Steppe-Tundra Transition: A Herbivore-Driven Biome Shift at the End of the Pleistocene Author(s): S. A. Zimov, V. I. Chuprynin, A. P. Oreshko, F. S. Chapin III, J. F. Reynolds, M. C. Chapin Source: The American Naturalist, Vol. 146, No. 5 (Nov., 1995), pp. 765-794 Published by: The University of Chicago Press for The American Society of Naturalists Stable URL: http://www.jstor.org/stable/2462990 . Accessed: 28/03/2011 04:34 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=ucpress. . Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The American Society of Naturalists are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org Vol. 146, No. 5 The AmericanNaturalist November 1995 STEPPE-TUNDRA TRANSITION: A HERBIVORE-DRIVEN AT THE END OF THE PLEISTOCENE S. A. ZIMOV,1V. I. CHUPRYNIN,2 A. P. ORESHKO,2 F. S. J. F. REYNOLDS,4 AND M. C. CHAPIN3 BIOME SHIFT CHAPIN III,3* 'North-EastScientificStation,PacificInstituteforGeography,Far-East Branch, Russian Academy of Sciences, Republic of Sakha, Yakutia, Cherskii,Russia; 2PacificInstituteof Geography, Far-East Branch, Russian Academy of Sciences, 7 Radio Street,690041 Vladivostok,Russia; 3Departmeiitof IntegrativeBiology, Universityof California,Berkeley,California94720-3140; 4Departmentof Botany, Duke University,Durham, NorthCarolina 27708-0340 December 18, 1993; Revised March 15, 1995; Accepted March 22, 1995 Sulbmnitted Abstract.-A simulationmodel, recentexperiments,and the literatureprovide consistentevidence thatmegafaunaextinctionscaused by human huntingcould have played as great a role as climate in shiftingfroma vegetationmosaic with abundant grass-dominatedsteppe to a mosaic dominatedby moss tundrain Beringiaat the end of the Pleistocene. General circulation of Beringiawas colder thanat the presentwith models suggestthatthe Pleistoceneenvironment broadly similarwind patternsand precipitationbut wvetter soils. These and otherobservations suggestthatthe steppelikevegetationand dry soils of Beringiain the late Pleistocene were not a directconsequence of an arid macroclimate.Tramplingand grazingby mammaliangrazers in tundracause a shiftin dominancefrommosses to grasses. Grasses reduce soil moisturemore effectivelythanmosses throughhighrates of evapotranspiration.Results of a simulationmodel based on plant competitionfor water and lightand plant sensitivityto grazers and nutrient supply predictthateitherof two vegetationtypes,grass-dominatedsteppe or moss-dominated tundra,could exist in Beringiaunderbothcurrentand Pleistocene climates.The model suggests thatmoss-dominatedtundrais favoredwhengrazingis reduced below levels thatare in equilibriumwithclimateand vegetation.Togetherthese resultsindicatethatmammaliangrazers have a sufficiently thattheirextinctioncould have contriblargeeffecton vegetationand soil moistLure uted substantiallyto the shiftfrompredominanceof steppeto tundraat thePleistocene-Holocene boundary. Our hypothesissuggests a mechanism by which the steppe ecosystem could be restoredto portionsof its formerrange. We also suggestthatmammalianimpactson vegetation are sufficiently large thatfuturevegetationcannot be predictedfromclimate scenarios without consideringthe role of mammals. The structure of naturalvegetationcorrelatescloselywithcurrentclimate, allowingvegetationto be classifiedaccordingto bioclimaticzones (Holdridge 1947).Similarly, thedistribution ofindividual speciesor floristic groupsis often correlated withspecificclimaticparameters (Young1971;Whittaker 1975).These havebeenusedtoexplainthecurrent vegetation-climate relationships distribution of species(Whittaker 1975)and majorbiomes(Woodward1987;Prenticeet al. have been used to deduce 1992).The presentvegetation-climate relationships of pastvegetation past climatebased on paleoecologicalindicators (Davis 1981; * To whom correspondenceshould be addressed; E-mail: fschapin(w'garnet.berkeley.edu. Am. Nat. 1995. Vol. 146, pp. 765-794. All rightsreserved. t 1995 by The Universityof Chicago. 0003-0147/95/4605-0006$02.00. 766 THE AMERICAN NATURALIST Grichuket al. 1984; COHMAP 1988) and to predictfuturevegetationdistribution based on general circulationmodel (GCM) projectionsof futureclimate (Pastor is and Post 1988). The implicitassumptionbehindthese climatic,reconstructions the distributionof vegetation.Howthatclimate is the major factordetermining ever, animals also stronglyinfluencethe species composition,structure,and processes of ecosystems (O'Neill 1976) such as steppe (Vysotskii 1901; Pachosskii 1917; Prozorovskii1940 [as cited in Kucheruk 1985]; Walter 1979), savanna (McNaughton 1979; Owen-Smith1987, 1988), and boreal forest(Pastor et al. 1988, 1993; Bryantet al. 1991). Consequently,changes in animal abundance can radically alterthe structureand species compositionof vegetation,forexample, convertinggrassland to shrublandor forest(Owen-Smith 1987; Schlesinger et al. 1990). Moreover, factorsextraneous to climate (e.g., human huntingpressure) can stronglyinfluenceanimaldensitiesand, therefore,the animalimpacton vegeof ecosystems (Pastor and tation.Predictingthe futurestructureand distribution Post 1988) may, therefore,requireconsiderationof trophicinteractionsas well as directeffectsof climateon vegetation. One of the most dramaticvegetationchanges of the last 20,000 yr was the conversionof a vegetationmosaic dominatedby a semiarid,grass steppe witha well-developedgrazingmegafaunato a mosaic dominatedby wet moss tundra (includingforesttundrawith scatteredtrees) withouta large grazingfauna. In thisarticle,we referto thisunproductivetundraand foresttundraas tundra.This change occurredat theend of thePleistocene 10,000-12,000yrbeforethe present at the end of the Pleistocene (B.P.). In addition,boreal forestexpanded northward steppe,presumablyin responseto climatic intoareas thathad been predominantly warming.In the remainderof this article,we emphasize those areas of Beringia continentalshelf) presently (easternRussia, westernAlaska, and the intervening occupied by tundra,even thoughthese patternsalso extended south and west into areas presentlyoccupied by forest. The vegetationchanges at the end of the Pleistocene have generallybeen ascribed to climaticchange (see, e.g., Hopkins et al. 1982; Grichuk 1984). More hypothesis recently,Owen-Smith(1987, 1988) proposed the keystone-herbivore to explain the widespread vegetationchange that occurred globally at the end of the Pleistocene. This hypothesis,based primarilyon temperateand tropical evidence, suggeststhatlargegrazingmammalsare "keystone" species thatmaintain an open vegetationthat undergoes succession to woodland or shrubland hywhen grazers are removed. In this article,we apply the keystone-herbivore pothesis to vegetationof the Far Northof Russia and westernAlaska. Based on evidence fromthe literature,recentexperiments,and a simulationmodel thatwe developed, we suggest that the Pleistocene grazing megafaunaplayed a major role in maintaining steppeconditionsduringthePleistoceneand thatits disappearance, whichcoincided withincreasedhumanhunting,contributedstronglyto the transitionfromsteppe to tundraat the end of the Pleistocene. HYPOTHESES FOR THE STEPPE-TUNDRA TRANSITION The Pleistocene overkillhypothesissuggests that increased human hunting pressurecaused or contributedto megafaunalextinctionat the end of the Pleisto- HERBIVORE-DRIVEN BIOME SHIFT 767 cene (Hopkins 1967; Jelinek1967; Martinand Klein 1984). Early humans may have coexisted with steppe megafaunain the mid-Pleistocene,using sharpened bones and antlers as their huntingweapons. However, 10,000-15,000 yr B.P. Beringia became occupied by an anatomicallymodernpeople who huntedwith stone microblades(stone chips) insertedinto wooden or bone shafts(West 