4 CHAPTER The Multiplication Rules Introduction The previous chapter showed how the addition rules could be used to solve problems in probability. This chapter will show you how to use the multiplication rules to solve many problems in probability. In addition, the concept of independent and dependent events will be introduced. 56 Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use. CHAPTER 4 The Multiplication Rules 57 Independent and Dependent Events The multiplication rules can be used to find the probability of two or more events that occur in sequence. For example, we can find the probability of selecting three jacks from a deck of cards on three sequential draws. Before explaining the rules, it is necessary to differentiate between independent and dependent events. Two events, A and B, are said to be independent if the fact that event A occurs does not affect the probability that event B occurs. For example, if a coin is tossed and then a die is rolled, the outcome of the coin in no way affects or changes the probability of the outcome of the die. Another example would be selecting a card from a deck, replacing it, and then selecting a second card from a deck. The outcome of the first card, as long as it is replaced, has no effect on the probability of the outcome of the second card. On the other hand, when the occurrence of the first event in some way changes the probability of the occurrence of the second event, the two events are said to be dependent. For example, suppose a card is selected from a deck and not replaced, and a second card is selected. In this case, the probability of 1 , but since this card is not selecting any specific card on the first draw is 52 replaced, the probability of selecting any other specific card on the second 1 , since there are only 51 cards left. draw is 51 Another example would be parking in a no parking zone and getting a parking ticket. Again, if you are legally parked, the chances of getting a parking ticket are pretty close to zero (as long as the meter does not run out). However, if you are illegally parked, your chances of getting a parking ticket dramatically increase. PRACTICE Determine whether the two events are independent or dependent. 1. Tossing a coin and selecting a card from a deck 2. Driving on ice and having an accident 3. Drawing a ball from an urn, not replacing it, and then drawing a second ball 4. Having a high I.Q. and having a large hat size 5. Tossing one coin and then tossing a second coin CHAPTER 4 The Multiplication Rules 58 ANSWERS 1. Independent. Tossing a coin has no effect on drawing a card. 2. Dependent. In most cases, driving on ice will increase the probability of having an accident. 3. Dependent. Since the first ball is not replaced before the second ball is selected, it will change the probability of a specific second ball being selected. 4. Independent. To the best of the author’s knowledge, no studies have been done showing any relationship between hat size and I.Q. 5. Independent. The outcome of the first coin does not influence the outcome of the second coin. Multiplication Rule I Before explaining the first multiplication rule, consider the example of tossing two coins. The sample space is HH, HT, TH, TT. From classical probability theory, it can be determined that the probability of getting two heads is 14, since there is only one way to get two heads and there are four outcomes in the sample space. However, there is another way to determine the probability of getting two heads. In this case, the probability of getting a head on the first toss is 12, and the probability of getting a head on the second toss is also 12. So the probability of getting two heads can be determined by multiplying 1 1 1 2 ! 2 ¼ 4 This example illustrates the first multiplication rule. ONLY for INDEPENDENT events Multiplication Rule I: For two independent events A and B, PðA and BÞ ¼ PðAÞ ! PðBÞ. In other words, when two independent events occur in sequence, the probability that both events will occur can be found by multiplying the probabilities of each individual event. The word and is the key word and means that both events occur in sequence and to multiply. EXAMPLE: A coin is tossed and a die is rolled. Find the probability of getting a tail on the coin and a 5 on the die. SOLUTION: 1 . Since PðtailÞ ¼ 12 and Pð5Þ ¼ 16 ; Pðtail and 5Þ ¼ PðtailÞ ! Pð5Þ ¼ 12 ! 