Lab2:Free-Fall Physics203:ProfsMartensYaverbaum&Bean JohnJayCollege,theCityUniversityofNewYork INTRODUCTION Howdoobjectsinfree-fallmove?Dotheymoveatasteady—constant—speed?Or dotheygetfasterorslower(accelerate)astheyfall?Iftheydoacceleratedoesthe rateofaccelerationstayconstant...ordoesthatchangetoo—inotherwords,does theaccelerationgetbigger/smallerovertime?Andiftheaccelerationischanging overtime,doesitkeepchangingatasteadyrate,oristhatratechangingtoo?Etc. Inthisexperiment,wewilltrytoanswerthesequestions. Inordertodoso,wewilldroplong,verticalstringswithmachinescrewsattachedat variousintervalsalongthestringfromheightsof3-5metersandlistentothetiming (rhythm)ofthescrewsastheyhitametaltrayatthebottomoftheirfall. OBJECTIVES InplainEnglish: todeterminehowfallingobjectsmove. Inmorecomplicated(butalsomoreprecise)English: toanalyzethebehavioroffallingobjectsintermsofthederivatives(first,second, etc.)ofpositionwithrespecttotime. Anobjectissaidtobeinfree-falliftheonlyforceactinguponitisgravity.Anything flyingthroughtheair,whetheritwasthrownordropped,isinfree-fall(aslongasit doesnothavejet-packsorpropellers,andweignoreair-resistance). WHATWEKNOW • Thedefinitionsofdistance&displacement. • Thedefinitionsofaveragespeed&averagevelocity. WHATWEDON’TKNOW Everythingelse. PROCEDURE A. CreatingandTestinganEvenly-SpacedString 1. Cutastringapproximately5metersinlength. 2. Witharulerandpencil,markoff5to10equallyspacedpositions.Thefirst markshouldbeallthewayatoneendofthestring.(Withintherangeof5-10, it'suptoyouhowmanypositionsyoumark.Themorepositions,themore datapoints.Themoredatapoints,however,thelessclearlydistinguishable theybecome.) 3. UsingSLIPKNOTS,attachamachinescrewateachofthemarked-off positions. 4. Waitforallothergroupstocompletestep3.Whilewaiting,readahead. 5. Onceallgroupsareready,eachgroupwillgooneatatimeanddropits spatiallysymmetricstringfromahighlocation(approximately5meters) ontoacookiesheet.Allothergroupswillquietlywatch,listenandrecord. 6. Yourlabinstructorwillleadyoutothislocation.Atthislocation,wewill conductourselvesinasingularlyquietandreservedandcarefulmanner.We willotherwisebecreatingahazard. 7. Listencloselytothepatternofsoundsmadebythescrewsastheyslaminto thecookiesheet.Withacellphoneorhand-helddigitalrecorder,record them.Ifyouhaveslowmotiononyourrecordingdevice,useit. B. AnalyzingDatafromtheEvenly-SpacedString. 1. Listentoyourrecordinganddiscusswhatyouhear. Asagroup,writedownyouranswerstothefollowingquestions: 2. Whathappenstothebeats(soundsofthescrewsstrikingthecookie-sheet) asthestringfalls? 3. Whathappenstothetimeintervalbetweeneachbeat,asthestringfalls? 4. Howfardidthescrewsfallinbetweenthefirstbeatandthesecond?Howfar didtheyfallbetweenthesecondbeatandthethird?Thethirdandthe fourth?Etc. 5. Giventhepatterninthedistancetraveledbetweenbeats(questionB.4)&the patterninthetimeintervalbetweenbeats(questionB.3),whatmustbe happeningtotheaveragespeedbetweeneachbeat,asthestringfalls? C. SearchingfortheEvenly-TimedString 1. Cutanewstringapproximately5metersinlength.Eventually,thestringwill beorientedVERTICALLYandsothatitsbottomendisquitenearthe ground.Itwillbedroppedontoacookiesheetsothatthemachinescrews makealoudnoiseuponcontact. THE GOAL : attach the screws to the string in such a way that they create a steady rhythm as they land. In other words, the time in between the beats should stay the same as the string falls. 