1981; Guthrie1990) and who fed extensivelyon the steppe megafauna(Haynes 1982). In muchof Beringia,the spread of thismodernmicrobladehuntingtechnologyis correlatedin timewiththeextinctionofthe steppemegafaunaand withvegetation change fromsteppe to tundra.WrangelIsland to the northof Siberia was isolated fromhumanhunting(Lister 1993). Here, mammothssurviveduntil32700yrB.P., thatis, well intothe Holocene (Vartanyanet al. 1993),a timethatcoincided with human arrival on Wrangel Island (Lister 1993). This suggests that survival of Pleistocene grazingmammalsinto the Holocene was possible in the absence of humanhunting. The climatichypothesisformegafaunalextinctionassumes thatan arid, continentalclimateprevailedin Beringiaduringthe Pleistocene, causing low summer precipitationand drysoils (Velichko 1973; Yurtsev 1974; Giterman1976; Hopkins et al. 1982; Grichuk1984; Sher 1988; Vereshchagin1988). Well-drainedsoils and warm summerspromoteda productivesteppe vegetationthatsupportedpopulations of large grazers (mammoths,bison, and horses) (Hopkins et al. 1982; Guthrie1990). Dry soils facilitatedanimal movement.Accordingto the climatic hypothesis,the climatebecame wetterduringthe Holocene: rainfallincreased, a moss-lichencover developed, the amount and productivityof the herbaceous vegetationdecreased, and snow depth increased. Togetherthese factorscaused the extinctionof the steppe megafauna(Tomirdiaro1978; Yurtsev 1982; Shilo et al. 1983; Guthrie1990). The major evidence forthe climatichypothesiscomes fromPleistocene pollen and macrofossilsof grasses,Artemnisia, and othersteppe taxa thattoday are most abundantin the arid regionsof centralAsia (Yurtsev 1974, 1982; Grichuket al. 1984; reviewed in Guthrie1990). Today, steppelikevegetationoccurs in the tundra zone primarilyas isolated islands on arid, south-facingbluffs(Yurtsev 1982; Murrayet al. 1983; Edwards and Armbruster1989; Walker et al. 1991), which leads to the assumptionthatthe warm, dry microclimatethatcharacterizesthis habitattoday may also have characterizedthe Pleistocene macroclimate.Megafaunafossilsare commonin depositswithsteppe vegetationbut generallyabsent fromHolocene deposits (Guthrieand Matthews1971; Guthrie1982, 1984b, 1990), although the precise timingand rate of these changes is debated (Mead and Meltzer 1984). Thus, there is a general correlationamong the presence of dry soils, steppe vegetation,and megafauna. There are several sources of uncertaintyin reconstructingthe Pleistocene steppe landscape (Colinvaux 1964; Ritchie and Cwynar 1982; Anderson 1985; Barnoskyet al. 1987; Edwards and Armbruster1989; Guthrie1990). First,many of the taxa thatdifferentiate fromtundra(sedge) steppe (grasses and Artemnisia) pollen assemblages cannot be identifiedto species and today contain taxa that can be found on both wet and dry soils. Second, it is difficultto reconstruct landscape-level vegetationpatternsfrompollen cores taken largelyfromlakes (Schweger 1982; Barnoskyet al. 1987; Edwards and Armbruster1989). Finally, THE AMERICAN NATURALIST 768 controversy over polleninfluxratesraisesquestionsas to whetherthe steppe vegetationwas unproductive (Ritchieand Cwynar1982; Colinvauxand West 1984)or highlyproductive (Guthrie1990).Based on thebulkoftheevidence,it of Beringiawas productive seemslikelythatthePleistocenesteppevegetation mosaicwas probably and occurredon drysoils (Guthrie1990).This vegetation butsteppegrasslandwas probably variablegeographically and topographically, a widespreadcommunity type(Barnoskyet al. 1987;Edwardsand Armbruster 1989). drawsheavilyon boththeoverkilland the The keystone-herbivore hypothesis betweenaniclimatichypotheses andlinksthembyassumingstronginteractions thekeymalgrazingand ecosystemprocesses.As withtheclimatichypothesis, assumesthata productive steppevegetation was necstone-herbivore hypothesis It extendsthePleistoceneoverkillhypothesis essaryto supportmegaherbivores. was essentialto themaintenance by suggesting thatgrazingby megaherbivores whichproduceddrysoils through of a productive high grass-steppe vegetation, Thisis illustrated as a conceptualmodel(fig.1) that ratesofevapotranspiration. shows stronginteractions amongclimate,animalgrazing,and ecosystemproof themegafauna could cause a transition from cesses in whichtheextinction ofmoss-dominated tundra(i.e., tipthe predominance ofsteppeto predominance data and paleoindicators of balancein favorof tundra).Because thevegetation withboththe climaticand the keystone-herbivore soil moistureare consistent we cannotuse vegetation-based climatereconstructions to differentihypotheses, we address two Was thecliate betweenthesehypotheses. questions: Instead, maticchangeat theend of thePleistocenesufficient to cause a transition from Arethereplausiblemechanisms bywhichtheloss ofmegafauna steppetotundra? couldcause a shiftfromsteppeto tundra? EVIDENCE AGAINST AN EXCLUSIVELY CLIMATIC EXPLANATION FOR STEPPE Changes in Aridityof Climate inreconstructing thecauses ofpaststeppevegetation and The majordifficulty itschangeto tundrais thepaucityofdirectevidenceforthenatureofthePleistocene climatein Beringia.Here we presentindirectevidencefroma varietyof thattheBeringian sourcessuggesting climatewas cold butnotnecessarilymore thePleistocenethantoday.Largeice sheetsoccupiedCanada,Greenaridduring land, and northern Europeduringthe Pleistocene20,000yrB.P., but northern shelfseparating thesetwo areas Russia,Alaska,and the Beringiancontinental wereunglaciated, glaciers(Hopkins1967;Nekraexceptforlocalizedmountain sov et al. 1973;CLIMAP 1981;Serebryanny 1984).Oxygen-isotopic composition in thenorthPacific of fossilforaminifera indicatethatsea-surface temperatures southofBeringiawere2?-8?Ccolderduring thePleistocenethanat present(CLIMAP 1981;Rind1987).Togetherthesedataindicatea colderclimatein Beringia thanexiststoday.Consequently, sea ice extended100 latitudefarther souththan at present(CLIMAP 1981;Kutzbachand Guetter1986). The geographical patternof the Pleistoceneclimate20,000yrB.P. has been U) --<p) 0 0~~~~~~~~~~~C 2C) 3 m-C CO)~~~~~~~~~~~~~~~~~~C -o~~~~~~u L Cd Cd, 00~~~~~~~~~~~~~c -00 ~~~l -C 4_ ) C) 0 C,,t 00~~~~~~~~~~~~~~~~~~~~~~~~~~~ Li ) 770 THE AMERICANNATURALIST data on thePleistocenedistribution of simulatedusingGCMs thatincorporate and albedo (Kutzbach land,ocean, glaciers,sea ice, sea-surface temperatures, and Wright1985;Manabeand Broccoli1985;Kutzbachand Guetter1986;Rind 1987).These paleoclimatic reconstructions usingthreedifferent GCMs suggest thatthePleistoceneclimateof Beringiawas 2?-5?Ccolderin summerand 10?thegrowing and much 20?Ccolderinwinterthanat present, seasonwas shorter, ice sheets aroundthelargecontinental ofthejet streamwas deflected southward in easternNorthAmericaand westernEurasia(Kutzbachand Wright1985;ManabeandBroccoli1985;KutzbachandGuetter1986;Rind1987).However,these windpatand surfaceandjet-stream GCM simulations suggestthatprecipitation ternsin Beringiawerebroadlysimilarto presentpatterns, althoughin thepast inclimatewithin variation (as today)therewas probablysubstantial geographical windsdirectly west Beringia.For example,theremayhavebeenmoresoutherly or of theLaurentideice sheet(Kutzbachand Wright1985)but morenortherly and windselsewherein Beringia.Because of similarprecipitation continental coldersummers betweenthePleistoceneand presentclimate,thesemodelsprein Beringia(Rind1987)or geographically variablesoil dicthighersoil moisture moisture(drysoils immediately east of the Europeanice sheetand similaror highersoil moisture elsewherein Beringia)(Manabeand Broccoli1985).These withassumptions GCM simulations conflict thata warm,arid summermacroof climatethroughout forthewidespreaddistribution Beringiawas responsible and