16 ¼ 12 Note that the events are independent. CHAPTER 4 The Multiplication Rules The previous example can also be solved using classical probability. Recall that the sample space for tossing a coin and rolling a die is H1, H2, H3, H4, H5, H6 T1, T2, T3, T4, T5, T6 Notice that there are 12 outcomes in the sample space and only one 1 . outcome is a tail and a 5; hence, P(tail and 5) ¼ 12 EXAMPLE: An urn contains 2 red balls, 3 green balls, and 5 blue balls. A ball is selected at random and its color is noted. Then it is replaced and another ball is selected and its color is noted. Find the probability of each of these: a. Selecting 2 blue balls b. Selecting a blue ball and then a red ball c. Selecting a green ball and then a blue ball SOLUTION: Since the first ball is being replaced before the second ball is selected, the events are independent. a. There are 5 blue balls and a total of 10 balls; therefore, the probability of selecting two blue balls with replacement is P(blue and blue) ¼ PðblueÞ $ PðblueÞ 5 5 $ 10 10 25 1 ¼ ¼ 100 4 ¼ b. There are 5 blue balls and 2 red balls, so the probability of selecting a blue ball and then a red ball with replacement is Pðblue and redÞ ¼ PðblueÞ $ PðredÞ 5 2 $ 10 10 10 1 ¼ ¼ 100 10 ¼ 59 CHAPTER 4 The Multiplication Rules 60 c. There are 3 green balls and 5 blue balls, so the probability of selecting a green ball and then a blue ball with replacement is Pðgreen and blueÞ ¼ PðgreenÞ $ PðblueÞ 3 5 ¼ $ 10 10 15 3 ¼ ¼ 100 20 The multiplication rule can be extended to 3 or more events that occur in sequence, as shown in the next example. EXAMPLE: A die is tossed 3 times. Find the probability of getting three 6s. SOLUTION: When a die is tossed, the probability of getting a six is 16; hence, the probability of getting three 6s is Pð6 and 6 and 6Þ ¼ Pð6Þ $ Pð6Þ $ Pð6Þ 1 1 1 ¼ $ $ 6 6 6 1 ¼ 216 Another situation occurs in probability when subjects are selected from a large population. Even though the subjects are not replaced, the probability changes only slightly, so the change can be ignored. Consider the next example. EXAMPLE: It is known that 66% of the students at a large college favor building a new fitness center. If two students are selected at random, find the probability that all of them favor the building of a new fitness center. SOLUTION: Since the student population at the college is large, selecting a student does not change the 66% probability that the next student selected will favor the building of a new fitness center; hence, the probability of selecting two students who both favor the building of a new fitness center is (0.66)(0.66) ¼ 0.4356 or 43.56%. CHAPTER 4 The Multiplication Rules 61 PRACTICE 1. A card is drawn from a deck, then replaced, and a second card is drawn. Find the probability that two kings are selected. 2. If 12% of adults are left-handed, find the probability that if three adults are selected at random, all three will be left-handed. 3. If two people are selected at random, find the probability that both were born in August. 4. A coin is tossed 4 times. Find the probability of getting 4 heads. 5. A die is rolled and a card is selected at random from a deck of 52 cards. Find the probability of getting an odd number on the die and a club on the card. ANSWERS 1. The probability that 2 kings are selected is Pðking and kingÞ ¼ PðkingÞ $ PðkingÞ ¼ 41 41 1 $ ¼ 13 13 169 52 52 2. The probability of selecting 3 adults who are left-handed is (0.12)(0.12)(0.12) ¼ 0.001728. 3. Each person has approximately 1 chance in 12 of being born in August; hence, the probability that both are born in August is 1 1 1 $ ¼ : 12 12 144 1 1 1 1 1 4. The probability of getting 4 heads is $ $ $ ¼ . 2 2 2 2 16 5. The probability of getting an odd number on the die is 36 ¼ 12, and the 1 probability of getting a club is 13 52 ¼ 4; hence, the P(odd and 1 1 1 club) ¼ PðoddÞ $ PðclubÞ ¼ 2 $ 4 ¼ 8. Important Multiplication Rule II When two sequential events are dependent, a slight variation of the multiplication rule is used to find the probability of both events occurring. For example, when a card is selected from an ordinary deck of 52 cards the CHAPTER 4 The Multiplication Rules 62 1 probability of getting a specific card is 52 , but the probability of getting a 1 specific card on the second draw is 51 since 51 cards remain. EXAMPLE: Two cards are selected from a deck and the first card is not replaced. Find the probability of getting two kings. SOLUTION: 4 and the probability The probability of getting a king on the first draw is 52 3 of getting a king on the second draw is 51, since there are 3 kings left and 51 cards left. Hence the probability of getting 2 kings when the first card is 4 3 12 1 ! 