questioning individualstudentstoexplaindifferentstepsinthe process. Theteacherasksstudentsifthereisawayinwhich theycanchecktheiranswer. Theteacherpresentsanotherdivisiononthe 6 3 10 2 andasks board: studentstosolvethisontheirshow‐meboards. Theteacherasksstudentstoshowtheirsolutions ontheirshow‐meboards. Theteacherasksindividualstudentstoexplain howtheysolvedthisproblem. Theteacherdistributesamatchingactivitytoeach groupoffourstudents. Studentsareinstructedtosolvethefourdivision problemsintheactivitybyplacingthevarious termsinthecorrectspacesineacharray. attemptmorechallengingquestions. Ifstudentshavedifficultieswithspecific questionstheteachermaywritethesolutionon theboard. Dostudentsunderstandthatthepresenceof integersinthedivisoranddividendmakethese questionsmoredifficult? Dostudentsrecognizethatdifficultywith integersmayhindertheirprogressinother areasofmaths? Dostudentsrecognizethattheyarenow dividingacubicexpressionbyalinear expression? Dostudentsunderstandthattheyneeda2 3 array? Canstudentsexplainwhytheyneeda2 3 array? Dostudentsunderstandthatwhentheydividea cubicexpressionbyalinearexpressiontheywill getaquadraticexpression? Canstudentsfillinsomeinformationonthe array? Dostudentsunderstandthatonediagonalwill holdthe termswhileanotherdiagonalwill holdthe terms? Canstudentssplitthe termsandthe terms correctlytoallowthemtocompletethearray? Dostudentsrecognizethatbyfillinginthefinal entryofthearraytheycanchecktheiranswer? Canstudentsapplytheareamodeltoworkwith acubicexpressionwithintegercoefficients? Theteachercirculatestheroomtoobserve studentinteractionandtoquestionstudents abouttheirreasoning. Canstudentsapplytheirknowledgeofthearea modeltocompletethematchingactivity? Dostudentsworkwelltogetherasateam? Dostudentscheckeachother’swork? Dostudentsspeakupwhentheythinkthatpart ofthegroup’sworkisincorrect? Dostudentsexplaintheirreasoningasthey completethematchingactivity? 9.AnticipatedStudentResponses Studentsmayfinditdifficulttoimaginethearray neededtocompletethisproblem. Studentsmayfindpowersofthreemoredifficultto dealwith. Studentsmaystrugglewithmatchingthe terms alongonediagonalandthe termsonanother diagonal. Studentsmayfindthematchingactivitytooeasy. Studentsmaygetconfusedbymultiplicationand addition. Studentsmayhavedifficultieswithnegative integers. 10.ComparingandDiscussing Theteacherasksstudentstoholduptheir completedworkandcommendstheclassfortheir exceptionalefforts. 11.Summingup Theteacherasksstudentswhattheyhavelearned todayandreinforcesthelearningoutcomeswritten upontheboardatthestartofclass. Studentsareaskedtocompletetheremaining questionsontheirworksheetforhomework. Theteachermaysuggestthatstudentscirclethe diagonalforthe termsandthediagonalfor the terms. Studentswhohavecompletedthetaskshould haveallcorrectanswersduetothefactthatit’sa matchingactivity. 10. Evaluation Therewillbethreeobserversinthelessonalongwiththeteacher. Theteacherisexpectedtointeractwithstudentsduringgroupworksandtousesuitablequestioning strategiestofindoutaboutstudents’thinking.Theteacherwilluseshow‐meboardstoidentifywhich studentsareabletocompletethevariousactivitiesandwhichstudentsarehavingdifficulties. Observer1willrecordthelessonflowandhoweachpartofthelessonprogressesinrelationtothe predictedtiming. Observer2willrecordwhichpartsofthelessonstudentsfounddifficultandwhichpartsstudents foundeasy.Observer2willrecordwhatdifficultiesstudentshadandhowthesedifficultieswere addressed. Observer3willrecordexamplesofstudentworkbyphotograph. Allobserverswillrecorddetailsofstudentinteractionincludinghowstudentsworkedtogetherasa group,ifcertainstudentsweredisengagedwiththelesson,ifstudentsdemonstratedinitiativewhen finishedataskandsoon. Studentswillbeissuedwithapost‐lessonquestionnaire. Teacherswillhaveapost‐lessonmeetingtoreflectontheirobservationsfromthelesson. 11. BoardPlan Note:Colourboxesareusedineacharraytohelpstudentsrecognisethelocationofsimilarterms. Thisisanimportantstepinstudentsbeingabletousetheareamodeltomultiplyanddivide. 