drysoils(Grichuk1984;Velichko1984;Guthrie1990). steppevegetation Asia and Alaska were moreextensivein the Mountainglaciersof northeast earlierglacialatePleistocenethanat present(although less extensivethanduring tions)(Pewe et al. 1965;Hamilton1982;Hopkins1982;Serebryanny 1984).Mass balanceof mountain glaciersis governedprimarily by snowinputsand summer Giventhatsea-surface andairtemperatures werelowerduringthePleismelting. tocenethanat presentand thatsea ice extendedfarther south,the extensive mountain thePleistoceneweremorelikelydue to cold glaciersofBeringiaduring summersthanto wetterwinters(Lebedeva and Khodakhov1984; Rind 1987; Zimovand Chuprynin 1991),whichsuggeststhatthePleistocenedid nothave a warmsummer climate. andlow climaticpotential forevapotranspiration, Despitecold summers Pleistocenesoilsweredrierthanat present.ExtensivePleistocenedunesofsandand siltthroughout Beringia(Hopkins1982;Tomirdiaro 1982)suggesteitherthatthe climateofthePleistocenewas too coldto supportproductive vegetation (Ritchie andCwynar1982;ColinvauxandWest1984)or thatthesoilswereextremely dry dunes (Hopkins1982;Tomirdiaro 1982;reviewedinGuthrie1990).Alternatively, shorttimeperiodsand maynotreflect mayhavebeenproducedduringrelatively theaveragePleistoceneclimate.Carbonateand saltaccretionin thesedeposits also indicatehighactualevapotranspiration ratesfromthesesoils (Tomirdiaro 1982;Walkerand Everett1991).The vegetation data also suggestdriersoilsbut are not conclusiveevidenceof a drymacroclimate. Many of the Pleistocene grassesweremesophyllous (Yurtsev1981,1982),and somesteppespecies(e.g., of disturbance and drysoils ratherthanof Artemisiaarctica)maybe indicators drymacroclimate (Webber1978). The radiativeindexof aridity(Ia, theratioof netenergyinputto energyre- 771 HERBIVORE-DRIVEN BIOME SHIFT TABLE I AVERAGE RADIATION, PRECIPITATION AND INDEX (NOVEMBER-MARCH, OF ARIDITY (SEE APRIL-OCTOBER, TEXT) IN i6 AND WEATHER TOTAL), STATIONS NET TOTAL OF NORTHEAST SOLAR ASIA PRECIPITATION (mm) LATITUDE, LOCATION LONGITUDE Kotelnyi Priobr-ocheniya WrangelIsland Chetyrekhstolbovoi Mostakh Island Ayan Olenek Verkhoyansk Cape Schmidt Srednekolymsk Uelen Srednekan Markova Oimiakon Yakutsk Aldan NOTE.-Data 75?N,140?E 74?N,110?E 72?N,180?E 71?N,160?E 71?N,129?E 70?N,168TE 68?N,112?E 68?N,133?E 68?N,180?E 67?N,153?E 67?N,173?W 64?N,153?E 64?N,171?E 63?N,142?E 62?N,129?E 580N,126TE Nov.- March 40 28 65 46 55 52 47 27 81 57 125 149 107 32 36 89 April- NET RADIATION Oct. Total (kcal cm2- 101 144 117 101 177 137 219 120 173 131 261 268 230 143 166 457 141 172 182 147 232 189 266 147 254 188 386 417 337 175 202 546 11.1 15.8 23.8 20.5 14.7 24.7 21.3 23.8 26.3 26.3 19.1 23.4 27.1 31.0 29.3 26.4 yr' l) INDEX OF ARIDITY 1.5 1.7 2.4 2.6 1.2 2.5 1.5 3.0 1.9 2.6 .9 1.0 1.3 3.3 2.7 .9 are averages for the entire record (up to 1980) of each station (n > 20 yr) from regional volumes of the ClimaticAtlas ofthe/Soviet Union (Zimov and Chuprynir.1991). providesan objectiveindexof aridity quiredto evaporateannualprecipitation) (Budyko1984): 1 PET/PPT, and PPT = precipitation (see app. wherePET = potentialevapotranspiration, A fordefinitions and units).A valueofthreeindicatesthereis enoughradiation ValuesofIa in northeast inputto evaporatethreetimestheannualprecipitation. dominated Asia (an area currently by wettundra)rangefromaboutone to three stations(table 1), values thatare similarto areas in among16 meteorological centralAsia thatsupportsteppe(1a = 1-2) or semidesert (la = 2-3) vegetation (Budyko1984). acrossBeringia(Manabeand Broccoli1985;KutzVariationsin macroclimate withslope,aspect,and bach and Guetter1986;Rind 1987)and in microclimate elevation (Barnosky et al. 1987; Edwards and Armbruster1989) were probably greaterthanthemagnitudeof changein these parametersbetweenthe Pleistocene and today (Manabe and Broccoli 1985; Kutzbach and Guetter1986; Rind 1987). Thus, we mightexpect a greaterabundance of steppe in the presentvegetation mosaic, if macroclimatewere the only factorresponsibleforthe vegetationshift across the entirearea of Beringia. Effectsof Aridityon Vegetation A major dilemmaforthe climatichypothesisis to explain how the late Pleistocene vegetationcould have been sufficiently productiveto supportthe large size THE AMERICANNATURALIST 772 andrapidgrowth ratesofthePleistocene megafauna (Guthrie1984a,1990;OwenSmith1987).Becauseitis unlikely thatthecoldertemperatures ofthePleistocene wouldhavepromoted ithas beensuggested productivity, thatdrysummers preventedwaterlogging ofsoilsandcontributed to a highproductivity ofthePleistocene steppe(Hopkinset al. 1982;Guthrie1990).However,the distribution of current tundraecosystemsindicatesa negativecorrelation betweenaridityand productivity (Yurtsev1982).As discussedbelow,itis morelikelythatthespecies composition of steppewas morenutritious to megafaunal grazersthanis thatof tundra. Direct ClimaticEffectson Fauna The climatichypothesis suggeststhatclimaticchangeat theendofthePleistocenecouldhavecontributed directly tomegafauna extinction increasesin through snowdepth(reducing access to winter summer food)and soilmoisture (reducing mobility) (Guthrie1990).However,today'ssnowcoveris <30 cm in thecentral plainsofYakutiaand in thebasinsoftheYana and Indigirka Riversin northern Yakutia(Gavrilova1973).At 61 of 83 Yakutianmeteorological stations,winter precipitation is <50 mm(also see table 1) (Zimovand Chuprynin 1991).Areas thatsupportnaturalor introduced bisonpopulations,such as the GreatSlave Lake of Canada or the Delta Junction area of Alaska, currently have greater snow depththannorthern Yakutia.Yakutianhorses,a hardynorthern breed, obtainsufficient foodto sustainthemselves frombeneatha 50duringthewinter to60-cmsnowpack(Tikhonov1987).Moreover,thesehorsesgrazeinwetriparian meadowsin summer inpreference withdriersoils(S. A. Zimov, to communities personalobservation), whichsuggests thatsummer soilmoisture does notgreatly restrict habitatuse. In summary, thePleistoceneclimatewas probablycolderthanat present,but If theclimatehad beenmorearidin thepast,it are uncertain. changesin aridity wouldprobably havereducedrather thanincreasedtheproductivity ofthevegetation.Thus, thereis not strongevidencethata changein macroclimate alone caused a changein relativeabundancefromproductive grasslandsteppeto less productive tundra. POTENTIAL MECHANISMS FOR THE STEPPE-TUNDRA TRANSITION We suggestthatthe keystone-herbivore hypothesis(Owen-Smith 1987)is a usefulalternative to theclimatichypothesis becauseit providesa mechanism to anddrysoilsofthePleistocenesteppewithout explainhighproductivity assuming a morefavorableclimateforplantgrowth. The climatichypothesis assumesthat an aridPleistoceneclimateproduceddrysoils thatwere necessaryforsteppe vegetation and,therefore, steppemegafauna (fig.1) (Guthrie1990).The keystoneherbivore hypothesis arguesthatthepresenceofanimal-induced steppevegetationcouldhaveproduceddrier,morefertile soilsthanoccurin tundra. VegetationEffectson Soil Moisture influences soil moisturebecause mostwaterevaporating Vegetationstrongly fromvegetatedsurfacesderivesfromtranspiration (Jarvisand McNaughton HERBIVORE-DRIVEN BIOMESHIFT 773 1986).Transpiration ratecorrelates withphotosynthesis at theleaflevelbecause stomatalconductanceis adjustedto matchthebiochemical potentialforphotosynthesis (Farquharand Sharkey1982;Fieldet al. 1992)and at thecanopylevel becausebothprocessescorrelate withleaf-areadevelopment (Collatzet al. 1991; Field et al. 1992).Consequently, transpiration is proportional to photosynthetic carbongain(Chapin1993)andnetproductivity (about400-500g water/g production)(Larcher1980;Field et al. 1992).If primary productivity duringthe late Pleistocenegrass-dominated steppewas