Calculus exercise 8.1 6. 12. R dx 5x = −1 −x 5 ln5 R e√x √ dx x +c √ = 2e x +c 13. u = 1/x, du = −x−2 dx √ R 1/x R 1/2 =⇒ 21 ex2 dx = 1 − eu du = e − e 18. u = R3 − 2cosφ sinφ =⇒ 3−2cosφ dφ = 21 ln(3 − 2cosφ) + c 22. R ln x dx 25. R dx x2 +6x+10 43. R 1 dx x(2x+3) 49. R π√ 1 + cosxdx x = 12 (ln x)2 + c = R dx (x+3)2 +1 = arctan x + 3 + c x = 13 ln | 2x+3 |+c 0 = R πq 2cos2 ( x2 )dx = 0 √ Rπ √ 2 0 cos x2 dx = 2 2 50. (a) Obviously (b) Obviously (c) Using the formula tan2 x + 1 = sec2 x determine the C1 and C2 51. R π1 (a) Rπ sin2 nxdx (b) Rπ sin nx cos nxdx (c) R 0 = 02 0 π n 0 sin nx cos nx = − = 1 2 1 2 R cos2nx dx 2 π 2 = Rπ sin 2nxdx 0 π n 0 =0 π/n sin 2nxdx = −[ cos4n2nx ]0 =0 53. (a) 3 tan xdx = (tan2Rx)tanxdx = (sec2 x − 1)tanxdx R = sec2 xtanxdx − tanxdx = 12 tan2 x − ln|secx| + c (b) R R R R 5 2 tan xdx = (tan3 x)tan xdx = (sec2 x − 1)tan3 xdx R R 2 3 3 = sec xtan xdx − tan xdx = 14 tan4 x − 12 tan2 x + ln|secx| + c R R 1 7 2 tan xdx = (tan5 x)tan xdx = (sec2 x − 1)tan5 xdx R R 2 5 5 = sec xtan xdx − tan xdx = 61 tan6 x − 14 tan4 x + 12 tan2 x − ln|secx| + c (c) R (d) R R R 2k+1 tan xdx = (tan2k−1 x)tan2 xdx = (sec2 x − 1)tan2k−1 xdx R R = sec2 xtan2k−1 xdx − tan2k−1 xdx R 1 2k = 2k tan x − tan2k−1 xdx R R 2
© Copyright 2025 Paperzz