2. Withpencilandpaper,spendtimeCAREFULLYcontemplatingwhereonthe stringyoubelievemachinescrewsoughttobeplacedinordertomeetThe Challengedescribedabove. Withoutactuallydroppinganystring,clearlywriteoutallyour thoughts.Theymaybewords,numbers,equations,etc.NOTHOUGHTS, however,mayultimatelybeusedwithoutspecificjustification.Anisolated equationthatyoumayhaveseenormemorizedisNOTitselfajustification. Tohelpyoudeviseyourmethod,gobacktotherecordingyoumadeofthe evenly-spacedstringdrop.Whatmustyoudoinordertomakethetime intervalsequal? Oneofthethingswetendtoassumeabouttheworldinphysicsisthatitis fullofmathematicalpatterns.Thatmightbeagoodthingtokeepthatin mindwhendesigningyourstring. 3. Whenyouhavearrivedatacleardecision,beforeyoudoanytesting,you mustdrawTWOdiagramstoshowyourpatternofscrewplacements:wecall thesetheintervaldiagramandthepositiondiagram. TheIntervalDiagramshowsthedistancesBETWEENthescrews. ThePositionDiagramshowsthetotaldistancefromeachscrewtothe bottomofthestring. Tohelpyougetthehangofposition&intervaldiagrams,trythetwo exercisesbelow. Exercise1:belowisapositiondiagramofastringwith5screwsonit. Convertthisintoanintervaldiagram. 300cm 280cm TopofString 240cm 160cm 0cm Bottomof String Exercise2:belowisanintervaldiagramofastringwith7screwsonit. Convertthisintoapositiondiagram. 60cm 60cm 60cm 60cm 60cm 60cm Bottomof String TopofString 4. Afteryouhavecomeupwithyourplanforyourevenly-timedstringand created,showyourwork(includingbothapositionandanintervaldiagram) toyourlabinstructor. 5. Onceyourthoughtprocessisapprovedbyyourinstructor,usetherulerand penciltomarkoffthepositionsonyoursecondstring. 6. Usingslipknots,attachscrewstoallmarkedpositionsonyourstrings. 7. Withextremecaution,wrapyourstringaroundyourforearmsothatit becomesatight,un-knotted,portablepackage(notatangledmesswith screwsfallingoffofit). 8. Usemaskingtapeandpentolabelyourstringwiththenamesofyouand yourpartner. 9. Ontoacookiesheet,fromthesamelocationasbefore,dropyourtemporally symmetricstringfromahighlocation(approximately5meters). 10. Listencloselytothepatternofsoundsmadebythescrewsastheyslaminto thecookiesheet.Recordthem. 11. Didyouachieveansteadyrhythm?Ifnot,gobacktothedrawingboardand makeanewplan. 12. Beforethelabisover,yourinstructorwillaskyoutocreatetwostringsbased onmathematicalpatterns.WewillcallthesepatternspatternAandpattern B.Youwillfindoutwhattheyareduringthecourseofthelab. D. MathematicalAnalysisofPatterns. 1. ForPatternA: a. Drawapositiondiagram.Makesuretoincludeatleast6screws. b. Belowthepositiondiagram,writedownthedistancesbetween screws(i.e.theintervals). c. Belowthedistances,writedownthedifferencesbetweenthe distances. d. Belowthedifferencesbetweendistances,writedownthedifferences betweenthedifferencesbetweendistances. e. Whatdoyounotice? Yourworkwilllooksomethinglikethis: Position Position Position Position Position Position ofBoltF ofBoltE ofBoltD ofBoltC ofBoltB ofBoltA Dist.5 Dist.4 Diff.4 Dist.3 Diff.3 (it’sokifyoucan’tmakethosecoollittle Dist.2 Diff.2 Dist.1 Diff.1 shapes.) 