higherthanthatofthemoss-dominated tundraof theHolocene,thePleistocenesoils couldhave been drierbecause of thegreaterevapotranspiration ratherthanbecauseofdrierclimate(fig.1). Highplantproductivity reducessoilmoisture. Whenagricultural landsremain fallowin aridclimates,soil moisture increases.Removalofforesttreesreduces regionalevapotranspiration and increasesrunoff (Bormannand Likens 1979). Computer simulations linkedtoGCM modelspredictthata conversion oftropical foresttograssland wouldreduceevapotranspiration, thereby soilmoisincreasing ture(Shuklaet al. 1990).Additionof nutrients to tussock-tundra vegetation in Alaskaincreasedproductivity andreducedsoilmoisture (Chapinet al. 1995).The presenceof largegrazersincreasedthe productivity of steppevegetationand reducedsoil moisture (Kucheruk1985). To determine whether differences amongtundravegetation typescouldcause largeeffects on evapotranspiration andsoilmoisture, we measuredevapotranspirationfromdifferent speciesand associatedsoils in weighing lysimeters at the NortheastScientific Stationin theKolymalowlandsduringa 6-wkexperiment. Whensoils weremaintained at fieldcapacity,vascularplantscharacteristic of steppe(i.e., grasses,sedges,and Artemesia)transpired morewater(174 ? 18 mm)thannonvascularplantscharacteristic of tundra(69 ? 13 mm)(table2). Whenplantsreceivedonlynaturalrainfall, mossesevaporatedless water(42 ? 3 mm)thanbareground(55 mm)because mosseslack a rootsystemand have limitedaccess to soil water.By contrast,steppespeciesevapotranspired 99 ? 12mmofwater(all theavailablewaterinthesoilprofile) wilted. andsubsequently Theseexperiments demonstrate thatsteppevegetation morewaterand transpires producesdriersoilsthanmoss-dominated tundravegetation. VegetationEffectson Soil Fertility To explaindifferences in productivity inbetweensteppeand tundra,without vokinga changein climate,we mustunderstand theroleof mossesand grasses in plant-soil feedbacks.Mosses reduceratesofdecomposition minand nitrogen eralization (CoulsonandButterfield andDamman1991;Van Cleve 1978;Johnson et al. 1991)becauseoftheirlow nitrogen and highconcentrations concentration ofrecalcitrant lignin-like conductance polymers (Chapinet al. 1986),lowthermal thatreducessoil temperature, and low ratesof evapotranspiration, whichpromotethedevelopment ofwaterlogged soils.Theresulting lownutrient availability limitstheproductivity ofvascularplants(Chapinand Shaver1985).By contrast, mossgrowth is limited morestrongly bywaterthanbynutrients (SkreandOechel 1979, 1981),so the moist,nutrient-deficient soil environment promotesmoss growth.Eventually, as themossesgrow,thawdepthdecreasesto thepointthat 774 THE AMERICAN NATURALIST TABLE 2 RATESOF EVAPOTRANSPIRATION FROMPLANTSPLUSASSOCIATED SOILSPLACEDIN 2i-cm-DEEPWEIGHING LYSIMETERS IN THEKOLYMALOWLANDS DURINGI989 MAXIMUM EVAPOTRANSPIRATION RATE (mm d-') SURFACE TYPE Free water Soil: Steppe loam Sand Tundra plants: Lichen (Cladonia) Moss Steppe species: Agropyron Eriophorumsw1 Equiisetiuml A)rtemesia Probabilityof differencebetween nonvascularand meadow/steppe species* Field Capacity Natural Precipitation 6.7 . 6.4 3.6 . AVERAGE RATEOF EVAPOTRANSPIRATION (mm d-1) Field Capacity Natural Precipitation 3.5 ... 1.3 ... 3.3 1.5 1.0 ... 3.3 6.1 1.5 1.0 1.6 2.8 .9 1.0 16.2 9.6 8.8 14.7 4.3 5.6 3.1 3.6 6.7 5.3 4.0 6.1 2.5 3.0 1.6 2.3 .03 . .01 .03 .02 NOTE.-Each lysimetercontainedbare soil, open water, or complete plant cover. Samples were collected froman area of loess soil typicalof the region.Water was added to bringeach soil to field capacity. Lysimeterswere weighed twice daily, and water was added weekly to maintainconstant weight.Measurementswere made withlysimetersmaintainedeitherat fieldcapacity (n = 2) or with natural precipitation(n = 1). We presentboth the maximumobserved rate and the average rate duringJuly1989. Average environmentalconditionsduringthe experimentwere as follows: air temperature(25?C), wind speed (4 m s-'), relativehumidity(45%), daily directirradiance(21 h d-'), and precipitation(7.4 mm wk- '). * Probabilityvalue fromt-test,treatingeach species as a separate sample. onlythemosslayeritselfthaws(Kriuchkov1973;Chernov1978;Van Cleve et al. 1983),andgrasses,whichrequireaccess to thawedmineralsoil,are excluded fromthesecommunities. Because of thesefeedbacks(fig.1), moss ecosystems developreadilyin theFar North.For example,in northwestern Siberia,60%70% of the forestedarea disappearedduringhistoricaltimebecause of moss andassociatedwaterlogging development ofsoils(Kriuchkov1973),andAlaskan forestssucceedto moss-dominated muskegsand spruceforestsin theabsenceof fire(Van Cleveetal. 1991).Moss-dominated ecosystems areavoidedbymammalianherbivores (Wolff1980)becausethelow tissue-nutrient and highsecondarymetabolite concentrations inthevegetation cause low digestibility andlow palatabilityto animals(Bryantand Kuropat1980;Pastoret al. 1988). In morefertile grass-dominated meadows,an alternative set offeedbackspromotesproductivity and grazing(fig.1) (Chapin1991).Growthof grassesin the currenttundraenvironment is stimulatedby nutrient inputsfromfertilizers (McKendricket al. 1978;Shaverand Chapin1986),animalcarcasses,and feces (Batzliet al. 1980;McKendricket al. 1980)or intensive disturbance by humans (Chapinand Shaver 1981;Zimov 1990)or animals(Batzli and Sobaski 1980). HERBIVORE-DRIVEN BIOMESHIFT 775 Mowingstimulatesthe abovegroundproductionof steppegrasslandsfivefold (Kucheruk1985)and of sedgetundrathreefold (Peshkovaand Andreiashchkina 1983),whichindicatesthatgrazingstimulates aboveground productivity in these ecosystems.Thisgrass-dominated vegetation has highertissue-nutrient concentrationsthanmosses or dwarfshrubs,is moredigestible,and attractsgrazers (Whiteand Trudell1980). Both the highlitterqualityand the rapidturnover of nutrients and nutrient by grazersstimulatedecomposition, mineralization, turnover (Batzliet al. 1980;Chapin1991)and reducesoil moisture(Chapinand Shaver 1985).The dense vascularlitterfall shades out or physicallysmothers mosses, whichleads to a declinein theirabundance(Chapinet al. 1995). In high-fertility sitesmanygrassesare coveredwithsnowwhilegreenand, therethe winter(Tishkov1985), fore,maintaintheirhighforagequalitythroughout whichleads to intenseoverwinter microtine grazing(Batzliet al. 1980;Chapin and Shaver 1981).These feedbacks,whichmaintaingrasslands,are also well intemperate andtropicalclimates(McNaughton documented 1979;Huntly1991), but theyoccur onlyin isolatedlocationsof intensivelemminggrazingin the Far North,because thereare no largegrazingmammalsthatfeed mainlyon grasses. Possible Triggersfor VegetationChange tundraand grass-dominated Giventhatbothmoss-dominated steppeecosyssoil moisture and nutrient temscan createtheirownself-sustaining regimes(fig. a changein therelativeabundanceof steppeand 1), whatcould have triggered Fourfactorswerepotentially imtundraat thePleistocene-Holocene boundary? thecessationof loess deposition,increasesin atmoportant:climaticwarming, sphericCO,, and theloss oflargemammalian grazers. and groweffectively Arcticgrassesand mossesbothphotosynthesize at low temperature (Oecheland Sveinbjornsson 1978;Tieszen 1978)and exhibitbroad thatwarming latitudinal distributions, so it seemsunlikely woulddirectlycause a shiftfromgrassto mossdominanceat theend ofthePleistocene. Pleistoceneloess depositionin theBeringianlowlandsceased The substantial at thebeginning oftheHolocene(Tomirdiaro 1982).Whentheaveragedeposition rateis greater than1 mmyr-1,grasseshavea competitive advantageas colonizers sourceforgrasses (ZimovandChuprynin 1991).Sediments providea richmineral andeliminate shrubs(Walkerand slowlygrowing mosses,lichens,andevergreen Everett1987,1991;Zimovand Chuprynin 1991). In