Exam #1 - Version B

MATH 1453 - COLLEGE ALGEBRA/BUSN - CRN 20362 - EXAM #1 - THURSDAY, 14 FEB 08 - DR. DAVID BRIDGE
Name________________________________________ (Place your name here and on the Scantron form.)
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Evaluate the expression, given x = -2, y = 3, and a = -4.
1) (9x + 8y)(-7a)
A) 308
B) -168
C) 168
D) -1368
Simplify. Leave answer with exponent.
2) (6y)7 · (6y)9
A) (6y)16
C) 36y63
D) 6y63
B) 13n 7 + 14n 6 - 11n
C) 13n + 14n 7 - 11n 6
D) 16n 14
B) -10x2 - 55x - 55
C) 3x2 - 55x - 55
D) 3x2 - 55x - 45
B) 36y16
Add or subtract as indicated.
3) (6n 7 + 6n 6 - 2n) + (7n 7 + 8n 6 - 9n)
A) 5n 7 + 14n 6 - 3n
Find the product.
4) (5x + 5)(-2x - 9)
A) -10x2 - 55x - 45
Solve the problem.
5) The polynomial 0.0035x3 + 0.0055x2 + 0.165x + 1.16 gives the approximate total earnings of a company, in millions of
dollars, where x = 0 corresponds to 1996, x = 1 corresponds to 1997, and so on. This model is valid for the years from
1996 to 2000. Determine the earnings for 1999.
A) $1.54 million
B) $2.13 million
C) $1.8 million
D) $1.7 million
Factor out the greatest common factor.
6) 28m9 + 12m6 - 32m2
A) 4(7m9 + 3m6 - 8m2 )
C) m2 (28m7 + 12m4 - 32)
Factor completely.
7) x2 - x - 6
A) (x + 1)(x - 6)
B) 4m2 (7m7 + 3m4 - 8)
D) No common factor
B) (x + 3)(x - 2)
C) (x + 2)(x - 3)
D) Cannot be factored
8) x3 - 125
A) (x - 5)(x2 + 25)
C) (x - 5)(x2 + 5x + 25)
Solve the equation.
9) 12(5c - 7) = 5c - 8
76
A) 55
B) (x + 5)(x2 - 5x + 25)
D) (x + 125)(x2 - 1)
B)
76
55
C)
92
55
D)
76
65
Solve the equation for x.
10) x = (4x - 2)(2k + 1)
4k + 2
A) x =
8k - 3
B) x =
Solve the equation.
11) 4x + 5 = 3
1
A) - , - 2
2
4k - 2
8k + 3
4k + 2
8k + 5
C) x =
D) x =
1
2
4k + 2
8k + 3
B) -2, -8
C) 2,
Use factoring to solve the equation.
12) 4x2 - 32x + 60 = 0
A) 0, 3, 5
B) -3, -5
C) 3, 5
D) 4, 3, 5
Solve by the square-root property.
13) (x - 6)2 = 16
A) 10, 2
B) 4, -4
C) 22
D) 2, -10
Use the quadratic formula to solve the equation.
14) 2m2 + 6m + 3 = 0
-3 ± 3
-6 ± 3
A)
B)
2
2
Graph the linear equation.
15) 6y = x + 8
A)
C)
D) 8, 2
-3 ± 3
4
D)
B)
y
-10
-3 ± 15
2
y
10
10
5
5
-5
5
10
x
-10
-5
-5
-5
-10
-10
C)
5
10
x
5
10
x
D)
y
-10
y
10
10
5
5
-5
5
10
x
-10
-5
-5
-5
-10
-10
Find the x-intercepts and y-intercepts of the graph of the equation.
16) -4x + y = 8
A) x-intercept: 8; y-intercept: -2
C) x-intercept: -2; y-intercept: 8
B) x-intercept: -4; y-intercept: -8
D) x-intercept: -8; y-intercept: -4
Solve the problem.
17)
800
y
700
600
500
400
300
200
100
2000 2001 2002 2003 2004 2005 2006
x
Edmond Used Car Sales opened as a used car sales lot in 2001. The graph shows the number of cars sold as a function of
time. What is the approximate number of cars sold in 2005?
A) 400
B) 700
C) 600
D) 500
Find the slope of the line, if it is defined.
18) Through (4, -6) and (9, 3)
13
A) 3
B)
9
5
Find the slope and the y-intercept of the line.
19) 2x + 4y = 14
7
1
A) m = 2; b =
B) m = ; b = 14
2
2
C) -
3
13
D) Undefined
1
7
;b=
2
2
C) m = - 2; b = 4
D) m = -
C) 3x - 4y = 26
D) 4x + 3y = -26
Find an equation of the the line satisfying the given conditions.
3
20) Through (2, 5); m = 4
A) 3x + 4y = 26
B) 3x + 4y = -26
Solve the problem.
21) Assume that the sales of a certain merchant are approximated by a linear function. Suppose that sales were $4000 in 2002
and $54,500 in 2007. Let x = 0 represent 2002, x = 1 represent 2003, etc. Find the equation giving yearly sales S(x).
A) S(x) = 10,100x + 4000
B) S(x) = 50,500x + 4000
C) S(x) = 10,100x + 54,500
D) S(x) = 50,500x + 54,500
Solve and graph the inequality and graph the solution.
22) -6(5x + 14) < -36x - 54
A) (-∞, 5)
-2
-1
0
1
2
3
4
5
6
7
8
9
10 11 12
B) (-36, ∞)
-43 -42 -41 -40 -39 -38 -37 -36 -35 -34 -33 -32 -31 -30 -29
C) (-∞, -36)
-43 -42 -41 -40 -39 -38 -37 -36 -35 -34 -33 -32 -31 -30 -29
D) (5, ∞)
-2
-1
0
1
2
3
4
5
6
7
8
9
10 11 12
Solve the problem.
23) The equation y = 0.005x + 0.10 can be used to determine the approximate cost, y in dollars, of producing x items. How
many items must be produced so the cost will be no more than $335?
A) 0 ≤ x ≤ 66,980
B) 0 ≤ x ≤ 70,329.00
C) 0 ≤ x ≤ 66,981
D) 0 ≤ x ≤ 67,020
Solve the inequality and graph the solution.
24) 6x + 8 < 19
A)
-8
-6
-4
-2
0
2
4
6
8
B)
-8
-6
-4
-2
0
2
4
6
8
C)
-8
-6
-4
-2
0
2
4
6
8
D)
-8
-6
-4
-2
0
2
4
6
8
-6
-4
-2
0
2
4
6
8
-6
-4
-2
0
2
4
6
8
-6
-4
-2
0
2
4
6
8
-4
-2
0
2
4
6
8
25) t2 + 3t - 4 ≥ 0
A) (-∞, -1] or [4, ∞)
-8
B) [-4, 1]
-8
C) [-1, 4]
-8
D) (-∞, -4] or [1, ∞)
-8
-6
Answer Key
Testname: MATH 1453 - EXAM #1
1) C
2) A
3) B
4) A
5) C
6) B
7) C
8) C
9) B
10) D
11) A
12) C
13) A
14) A
15) C
16) C
17) B
18) B
19) D
20) A
21) A
22) A
23) A
24) C
25) D