12. Post‐lessonreflection Generalfindings Thelessonwasaverypositiveexperienceforallstudents.Inthestudentsurveyallstudentsrated thelessonas8+. Thelessonwaseasytofollowformoststudents.Studentsunderstoodwhattheyweretryingtodo atalltimes.Studentswereaskedtoratethepaceofthelessonandtoratehowsuccessfultheywere inusingtheareamodel.Hereisasummaryoftheiranswers: 16 14 12 10 8 6 4 2 0 Success in using area model 5 4 3 2 Too Fast Fast Just Right Slow 1 Too Slow Studentswerefullyengagedwiththelessoncontent. Studentsfollowedinstructionverywell. Theteacher‐studentinteractionwasexcellentwithallstudentswillingtoaskquestions,answer questionsandexplaintheirreasoning. Theuseofcolourtoidentifyliketermsinthearrayhelpedstudentsunderstandtheprocessof multiplicationanddivisionusinganarray.Theuseofloopsbystudentstodosameyieldedsimilar benefits. Somestudentshaddifficultiesfillinginthearrayswhereunderstandingofintegerswasrequired. Theprogressofthesestudentsinthelessonwasslowedbytheirlackofabilitywithintegernumber operations. Asmallnumberofstudentshaddifficultiesdifferentiatingbetweenmultiplicationandaddition whenfillinginthearray.Thisconfusiontendedtohappenwhenstudentsweresplittingupthe termintotwoseparatepartsalongthediagonalofthearray. Whencheckingtheirwork(byexaminingthefinalterminthearray)somestudentsrandomly changedthesignsofcertaintermssothatthecheckworked.Theyfailedtothencheckthatthe othertermswerestillcorrectgiventhesechanges.Somestudentsabandonedbasicnumbersense to“get”theirchecktowork. Studentsworkedwellindependentlyandthenwerehappytocomparetheirworktothatoftheir partner.Incaseswhereanswersdidnotagreemoststudentsproceededtochecktheirworkand discusswhaterrorhadoccurred.Asmallnumberofstudentssimplychangedtheiranswerto matchthatoftheirpartnerwhenanswersdisagreed. Groupworkedprovedveryeffectiveinmostcasesasitallowedstudentstodiscusswhattheywere learning. Effectiveness of Group work 5 4 3 2 1 Thematchingactivityprovedagreatsuccessandwasagreatwaytofinishthelesson.Students workedwelltogetherandmanywereobservedcheckingtheirpartner’ssuggestionsforwhichterm shouldgowhere.Asstudentsworkedonthematchingactivitytheyhadtodosomebasicalgebraic multiplicationandadditionintheirheadswhichwasaworthwhileexerciseinitself.Studentsalso hadtothinkabouttheplacementofdifferenttermsinthearraywhichcanonlyhavehelpedsolidify theirlearning.Wehadthoughtbeforethelessonthatsomestudentmightnotfindthematching activitysufficientlychallenging,howeverthisturnedoutnottobeso.Allstudentsworkeduptothe endofclassontheactivityandwerefullyengaged. Studentswereaskedaboutthehelpfulnessofthematchingactivity[onascaleof1–5]herearethe results: Effectiveness of matching activity 5 4 3 2 1 Recommendations Ifweweretoteachthelessonthereareveryfewchangeswewouldmake: Itmightbeagoodideatospendsometimeintheleaduptothislessonpracticingbasicinteger operations,particularlyforstudentswhohaveexperienceddifficultieswiththistopicinthepass. Thetimingofthelessonwasexcellentwithalotofcontentfittedin.Ifpossibleitwouldbeniceto givestudentsalittlemoretimeinthinkingaboutsomeoftheimportantfeaturesoftheareamodel. Forexample,givingstudentstimetodiscusswhyacubicexpressiondividedbyalinearexpression requiresa3 2arraywouldbegood. Thislessonwaspresentedtoahigher‐levelthird‐yeargroup.Somestudentsfoundtheareamodel somewhatdifficultduetolackofknowledgeofintegers.Itwouldbeinterestingtoseeifanarea modelwouldbeaseffectivewithstudentsoflesserability,whereintegerproblemsaremorelikely. Finalconclusions Theareamodelworkedverywellfordivisionofalgebraicexpressionsinagroupofhigher‐level students. Theareamodelrequiresstudentstohavegoodknowledgeofintegeroperations. Studentsgetalotofpracticeofbasicalgebraoperationswhilepracticingtheareamodel. Theeffectivenessoftheareamodelforstudentsoflessermathematicalabilityisuntestedinthis case. Worksheet Q.1. Divide Name: Q.4. Divide x x ‐1 +2 Q.2. Divide Q.3. Divide 2 +5 Q.5. Divide x ‐1 2 Q.6. Divide +5 Note:OncefinisheddoExtra Questions(a),(b)&(c)below ExtraQuestions(inCopybook) (a) (b) (c) Q.7. Divide ExtraQuestions(inCopybook) (d) (e) (f) Q.11. Divide Q.8. Divide Q.9. Divide Q.12. Divide 2 ‐1 Q.10. Divide Q.13. Divide +5 x 2 ‐1 Q.14. Divide +5 ExtraQuestions(incopybook): 13 3 14 20 24 56 80 1 3 4 4 x Q.15. Q.16. Q.17.
© Copyright 2026 Paperzz