thelow-CO2Pleistoceneclimate(Webband Bartlein1992),stomatesmust have remainedopenlongerand transpired morewaterto absorba givenamount of CO2 comparedto theHolocene(Larcher1980;Fieldet al. 1992).Thus,even musthave assumingno changein climate,a low-CO2Pleistoceneenvironment anda morexerophytic forwater,lowersoilmoisture, causedgreater competition thanin current tundra.Most of thischangein atmospheric vegetation CO2 occurredbefore12,000-15,000 yrB.P. (Webband Bartlein1992)and thuspreceded thetransition fromsteppeto tundra. Theloss oflargemammalian grazersatthePleistocene-Holocene boundary (see to thetransition fromsteppeto tundra.Ungrazed, above)couldhavecontributed 776 THE AMERICANNATURALIST unfertilized meadowsare unstablein the absence of herbivoresor continued disturbance (Chernov1978).Whendry,uneatenlitteraccumulates, nutrients are turnoverdeclines sequesteredin undecomposedorganicmatter,and nutrient (Batzli 1977).Drygrasslitteris highly reflective, reducingradiationgain,and is an effective heatinputto soilduringtheshortsummer heatinsulator, minimizing thedepthofsoilthaw,and promotseason,coolingtheunderlying soil,reducing ingthegrowth ofmossesand evergreen shrubs(Batzli1977).Conversely, herbivorescan cause a conversion fromtundrato grass-dominated meadow.Despite itseffectiveness in excludingothervegetation, mosscoveris fragilewhentrampledor grubbedbyanimals(Chernov1980).AreasofRussiantundracoveredby whichbothdestroy deep snow,such as ravines,supportlemming populations, themossesand fertilize thesoil. Duringpopulation outbreaks, lemmings expand intoareas betweenravinesand eliminatemossesby grubbing (Chernov1978), to themaintenance ofmeadows,whichare 8- to 10-fold whichcontributes more thanmossassociations(Chernovet al. 1983).The highproductivity productive of meadowsis associatedwithan 8-10-foldincreasein biomassof soil invertebratesand withrapidnutrient cycling(Chernov1978;Chernovet al. 1983).Simibetweenice-wedgepolygons larly,in Alaskanlowlandpolygonal tundra,troughs and morerapidnutrient have deepersnow,largerlemming populations, cycling reindeer thanadjacentmicrohabitats (Batzlietal. 1980).Similarly, grazingcauses and reducedcover of mosses and shrubs(Thing the expansionof graminoids and nutrient 1984).Snowgeesealso stimulate productivity cyclingin coastalsalt marshesofnorthern Canada and Alaska(Cargilland Jefferies 1984).On a larger scale, wherefireor humandisturbance destroysthemossturf,meadowvegetationdevelopsand becomesa focusforactivityof mammalian herbivores (Fox 1978;Wolff1980;Bryantand Chapin1986). In the followingsection,we presentresultsof a simulationmodel to test theimpactofmammalian is sufficiently whether grazerson vegetation strongthat fromsteppeto tundra theloss ofthegrazingmegafauna couldcause a transition in Beringia(fig.1). The modelwas originally developed(Zimovand Chuprynin ofvegetation based on patterns ofannual 1991)to predicttheglobaldistribution radiationinputand precipitation, competition amongfunctional groupsofplants and water),and grazingby large determined resources(radiation forclimatically betweengrazing mammals.In thisarticle,we applythemodelto theinteraction and climatein Beringia. A MODEL SIMULATION OF MEGAFAUNAL IMPACTS IN THE FAR NORTH Overviewof Model The model has threefunctional groups:"trees" (woody plants,including shrubs),"grasses" (herbaceousvascularplants),and "mosses" (nonvascular maximum plants,including lichens).Each functional grouphas a characteristic whensuppliesof light,water,or nutrients are growthratethatis diminished a group'sresource"demand," Thisgrowthrate,whichdetermines suboptimal. thataredetermined is further modified coefficients bycompetition bythepriority HERBIVORE-DRIVEN BIOMESHIFT 777 of access of each groupto a limiting resource(i.e., radiationor water).For example,mossescompetewithtreesandgrassforwaterbutnotforlight(because oftheirshorter stature);treesandgrasscompetewithone anotherforlightinthe Far Northwheretrees(i.e., shrubs)are short,but elsewheretreesare better forlightthanare grassesand mosses.Comparablerulesofcompeticompetitors tionforwaterare governedby rootingdepth.The modelis outlinedbriefly in appendixB and describedin detailelsewhere(Zimovand Chuprynin 1991). Nutrient supply,whichis linkedless directly to climate,is assumedto affect competition through differential effectson growth(i.e., responseof grasses> trees> mosses) (Chapinand Shaver1989)ratherthanbeingthe resourcefor whichplantscompete.Nutrient supplycan be variedin the modelto simulate theincreasedsoilfertility associatedwithPleistoceneloess deposition. Mammalian grazersaffectvegetation through consumption and destruction of biomass.We assumethatgrazershave no long-term detrimental effecton grass biomassina steady-state ecosystem controlled byclimateandpredators because predators prevent overgrazing on thelongtimescales(centuries) simulated bythe in tundracompensateseffectively model,and grasslandproduction forgrazing through a varietyofecosystem feedbacks(Peshkovaand Andreiashchkina 1983; ofthemodelwerequalitaCargillandJefferies 1984;Kucheruk1985).Predictions whenthisassumption was relaxedtoallowgrassresponsetograzing tivelysimilar to rangefrommoderately detrimental to moderately stimulatory (app. B)-that is, therangeofgrazingresponseobservedin naturalecosystems. Climaticdata(radiation wereestimated foreach terresinputandprecipitation) trial50 gridpointof longitudeand latitude(Budyko1984).The model,which includesgrazingas a naturalprocess,was solvedfortheequilibrium biomass(B) ofeach functional group(dBldt= 0) at each 5?gridpoint,assumingeach offour valuesofnutrient to estimatepatterns offunctional-group availability, composition.At the two intermediate soil fertility of levels,the simulateddistribution functional bothwithinBegroupscloselymatchedobservedvegetation patterns modelvalidation. Fromthesedatawe deterringiaandglobally(fig.2), providing thatcouldbe occupied minedthecombinations of Beringian climaticconditions and fertile soils. by each functional groupon infertile withan annualtimestepto simulate The modelwas thenrunto equilibrium inproductivity andinfertile soilsunder ofeachfunctional patterns grouponfertile a representative PleistoceneBeringian scenarioofcool climate,loess deposition, ofpossiblechanges and presenceoflargegrazers.We thenranfoursimulations that fromPleistoceneto Holoceneconditions (table3): thecomplexofconditions elimination ofgrazers, changedat theendofthePleistocene(climaticwarming, climaticwarming; elimination ofloess depoandelimination ofloess deposition); in themodel. oflargegrazers.We didnotincludeCO2 effects sition;elimination ofsoilfertility was runundertwoconditions Each ofthesesimulations (to reprein nutrient and geologicvariation senttopographic supply)and twoinitialdensitiesof colonizingspecies(i.e., mossesand trees)untilbiomasscame to equilibriumwiththe new conditions.A 10-foldvariationin initialcolonizerdensity alteredtherateofvegetation changebutnottheequilibrium speciescomposition, colonizerdensity so we presentresultsfromonlythehigher (table3). The climatic J~~~~ J ~ jjl= - ~ ===I==j,*a. ~ w t*r> ~ * * * * * _ 11 -- u -- -; --ee S_ | o JI <- 1l Ie-===e-_ l== _ij ~ ~ Jh k k- *-_ =~ -L -- - *? *e _ t ti != ?_0 3~~~~6 8 -= : ;_ _X ,) = _ --U= ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CZ-Q J:!J~~ I *- 2_t ......... hi-1^5n~. | I ~~~~~~~~~~~~~~~~~~~1|1 b== OD 1 1 JX 03! 1 | 1 1 3__ == t 11 * ; b * kA @ ^ s-l 1* | s: *= *-= * !j!!---i!2= JX-i= - n=- nisa 1S=< J= )JJ.- 3== 1 , | 5 * 4 . 5: S *~~~~~~~~~~~~~~~~~~~l e ? === ~~~~~~~~~~~~~ 0~~~Z 3ER = X~~~~~~~~~~~~~ i~~~~~~~~ !18*lq 21 o j-=-*J ?