51 ¼ 2652 ¼ 221 . not replaced is 52 When the two events A and B are dependent, the probability that the second event B occurs after the first event A has already occurred is written as P(B | A). This does not mean that B is divided by A; rather, it means and is read as ‘‘the probability that event B occurs given that event A has already occurred.’’ P(B | A) also means the conditional probability that event B occurs given event A has occurred. The second multiplication rule follows. Multiplication Rule II: When two events are dependent, the probability of both events occurring is PðA and BÞ ¼ PðAÞ ! PðB j AÞ EXAMPLE: A box contains 24 toasters, 3 of which are defective. If two toasters are selected and tested, find the probability that both are defective. SOLUTION: Since there are 3 defective toasters out of 24, the probability that the first 3 ¼ 18. Since the second toaster is selected from the toaster is defective is 24 remaining 23 and there are two defective toasters left, the probability that 2 . Hence, the probability that both toasters are defective is it is defective is 23 PðD1 and D2 Þ ¼ PðD1 Þ ! PðD2 jD1 Þ ¼ 31 24 8 4 ! 21 1 ¼ 23 92 CHAPTER 4 The Multiplication Rules EXAMPLE: Two cards are drawn without replacement from a deck of 52 cards. Find the probability that both are queens. SOLUTION: PðQ and QÞ ¼ PðQÞ $ PðQjQÞ 4 3 ¼ $ 52 51 1 ¼ 221 This multiplication rule can be extended to include three or more events, as shown in the next example. EXAMPLE: A box contains 3 orange balls, 3 yellow balls, and 2 white balls. Three balls are selected without replacement. Find the probability of selecting 2 yellow balls and a white ball. SOLUTION: 3 2 2 Pðyellow and yellow and whiteÞ ¼ $ $ 8 7 6 31 21 21 ¼ 4$ $ 1 8 7 6 1 ¼ 28 Remember that the key word for the multiplication rule is and. It means to multiply. When two events are dependent, the probability that the second event occurs must be adjusted for the occurrence of the first event. For the mathematical purist, only one multiplication rule is necessary for two events, and that is PðA and BÞ ¼ PðAÞ $ PðB j AÞ: The reason is that when the events are independent PðBjAÞ ¼ PðBÞ since the occurrence of the first event A has no effect on the occurrence of the second event B. 63 CHAPTER 4 The Multiplication Rules 64 PRACTICE 1. In a study, there are 8 guinea pigs; 5 are black and 3 are white. If 2 pigs are selected without replacement, find the probability that both are white. 2. In a classroom there are 8 freshmen and 6 sophomores. If three students are selected at random for a class project, find the probability that all 3 are freshmen. 3. Three cards are drawn from a deck of 52 cards without replacement. Find the probability of getting 3 diamonds. 4. A box contains 12 calculators of which 5 are defective. If two calculators are selected without replacement, find the probability that both are good. 5. A large flashlight has 6 batteries. Three are dead. If two batteries are selected at random and tested, find the probability that both are dead. ANSWERS 3 21 3 " ¼ 4 7 28 8 1 1 8 7 6 2 freshmen) ¼ 2 " " 2 ¼ 13 14 13 12 1 13 12 11 11 diamonds) ¼ 4 " " ¼ 51 50 850 52 7 61 7 good) ¼ 2 " ¼ 12 11 22 3 21 3 1 batteries dead) ¼ 3 " ¼ ¼ 15 5 6 5 1. P(white and white) ¼ 2. P(3 3. P(3 4. P(2 5. P(2 Conditional Probability Previously, conditional probability was used to find the probability of sequential events occurring when they were dependent. Recall that P(B|A) means the probability of event B occurring given that event A has already occurred. Another situation where conditional probability can be used is when additional information about an event is known. Sometimes it might be CHAPTER 4 The Multiplication Rules known that some outcomes in the sample space have occurred or that some outcomes cannot occur. When conditions are imposed or known on events, there is a possibility that the probability of the certain event occurring may change. For example, suppose you want to determine the probability that a house will be destroyed by a hurricane. If you used all houses in the United States as the sample space, the probability would be very small. However, if you used only the houses in the states that border the Atlantic Ocean as the sample space, the probability would be much higher. Consider the following examples. EXAMPLE: A die is rolled; find the probability of getting a 4 if it is