Evaluate each expression. (1) log 16 _____ (2) log 1 _____ (3) log

Evaluate each expression.
PRACTICE
(1) log 16 _____
(2) log 1 _____
(3) log
(4) log
(5) log 3 _____
(6) log
(8) log
(9) log
_____
(12) log 2
_____
10 _____
(7) log
(10) log
PRACTICE
_____
/
/
(11) log
243 _____
_____
81 _____
_____
/
8 _____
Use the log button on your calculator to evaluate each expression.
(13) log 100 ______
(14) log 10 ______
(15) log 10,000 ______
(16) log 1 ______
(17) log 0.1 ______
(18) log 0.001 ______
(19) Note your answers to
#13β€”18 What base does the
log button appear to be using?
________
HOW DO YOU KNOW?
PRACTICE
(20) According to the calculator, log 6 β‰ˆ 0.778.
Why is the answer smaller than 1 but greater than zero? ______________________________________
PRACTICE
(21) If log 29 = π‘₯, then x must be between ____ and ____.
WHY?
PRACTICE
(22) If log 625 = π‘₯, then x must be between ____ and ____.
WHY?
PRACTICE
(23) If log
WHY?
PRACTICE
Consider the following information provided. Determine the value of the missing base.
0.5 = π‘₯, then x must be between ____ and ____.
(24) log ____ 16 = 4
log ____ = βˆ’3
log ____(2 βˆ™ 2 ) = 13
BASE:
_______
(25) log ____ 5 = 1/2
log ____
log ____
= βˆ’2
BASE:
_______
(26) log ____ 4096 = 4
log ____ 4 = 2/3
log ____ 2
=6
BASE:
_______
=1
PRACTICE
Dr. Tuppersupper has invented his own calculator. It has all of the same digits 0-9, but the
other buttons function differently. For instance, on his calculator, log 10 does not equal 1, as it does
on a normal calculator. Instead, on his calculator, log 10 = 0.926628408. Furthermore, log 100 =
1.853256816 and log 1000 = 2.779885224.
(27) What base is
his calculator using? ______
(28) In the space at right,
prove your answer to #27.
PROOF:
REVIEW
Find the x-intercept(s) of each function.
(30) 5π‘₯ βˆ’ 3𝑦 = βˆ’20
(29) 𝑦 = 6π‘₯ βˆ’ 24
x=____
x=____ ____
x=____ ____
(33) 2𝑦 βˆ’ 4π‘₯ = βˆ’20
(32) 𝑦 = 5π‘₯ + 5π‘₯ βˆ’ 100
(34) 𝑦 = π‘₯ βˆ’ 2π‘₯ βˆ’ 3
x=____
x=____ ____
REVIEW
(31) 𝑦 = π‘₯ + 2π‘₯ βˆ’ 3
x=____ ____
Write a system of inequalities for each graph below.
(35)
(36)
y
(37)
y
x
x
(38)
y
y
x
x
__________
__________
__________
__________
__________
__________
__________
__________
REVIEW
Factor each expression.
(39) 9π‘₯ βˆ’ 1
(
)(
(40) 3π‘₯ + 11π‘₯ βˆ’ 4
)
(42) 9π‘₯ βˆ’ 6π‘₯ + 1
(
)(
REVIEW
(
)(
(41) 3π‘₯ + 13π‘₯ + 4
)
(
(43) 3π‘₯ βˆ’ 13π‘₯ + 4
)
(
)(
)(
)
(44) 3π‘₯ βˆ’ 11π‘₯ βˆ’ 4
)
(
)(
)
Let 𝑓(π‘₯) = 3π‘₯ βˆ’ 2, 𝑔(π‘₯) = π‘₯, β„Ž(π‘₯) = 4π‘₯ βˆ’ 2π‘₯ + 6, π‘˜(π‘₯) = 8 βˆ’ 2π‘₯.
(45) 𝑔(𝑓(2))
______
(49) 𝑔(β„Ž(π‘₯))
_______________
(52) 𝑓(π‘˜(π‘₯))
_______________
(46) β„Ž(𝑔(βˆ’4))
______
(47) β„Ž(π‘˜(2))
______
(50) β„Ž(𝑔(π‘₯))
_______________
(53) π‘˜(𝑔(π‘₯))
_______________
(48) 𝑔(β„Ž(βˆ’8))
______
(51) π‘˜(𝑓(π‘₯))
_______________
(54) 𝑔(π‘˜(π‘₯))
_______________