=+ a) ~~~~~~CZ HERBIVORE-DRIVEN BIOME SHIFT 779 TABLE 3 FROMPLEISTOCENE CHANGES IN MODELPARAMETERS TO SIMULATE POSSIBLECHANGES TO HOLOCENECONDITIONS Model Assumptions Pleistocene conditions Holocene conditions: Eliminationof large grazers Eliminationof loess deposition Climaticwarming Climaticwarming,eliminationof grazers,and eliminationof loess deposition Potential Evapotranspiration (mm yr-') HerbivoreImpact on Moss Biomass Soil Fertility 350 .5 1.3,1.6 350 350 400 .2 .5 .5 1.3,1.6 1.0,1.3 1.3,1.6 400 .2 1.0,1.3 NOTE.-Initial Pleistocene vegetationhad a greaterbiomass of grasses (Bg = 0.25) than of trees and mosses (Bt = B,il = 0.1). Identical equilibriumvegetationcomposition occurred with a low densityof initialcolonizers (Bt = Bi,l = 0.01). Parametersare definedin appendix A. warming scenariowe presentis therangefromPleistoceneto presentinincoming netradiation(potential evapotranspiration [PET] increasedfrom300 to 500 mm sceoftheseresults,we rerantheclimatewarming yr-1) To testthegenerality netradiationcurrently reported nariowithPET = 600 mmyr-1(themaximum differed inBeringia)andfoundthatthisextreme climaticwarming only anywhere fromthe"realistic"scenario.We do notpresentdatafromthismaximal slightly climatic warming. Model Restults Whenthemodelwas runforall terrestrial itgavea realistic climates, geographithat cal distribution of each functional group(fig.2), whichgave us confidence themodelreasonably controls overvegetation districapturesthegeneralclimatic biomassofmabution,assuminga naturalgrazingregime.Whentheequilibrium jor functional groupswas calculatedin BeringiaunderPleistoceneconditions, undertheentirerangeofclimaticconditions, mosseswere grasseswereabundant to thewarmest,wettestcliabundantin dryclimates,and treeswererestricted is consistent withthePleistoofsoilfertility mates,regardless (fig.3). Thispattern of thesegrasslandsby climate, cene pollenrecordand withthe maintenance grazers,or loess deposition.Whengrazerswereremovedin themodel,mosses and trees expandeddramatically, grassesdeclined(especiallyat low fertility), increasedslightly. a changeintheclimatefromPleistoceneto HoloBy contrast, cene conditionsresultedin a largeincreasein treesundermoistconditions,a changein themoisture dependenceof mosses,and modestchangesin grasses. reducedgrassgrowthand The loss ofloess depositionunderinfertile conditions enhancedtreegrowthbuthad no majoreffecton mosses. Underfertileconditions,the loss of loess depositionhad no majoreffecton speciescomposition. The changefromPleistoceneto presentconditions in all threeparameters (graza and and caused of mosses ers,climate, loess) completereplacement grassesby and coexistenceof all threetypesat highersoil fertility, treesat low fertility A 11 09MOSS Oj7Oj50.3 0;1 40 E 0.6 GRASS 0.4 0.2 0 TREES 22101940 RPLEISTOCENE a 380 360 340 320 300 400 CHANGE IN GRAZING 380 zfw340 300 400 1 LOSS OF LOESS z 360 340 0 320 LU 300 500 CHANGE IN 480 0 A. ~~~~~~~~~~~~~~CLIMAT 440 420 400 500 CHANGE a 480 -CLIMATE, 460 440 ~~~~~IN LOESS, AND GRAZING ~400 400 2.7 Drier 2.1 1.5 0.9 3.3 2.7 2.1 1.5 0.9 3.3 INDEXOF ARIDITY 2.1 2.7 - b 1.5 0.9 Wetter groupsunderthe rangeof FIG. 3.-Predictedequilibrium biomassof majorfunctional and indexofaridityin Beringiaand evapotranspiration of potential Pleistoceneconditions loss of underfourpossiblescenariosof changefromPleistoceneto Holoceneconditions: andcombined ofloessdeposition, climatic changeinall condiwarming, grazers,elimination loss of loess deposition, and loss of largemammalian tionsincluding climaticwarming, scenariosbeganwithPleistoceneconditions(>99%o grazers.Each of thesebiome-change ofcolonizers(Bi = B, = 0.01),moderatedensityof grass)and was testedat low densities colonizers (Bm = B, = 0.1), and low fertility (s = initialfertility= 1.0; A) and highfertility = 1.3; B). Equilibrium of initialcolonizer biomasswas independent (s = initialfertility andexplanation oftermsand table3 for density.See appendicesA and B forthedefinition values. parameter ; B E GRASS MOSS 1I 0i9 0i 7 0j503 0.6 0.4 380 0.2 TREES 1 ino r 0 aPLEISTOCENE 360 340 320 300 400 CHANGE IN 380 z GRAZiNG 340 OF co380 0 -320 4300 1L- 400 X ~~~~~~~~~~~~~~~~~~~~~OLOSS LOESS E360 0. 4320 LU 3no | . _|5CIMT _CHANGE 500 4 ~~~~~~~~~~~~~~~~~~~~ CLIMATE zP480 uI 0 0. 460 440 420 400. 500 CHANGE IN CULMATE, LOESS, AND GRAZING 480 460 ~~~~~~~~~~~* 440 32420 0 40 3 .3 Li Drier L IS1. 0.9 3.3 Li7 1 1.5 0.9 3.3 INDEXOF ARIDITY 781 Li 27 - 1L i 15 0.9e Wetter 782 THE AMERICANNATURALIST in northern Beringia.These results patternssimilarto thoseobservedpresently especiallygrazersandclimate,couldcause suggestthatchangeinseveralfactors, a biomeshiftfromdominanceby grassesto dominanceby mossesand shrubs as a singlefactor andthatneither climatechangenorloss ofgrazerswas sufficient Holocenevegetation. changefromPleistocene-to in causingobservedvegetation to vegetation In summary, themodelsuggeststhatmanyfactorscontributed butthatclimatewarming was parboundary changeat thePleistocene-Holocene ticularly important to theinvasionof woodyplantsand thattheloss of grazers hadthegreatest effect on thebalancebetweenmossesandgrasses.Theseresults whereclimatepermits withpaleorecords a switchtoforest areconsistent showing formtoreachlargesize. However,itsuggests thatloss ofgrazers a woodygrowth in areaspresently occuwas criticalto theswitchfromgrassto mossdominance ourcontention thatextinction ofthe supports piedbytundra.Thus,themodeling in areaspresently occupiedby tundra Pleistocenemegafauna by humanhunting mosaicfrompredominance ofgrasscouldhave causeda shiftin thevegetation of moss-dominated tundra,even in the abdominatedsteppeto predominance sence of a largeclimaticchange.The modelalso suggeststhatotherfactors, tothischangeandenhanced particularly changesinclimateandloess,contributed growth ofwoodyplants. RECONSTRUCTION OF THE MAMMOTH-STEPPE ECOSYSTEM A large-scale reintroduction ofmammalian grazersto tundrawouldbe thebest model.Muskoxenhavebeen successvalidation ofoursimulation experimental Siberiaand northern Alaska (Klein 1988),and intonorthern fullyreintroduced of centralAlaska (Guthrie1990). bisonhave been broughtintothe mountains demonstrate thatlargemammalian grazerscan withstand These reintroductions whenhuand successfully current climaticconditions exploittundravegetation, manhunting Beringia is controlled. Moreover,mammoths persistedin northern et al. 1993). until3,700yrB.P., whenprotected fromhumanhunting (Vartanyan is globallyimportant beofgrassland-grazing ecosystems The reestablishment cause grasslandshave been morestrongly change impactedby anthropogenic the worldthanany otherecosystemtype,bothby conversionto throughout ofnativefauna.The RussianFar Northis perhaps andbyoverhunting agriculture of grassland-grazing the onlylargearea wherethe reconstruction ecosystems 1989;Zimov 1990).Here, fragments mightbe attempted (Zimovand Chuprinin ofthesteppevegetation occuron dry,south-facing slopes(Yurtsev1982;Murray et al. 1983),and meadowsof sedgesand grassesoccur alongriversand thermokarst depressions (alases).ThesespeciesprovidethegeneticbasisofBeringian ifcompetition andmight from expandintootherenvironments, steppevegetation by mammalian grazers. mossesand othertypicaltundraspecieswerecontrolled we initiated an experiment to generatea populationof To testthishypothesis, wildYakutianhorsesin thelowlandtundraof Kolyma,100kminlandfromthe foalsweretransplanted 500kmfromthesouth. ArcticOcean. In 1988,25 yearling and are without food acclimatized supplemental reproducing Theysuccessfully herd The the was or water(Zimovand Chuprynin assistance given 1991). only HERBIVORE-DRIVEN BIOME SHIFT 783 protection frompoachers.In areas in whichtheactivity of thisherdis concentrated,grassesincreasedin abundance,whilemosses declined(S. A. Zimov, F. S. ChapinIII, andJ. F. Reynolds,personalobservation), consistent