known that an even number occurred when the die was rolled. SOLUTION: If it is known that an even number has occurred, the sample space is reduced to 2, 4, or 6. Hence the probability of getting a 4 is 13 since there is one chance in three of getting a 4 if it is known that the result was an even number. EXAMPLE: Two dice are rolled. Find the probability of getting a sum of 3 if it is known that the sum of the spots on the dice was less than six. SOLUTION: There are 2 ways to get a sum of 3. They are (1, 2) and (2, 1), and there are 10 ways to get a sum less than six. They are (1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2, 3), (3, 2), and (4, 1); hence, P(sum of 3|sum less than 6) ¼ 2 1 10 ¼ 5. The two previous examples of conditional probability were solved using classical probability and reduced sample spaces; however, they can be solved by using the following formula for conditional probability. The conditional probability of two events A and B is PðAjBÞ ¼ PðA and BÞ : PðBÞ P(A and B) means the probability of the outcomes that events A and B have in common. The two previous examples will now be solved using the formula for conditional probability. EXAMPLE: A die is rolled; find the probability of getting a 4, if it is known that an even number occurred when the die was rolled. 65 CHAPTER 4 The Multiplication Rules 66 SOLUTION: P(A and B) is the probability of getting a 4 and an even number at the same time. Notice that there is only one way to get a 4 and an even number—the outcome 4. Hence P(A and B) ¼ 16. Also P(B) is the probability of getting an even number which is 36 ¼ 12. Now PðA and BÞ PðBÞ 1 ¼ 6 1 2 1 1 ¼ $ 6 2 PðAjBÞ ¼ 1 21 % 63 1 1 ¼ 3 Notice that the answer is the same as the answer obtained when classical probability was used. ¼ EXAMPLE: Two dice are rolled. Find the probability of getting a sum of 3 if it is known that the sum of the spots on the dice was less than 6. SOLUTION: P(A and B) means the probability of getting a sum of 3 and a sum less than 6. 2 Hence P(A and B) ¼ 36 : PðBÞ means getting a sum less than 6 and is 10 36. Hence, PðA and BÞ PðAjBÞ ¼ ¼ PðBÞ 2 36 10 36 2 10 $ 36 36 21 36 ¼ % 5 36 10 1 ¼ 5 ¼ CHAPTER 4 The Multiplication Rules EXAMPLE: When two dice were rolled, it is known that the sum was an even number. In this case, find the probability that the sum was 8. SOLUTION: When rolling two dice, there are 18 outcomes in which the sum is an even number. There are 5 ways to get a sum of 8; hence, P(sum of 8|sum is 8 or 49. even) is 18 EXAMPLE: In a large housing plan, 35% of the homes have a deck and a two-car garage, and 80% of the houses have a two-car garage. Find the probability that a house has a deck given that it has a garage. SOLUTION: Pðdeck and two-car garageÞ ¼ 0:35 and Pðtwo-car garageÞ ¼ 0:80; hence; (deck and two-car garage) P(deckjtwo-car garage) ¼ P(two-car garage) 0:35 ¼ 0:80 7 or 0:4375 ¼ 16 PRACTICE 1. When two dice are rolled, find the probability that one die is a 6 given that the sum of the spots is 8. 2. Two coins are tossed. Find the probability of getting two tails if it is known that one of the coins is a tail. 3. A card is selected from a deck. Find the probability that it is an ace given that it is a black card. 4. The probability that a family visits the Sand Crab Water Park and the Rainbow Gardens Amusement Park is 0.20. The probability that a family visits the Rainbow Gardens Amusement Park is 0.80. Find the probability that a family visits the Sand Crab Water Park if it is known that they have already visited Rainbow Gardens Amusement Park. 5. Three dice are rolled. Find the probability of getting three twos if it is known that the sum of the spots of the three dice was six. 67 CHAPTER 4 The Multiplication Rules 68 ANSWERS 1. There are five ways to get a sum of 8. They are (6, 2), (2, 6), (3, 5), (5, 3), and (4, 4). There are two ways to get a sum of 8 when one die is a 6. Hence, P(one die is a sixjsum of 8) ¼ ¼ ¼ P(one die is a six and sum of 8) P(sum of 8) 2 36 5 36 2 5 2 361 " ¼ 1# 36 36 36 5 2 5 The problem can also be solved by looking at the reduced sample space. There are two possible ways one die is a 6 and the sum of the dice is 8. There are five ways to get a sum of 8. Hence, the probability is 25. ¼ 2. There are 3 ways to get one tail: HT, TH, and TT. There is one way to get two tails; hence, the probability of getting two tails given that one of the coins is a tail is 13. The problem can also be solved using the formula for conditional