2. ForpatternB: a. Drawapositiondiagram.Makesuretoincludeatleast6screws. b. Belowthepositiondiagram,writedownthedistancesbetween screws(i.e.theintervals). c. Belowthedistances,writedownthedifferencesbetweenthe distances. d. Belowthedifferencesbetweendistances,writedownthedifferences betweenthedifferencesbetweendistances. e. Whatdoyounotice? 3. Nowtrythissametypeofanalysisforatypeofpatternthatcomesupalotin bothscienceandmathematics:anexponentialpattern.Usethesimplest exponentialpattern:1,2,4,8,16,32,etc.Followthesamestepsa.,b.,c.,d., etc.thatyouusedfortheothertwopatterns,andkeepgoinguntilyousee howthispatternisdifferentfromtheothertwo.Willthisprocesseverend? E. DrawingConclusionsaboutMotioninFree-Fall. Wewillassumefromhereonoutthatoneofthepatternsyoutestedproduceda fairlysteadyrhythm.(Ifyoudidnotfindanypatternthatproducedafairly steadyrhythm,checkinwithyoulabinstructor.) Wearenowgoingtousethepatternthatyoufound(andthefactthatitmadea steadyrhythm)tofigureouthowgravityaffectsobjectsinfreefall. Remember,uptothispointinthesemester,theonlythingweknowabout gravityisthatwhenyoudropsomethingitfalls.Butwhatdoesitdowhenit falls?That’swhatwe’reheretofigureout 1. Yourpatternproducedasteadyrhythm.Justtorecap,thatmeansthatthe timeintervalbetweenbeatsstayed_____________________foreachpairofbeats. Hm…Anintervaloftimethatstaysconsistent.Meaningitdoesn’tchange,as thethingfalls.Hm.Thatremindsmeofsomething…somethingfromLAB1. Thatsoundslikea…a… u n i t o f m e a s u r e m e n t !!! 2. Here’stheplan.Wewanttoknowhowaboutthemotionofobjectsduring freefall.Inparticular,wewanttoknowwhethertheirspeedischanging, andifit’schanging,howit’schanging.Well,instantaneousspeedmightbe tricky,butweknowhowtocalculateaveragespeed.Writedownthe definitionofaveragespeed. 3. Calculatethedistancetraveledbytheboltsbetweeneachpairofbeats. (You’vealreadyfiguredthisout;yes,it’sthatsimple.) 4. Calculatetheaveragespeedoftheboltsbetweeneachpairofbeats.(Ifyou hadnboltsonyourstring,youshouldendupwithn-1averagespeeds.)Your answersshouldbeincm/beat(orm/beat).Noticethatwedon’tknowhow manyseconds=1beat.Noticethatthisdoesnotmatter. 5. Calculatethechangeinaveragespeedfrombeattobeat.Inotherwords, calculatethechangeinaveragespeedovertime. Whatunitsshouldthisbein? Hint:Thinkabouttheunitsyouusedforaveragespeed.Thenthinkaboutthe factthatthisischangeinaveragespeedovertime. 6. Whatconclusioncanyoudrawaboutthemotionofobjectsinfreefall?Does theirspeedstaythesameastheyfallordoesitchange(accelerate)?Iftheir speedchanges,doestheiraccelerationchange(jerk)?Iftheiracceleration changes,howdoesitchange? Hint:thinkbacktoTheGreatDogRace.Inthatproblem,youusedthesame methodofcomparingaveragespeedstoapproximateacceleration. F. AHypotheticalScenario Inordertobetterunderstandyourdataandyourconclusion,performthefollowing thoughtexperiment. 1. Imaginethatyouareinanalternateuniversewithdifferentlawsofphysics. Inthisuniverse,whenyoudroppedastringwithPatternB,itproduceda steadyrhythm. 2. DothesameanalysisyoudidinpartE(especiallysteps3-5)forPatternB. 3. Calculatethechangeinthechangeintheaveragespeed,duringeachbeat. Whatunitswouldthisbein? 4. Whatconclusionswouldyoudrawaboutthemotionofobjectsinfree-fallin thisimaginaryalternateuniverse?Doestheirspeedstaythesameastheyfall ordoesitchange(accelerate)?Iftheirspeedchanges,doestheiracceleration change(jerk)?Iftheiraccelerationchanges,doesitgoupordown?Does theirjerkchangetoo,oristhatconstant?
© Copyright 2026 Paperzz