withour hypothesis thatgrazingmammals can generategrass-dominated vegetation. Caribou and reindeer,whichwere also important componentsof the Pleistocene megafauna, are stillimportant herbivores in thenorthbuteat shrubsand lichens morethangrasses.The maintenance of an effective grazingregimecould be improvedby addingothergrazerstypicalofthePleistocenesteppe(e.g., bison, muskoxen). Predators, suchas thetiger,werealso essentialcomponents ofthe Pleistoceneecosystem (Vereshchagin 1988).TheAmurtigeroccursintheRussian Far East and formerly extendedintocold regionsof centralYakutia.This tiger is presently an endangered speciesbecauseofa lackofsuitableprey.Largecats have beenimportant components ofall grazingecosystems.If introduced to the north,the tigercould servethe dual purposeof providing a viablehabitatfor tigersand controlling grazerdensityin Beringia. has important Steppereconstruction implications forcurrentecologicaland social problems.Northern mossand forestcommunities are sensitiveto human disturbance Siberiais currently a regionofwide(Kriuchkov1973),andnorthern spreadhumandisturbance (Zimov1990).Because grassesand othersteppespeto disturbances suchas humanactivity cies areless sensitive (ChapinandShaver tundraareas to steppe 1981),it maybe easierto convertsomehighlydisturbed thanto restoretheoriginaltundra.If steppereconstruction weresuccessful,the grazingmammalscouldprovidea sustainablefoodsourcefornorthern peoples and a modelforreconstruction ofgrazingecosystemsthroughout theworld. CONCLUSION We willneverknowtherelativeimportance ofthemultiple causesofthetransitionfromsteppeto tundraat theendofthePleistocene.The keystone-herbivore forthehigh discussedhere,however,providesa plausibleexplanation hypothesis of foragespeciesthatmusthave been necessaryto supportmegaproductivity faunain a Pleistoceneclimatethatwas colderthanat present.Ouranalysisindicates thatnorthern grazershave sufficiently largeimpactson vegetationand to predict ecosystemprocessesthattheirrolemustbe consideredin anyeffort ofpastor future thepatternandproductivity vegetation. are mammalian Underwhatcircumstances herbivoreslikelyto cause large biomeshifts?In forestedregions,mammalspreferentially browseearlysuccessional species,whichspeeds successionand increasesthe abundanceof latesuccessionalforestsin the landscape(deToitet al. 1991;Pastoret al. 1993). at ecotonesbetweenbiomes,whereclimateis suitable However,it is primarily formore thanone ecosystemtype,thatmammalswill have theirgreatestimpact. Here overgrazingcan shiftthe balance between tundraand steppe (this article) or betweengrassland,shrubland,and desert(Schlesingeret al. 1990),whichcould on thebasis ofvegetation cause changesthatcouldnotbe predicted responseto climate. THE AMERICAN NATURALIST 784 ACKNOWLEDGMENTS S. Bret-Harte,J. Bryant,M. Edwards, D. Goldberg, We thankS. Armbruster, D. Guthrie,M. Guthrie,S. Hobbie, J. Pastor, M. Power, and H. Reynolds for criticallyreviewingthe manuscript.The collaborative research was funded by the Russian Fund of FundamentalResearch and the U.S. Departmentof Energy. APPENDIX A TABLE Al DEFINITION Symbol OF SYMBOLS AND UNITS USED IN THE MODEL Description Value(s) Used in Simulations AET a ao Climaticmaximumpotentialevaporationrate (mm yr-1) Growthrate (yr-I) Maximumgrowthrate underoptimalresources (yr-I) Computed Computed ao = 8, ao = .4, a' B b c Resource-determined growthrate (yr-V) Plant biomass (kg m--) Scalar governingnutrientsupplyto plants Rate of biomass loss to grazingand tramplingby herbivores d Natural mortalityrate (yr-') Computed Computed Computed (0-1) cv = 0, c,, = 1, c, = .1 c,, d,,,+ ,,, .25, dg + rg 1.5, (yr-') .2 a= = = e F GPP g Ia Kii L in n Fractionof AET due to transpiration (0-1) Rate of resource consumptionby the plant community(mm yr-1) Gross primaryproductivity (kg m- yr-') Subscriptindicatingvalues forgrasses Index of aridity(PET/PPT) Competitioncoefficientdescribingeffectof species i on species j (0-1) Latent heat of evaporation(kcal m-3) Subscriptindicatingvalues formosses Coefficientgoverningplant nutrientrequirement(dimensionless) PET PET* PPT Potentialevapotranspiration (mm yr-V) Maximumpotentialevapotranspiration (mm yr-V) Precipitation(mm yr-1) R Radiation input(kcal cm-2 yr-') r Respirationrate (yr-V) Coefficientgoverningeffectof soil fertility on nutrientsupply (dimensionless) Transpirationrate (mm yr-') Subscriptindicatingvalues fortrees Maximumpotentialgross productivitycorrespondingto complete consumptionof the limitingresource Rate of supplyof limitingresource (mm yr-') Coefficientgoverningclimaticinfluenceon nutrientsupply Constantrelatingproductivity to transpiration (mm m2kg-') s T t ii V w 51 d, + tt = .06 .8 Computed Computed Computed Computed .59 ng = 1, n,, = .01, nt = .33 Computed 850 Varies, typical values = 140-600 Varies, typical values = 175-250 See d .7-1.6 Computed Computed Computed Computed 250 HERBIVORE-DRIVEN BIOME SHIFT 785 APPENDIX B BRIEF DESCRIPTION OF THE MODEL The model addresses vegetationchangeover longtimescales(decades to centuries)and, therefore,excludes seasonal and demographicprocesses. In this version, we also ignore abiotic disturbanceand insectherbivory.The model is runwithan annual timestep under constantconditionsto determinesteady-statevalues of biomass (dB/dt = 0). Whereas the originalmodel was programmedin FORTRAN (Zimov and Chuprynin1991), to examine model structureand confirmits behavior,we reprogrammed the model in Stella (Stella II User's Guide 1990) and C++ based on the descriptiongivenbelow and elsewhere (Zimov and Chuprynin1991) and obtained similarresults. All symbols and units are definedin appendix A. UNIFORM VEGETATION MODEL First, we describe the general structureof the model in termsof a homogeneousplant community.Change in biomass is given by dB dt= (a - r - d - c) B, (B 1) whereB is the communitybiomass per unitarea, a is the growthrate, r,is the respiration rate, d is the mortalityrate, and c is the rate of biomass loss to grazingand tramplingby herbivores.The value of a is a functionof ar, a resource-determined growthrate, and the balance between the supply of the limitingresource (V) and rate of consumption(F) by the community,thatis, (V(F) a = ar. (V F) (B2) In this versionof the model, we considertwo climate-relatedresources to be potentially limiting-waterand nutrients. Inflluenceof WaterAvailability The relationshipof wateravailabilityto communityproductivity is incorporatedintothe model via its effectson V and F using two general relationships.First, across various ecosystems,gross primaryproductivity(GPP) is approximatelyproportionalto transpiration(T) (Rosenzweig 1968; Leith 1975). Thus, the rateof consumptionof water(F), which is equal to T, is given by F= f GPP = f a B, (B3) where fl is a proportionality constant(250 mmm2kg-') (Leith 1975). The second generalizationis thatthe supplyofwaterfortranspiration (V) tendsto be limitedacross ecosystem types eitherby precipitation(PPT) in arid and semiaridclimates or by the evaporative climate (i.e., potentialevapotranspiration,PET) in subhumidand humid climates. We use Budyko's (1984) simple approach to quantifythe trade-offbetween PPT and PET in controllingactual evapotranspiration(AET) and ultimatelyV (AET minus evaporation). This approach is based on thefactthatover a sufficient periodoftime(e.g., week, month), PET is highlycorrelatedwith solar radiation(R) across many communities(Campbell 1977; Jensenet al. 1990), such thata reasonable approximationis PET= R L (B4) whereL is the latentheat of vaporization.The crossoverpointon the climaticcontinuum between PPT and PET controlof AET is then determinedby the ratio of PET to PPT, which