probability: 1 4 3 4 P(two tailsjgiven one coin was a tail) ¼ 1 3 ¼ " 4 4 ¼ 1 41 " 3 41 ¼ 1 3 CHAPTER 4 The Multiplication Rules 3. There are 2 black aces and 26 black cards; hence, P(ace|black 2 1 or 13 or card) ¼ 26 P(ace and black card) P(black card) 2 ¼ 52 26 52 2 26 ¼ # 52 52 21 521 ¼ 1 $ 13 52 26 1 ¼ 13 P(acejblack cardÞ ¼ 4. P (Sand CrabjRainbow Gardens) P(Sand Crab and Rainbow Gardens) ¼ P(Rainbow Gardens) 0:20 ¼ ¼ 0:25 0:80 5. There is one way to get 3 twos—(2, 2, 2) and there are 10 ways to get a sum of six—(2, 2, 2), (3, 2, 1), (1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 1, 2), (1, 3, 2), (4, 1, 1), (1, 4, 1,) and (1, 1, 4). Hence, P(3 twos and sum of 6) P(sum of 6) 1 ¼ 36 10 36 1 10 # ¼ 36 36 1 361 ¼ 1$ 36 10 1 ¼ 10 P(3 twosjsum of 6) ¼ 69 CHAPTER 4 The Multiplication Rules 70 Summary When two events occur in sequence, the probability that both events occur can be found by using one of the multiplication rules. When two events are independent, the probability that the first event occurs does not affect or change the probability of the second event occurring. If the events are independent, multiplication rule I is used. When the two events are dependent, the probability of the second event occurring is changed after the first event occurs. If the events are dependent, multiplication rule II is used. The key word for using the multiplication rule is ‘‘and.’’ Conditional probability is used when additional information is known about the probability of an event. CHAPTER QUIZ 1. Which of the following events are dependent? a. b. c. d. Tossing a coin and rolling a die Rolling a die and then rolling a second die Sitting in the sun all day and getting sunburned Drawing a card from a deck and rolling a die 2. Three dice are rolled. What is the probability of getting three 4s? 1 216 1 b. 6 1 c. 36 1 d. 18 a. CHAPTER 4 The Multiplication Rules 3. What is the probability of selecting 4 spades from a deck of 52 cards if each card is replaced before the next one is selected? 4 a. 13 1 b. 2561 1 c. 52 1 d. 13 4. A die is rolled five times. What is the probability of getting 5 twos? 1 a. 8 1 b. 4 1 c. 6 1 d. 32 5. A coin is tossed four times; what is the probability of getting 4 heads? 1 a. 2 1 b. 16 c. 1 d. 1 4 6. If 25% of U.S. prison inmates are not U.S. citizens, what is the probability of randomly selecting three inmates who will not be U.S. citizens? a. b. c. d. 0.75 0.421875 0.015625 0.225 71 CHAPTER 4 The Multiplication Rules 72 7. If three people are randomly selected, find the probability that they will all have birthdays in June. 1 1728 1 b. 36 1 c. 12 1 d. 4 a. 8. In a sample of 10 telephones, 4 are defective. If 3 are selected at random and tested, what is the probability that all will be nondefective? 1 30 8 b. 125 1 c. 6 27 d. 125 a. 9. A bag contains 4 blue marbles and 5 red marbles. If 2 marbles are selected at random without replacement, what is the probability that both will be blue? 16 81 1 b. 6 1 c. 2 1 d. 15 a. CHAPTER 4 The Multiplication Rules 10. If two people are selected at random from the phone book of a large city, find the probability that they were both born on a Sunday. 1 7 1 b. 49 2 c. 365 2 d. 7 a. 11. The numbers 1 to 12 are placed in a hat, and a number is selected. What is the probability that the number is 4 given that it is known to be an even number? 2 3 3 b. 4 1 c. 6 1 d. 8 a. 12. Three coins are tossed; what is the probability of getting 3 heads if it is known that at least two heads were obtained? 1 4 2 b. 3 1 c. 2 3 d. 8 a. 73 CHAPTER 4 The Multiplication Rules 74 13. In a certain group of people, it is known that 40% of the people take Vitamins C and E on a daily basis. It is known that 75% take Vitamin C on a daily basis. If a person is selected at random, what is the probability that the person takes Vitamin E given that the person takes Vitamin C? 5 13 8 b. 15 3 c. 11 7 d. 12 a. 14. Two dice are tossed; what is the probability that the numbers are the same on both dice if it is known that the sum of the spots is 6? 2 3 1 b. 6 4 c. 5 1 d. 5 a. Probability Sidelight THE LAW OF AVERAGES Suppose I asked you that if you tossed a coin 9 times and got 9 heads, what would you bet that you would get on the tenth toss, heads or tails? Most people would bet on a tail. When asked why they would select a tail, they would probably respond that a tail was ‘‘due’’ according to the ‘‘law of averages.’’ In reality, however, the probability of getting a head on the CHAPTER 4 The Multiplication Rules tenth toss is 12, and the probability of getting a tail on the tenth toss is 12, so it doesn’t really matter since the probabilities are the same. A coin is an inanimate object. It does not have a memory. It doesn’t know that in the long run, the number of heads and the number of tails should balance out. So does that make the law of averages wrong? No. You see, there’s a big difference between asking the question, ‘‘What is the probability of getting 10 heads if I toss a coin ten times?’’ and ‘‘If I get 9 heads in a row, what is the probability of getting a head on the tenth toss?’’ The answer to the first 1 , that is about 1 chance in 1000, and the answer to the question is 2110 ¼ 1024 second question is 1. 2 This reasoning can be applied to many situations. For example, suppose that a prize is offered for tossing a coin and getting 10 heads in a row. If you played the game, you would have only one chance in 1024 of winning, but if 1024 people played the game, there is a pretty good chance that somebody would win the prize. If 2028 people played the game, there would be a good chance that two people might win. So what does this mean? It means that the probability of winning big in a lottery or on a slot machine is very small, but since there are many, many people playing, somebody will probably win; however, your chances of winning big are very small. A similar situation occurs when couples have children. Suppose a husband and wife have four boys and would like to have a girl. It is incorrect to reason 1 , so it is more likely that the that the chance of having a family of 5 boys is 32 next child will be a girl. However, after each child is born, the probability that the next child is a girl (or a boy for that matter) is about 12. The law of averages is not appropriate here. My wife’s aunt had seven girls before the first boy was born. Also, in the Life Science Library’s book entitled Mathematics, there is a photograph of the Landon family of Harrison, Tennessee, that shows Mr. and Mrs. Emery Landon and their 13 boys! Another area where people incorrectly apply the law of averages is in attempting to apply a betting system to gambling games. One such system is doubling your bet when you lose. Consider a game where a coin is tossed. If it lands heads, you win what you bet. If it lands tails, you lose. Now if you bet one dollar on the first toss and get a head, you win one dollar. If you get tails, you lose one dollar and bet two dollars on the next toss. If you win, you are one dollar ahead because you lost one dollar on the first bet but won two dollars on the second bet. If you get a tail on the second toss, you bet four dollars on the third toss. If you win, you start over with a one dollar bet, but if you lose, you bet eight dollars on the next toss. With this system, you win every time you get a head. Sounds pretty good, doesn’t it? 75 76 CHAPTER 4 The Multiplication Rules This strategy won’t work because if you play long enough, you will eventually run out of money since if you get a series of tails, you must increase your bet substantially each time. So if you lose five times in a row, you have lost $1 þ $2 þ $4 þ $8 þ $16 or $31, and your next bet has to be $32. So you are betting $63 to win $1. Runs do occur and when they do, hope that they are in your favor. Now let’s look at some unusual so-called ‘‘runs.’’ In 1950, a person won 28 straight times playing the game of craps (dice) at the Desert Inn in Las Vegas. He lost on the twenty-ninth roll. He did not win big though because after each win he stuffed some bills in his pocket. The event took about one hour and twenty minutes. In 1959 in a casino in Puerto Rico at a roulette game, the number 10 occurred six times in succession. There are 38 numbers on a roulette wheel. At a casino in New York in 1943 the color red occurred in a roulette game 32 times in a row, and at a casino in Monte Carlo an even number occurred in a roulette game 28 times in a row. These incidents have been reported in two books, one entitled Scarne’s Complete Guide to Gambling and the other entitled Lady Luck by Warren Weaver. So what can be concluded? First, rare events (events with a small probability of occurring) can and do occur. Second, the more people who play a game, the more likely someone will win. Finally, the law of averages applies when there is a large number of independent outcomes in which the probability of each outcome occurring does not change.
© Copyright 2026 Paperzz