Budyko (1984) refersto as the index of aridity(Ia): THE AMERICAN NATURALIST 786 I - PET a PPT _ - RIL PPT (5 (B5) The climate-controlled AET forthe communityis thus determinedas forIa < I > 1PPT forIa_ PET AETr (B6) The value of AET, whetherfromPET or PPT, however,representsthe supplyof water and evaporation.Therefore,we definee as the fractionof AET due forboth transpiration to transpiration,so that (B7) V= e AET. Althoughe depends primarilyon plant cover, the type of community,and, to a lesser extent,the degree of stomatalcontrolof waterloss (Jarvisand McNaughton 1986; Jensen et al. 1990),we use a constantvalue of 0.8 forthe simulationspresentedhere. Influenceof Nutrients Nitrogenand othernutrientsgenerallyaffectmechanismsby whichlong-termwaterand radiationbalances governproductivity(Gutierrezand Whitford1987; Chapin et al. 1988; Vitousek and Howarth 1991). Hence, climaticeffectsof nutrientsupply on productivity are included via theireffectson the growthrate, a, which fromequations (B2)-(B3) can be writtenas ar. ar V (B8a) aB+V where ar =ao? b, b = (B8b) 1- exp (B8c) and = 'PET-P-PT [2 . .PET* - PET] 0.43 [PET*]2 e I/la) (B8d) In this equation, a? is the maximumgrowthrate given optimalresources, b is a scalar parameterthat varies with (0-1) governingnutrientsupply to plants, s is a soil fertility soil type (sandy soils < loams) and increases under conditions of loess deposition, w describes the climatic influenceon nutrientsupply, n is a parameterthat determinesa plant's demandfornutrients(0, low requirement,to 1, highrequirement),and PET* is set to 850 (evaporation equivalent of solar radiationobserved at a net radiationof 30 kcal cm-2 yr-ithe net radiationgivingmaximumproduction;neitherlightnor waterlimited) (table 1). Also, w is an empiricalfunctionthat assumes nutrientsupply is maximal at intermediatevalues of PET and Ia' with nutrientsupply being reduced at low and high PET due to temperatureeffects,at highIa due to drought,and at low Ia due to leaching losses. Detailed justificationforequation (B8d) is given elsewhere(Zimov and Chuprynin 1991). MODEL FOR COMPETING FUNCTIONAL GROUPS CompetitiveInteractions We now divide vegetationinto threefunctionalgroups: grasses (herbaceous vascular plants), mosses (includinglichens), and trees (includingshrubs), indicatedby subscripts g, m, and t, respectively.These functionalgroups compete for the general resource V. HERBIVORE-DRIVEN BIOME SHIFT 787 The rate of resourceconsumptionby each functionalgroupis determinedby its consumption rate (Fj, wherej = g, m, t) and thatof its k competitors.Thus, followingequations (B2)-(B3), V- F, - Fkj aj= a7 , (B39) g, m, t and i # j). For example, whereFj = Q aj Bj, and Fkj = Kji Qf ai Bi (i the value of V - Fkj, in the case withj = g, is the resource supplyavailable to grasses, and Kii is the competitioncoefficientdescribingthe effectof mosses and trees (i = in, t) on resource captureby grasses (0 < Kii ' 1). If canopy or roots of any group i are in the same layer as, or higherthan,those of groupj, it is a competitor(Kii > 0), while, if they are lower, thenKii = 0, and thisfunctionalgroupis not a competitor.If, on the average, the canopy is lower but its volume overlaps withthatof the higherfunctionalgroup,then group i is a partialcompetitor.We specifyKii values as functionsof canopy/rootposition and the radiativeindex of aridity(Ia ). Functional-GroupParameters All modelparameterswere estimatedfrommeasurements,experiments,or theliterature, except fornutrientsupply(s) (eq. [B8c]), a scaling parameterthatwas adjusted untilthe model gave a reasonable balance of moss and grass. This was determinedby runningthe model at all 5? terrestrialgridpointsfor each of fourvalues of s (0.7-1.6). A value of s = 1.3 gave an excellentmatchoftheglobal distribution offunctionalgroupswithobserved vegetation(fig.2), and a value of s = 1.0 slightlyunderestimatedthe abundance of grass (Zimov and Chuprynin1991). We use these values of s to representhigh-and low-fertility soils in simulationsforBeringia.No othertuningof the model was necessary. Parameters a?, r, d, and e differamong these three functionalgroups, but we assume that these parametersare not alteredby climatewithina group(i.e., forany climatewe use the same parametervalues fora given group). Since we considergeneralfunctionalgroups rather thanparticularspecies, we assume thatforeach climatethereare species of moss, grass, and treesforwhichthisclimateis close to optimal.If the actual values ofthese parameters vary withclimaticzone, this variationis probablysimilarformosses, grasses, and trees and, therefore,would not alterour predictionsforthe outcome of competition.For example, we assume thatgrowthrate (a) for northernmosses, grasses, and trees is the same as in the south. In the north,however, the total resource supply (V) is less, so that production(GPP) is less than in the south. We assume that ao = 0.4, ao = 8.0, ao = 0.2-that is, thatthe maximumrelativegrowthrate (RGR) of grasses is greaterthan that of mosses, which is greaterthan thatof trees (Grimeand Hunt 1975; Furness and Grime 1982). The loss of biomass of mosses, grasses, and trees throughdeath and respirationis dM,+ r,,,= 0.25, dg + rg = 1.5, and d, + rt = 0.06 yr-1,respectively;thatis, growth-form differencesin senescence and respirationparallel those in relative growthrate (Langer 1966; Chapin 1980). We assume that,in the absence of competitors,grasses, trees, and mosses may grow in any climateif the nutrientsupplyis adequate. We tested the model withtwo initialdensitiesof colonizingspecies (B,, = Bt = 0.01, 0.1) relativeto the density of grass (Bg = 0.25). The competitioncoefficientswere estimatedas follows. Under arid conditionsin Beringia,mosses (includinglichens) have ready access to limitedprecipitationand tolerate dry conditionsmore effectivelythan do grasses and trees. Mosses, therefore,displace and K,1, grasses and trees in extremelydryclimates:As Ia goes fromzero to infinity, K,mg go fromzero to one. This patternis particularlyevidentin northernregions(Alexandrova 1980; Wielgolaski et al. 1981). However, grasses and trees are superior competitorsto mosses forlight,because mosses are beneaththe vascular plantcanopy. Therefore,as Ia and K,r go fromone to zero. In order to make this a goes fromzero to infinity, Kg,m, smoothfunctionof Ia (vs. an abruptthreshold)thatcan be readilyincorporatedinto the analyticalsolutionof the model, we used the empiricalfunction,p = (1 - exp[ - 1.23 betweenzero and one. At highIa (arid climates) Ia])2, whichproduces a smoothtransition THE AMERICAN NATURALIST 788 p = 1, and at low Ia (wet climates)p = 0. The justificationforthisfunctionis discussed = Kt elsewhere (Zimov and Chuprynin1991). Therefore,Kg,n= Kt,n= 1 - p and K,11g = p. In tundra,where PET < 300 mm, competitionbetween trees and grasses is always reciprocal (Ktg = Kgt = 1) because trees (actually shrubs) and grasses are similarin height.In the boreal-tundratransition(300 < PET < 400), the relationshipbetween trees and grasses depends on both moistureand energy.In warm, wet climates trees always compete withgrasses, whereas grasses are generallynot competitorswithtrees, because lightis the limitingfactorin wet climates(i.e., Ktg = 1, Kgt = 0). As radiationdeclines (PET goes from400 to 300 mm) or as the climate becomes drier(Ia goes fromzero to one), grasses have a progressivelygreatereffecton trees (includingshrubs).Taking these conditionsinto account, Kgt 'pt+K* where K* = ifp+K*-1 ifp+K*<l, I1, ifPET - 300 (400-PET)/100, if300 < PET < 400 40, (BiG) ifPET?-400. nutrientsinfluencetheoutcome Althoughgroupsdo notexplicitlycompetefornutrients, nutrientrequirement(n), a factorthat of competitionbecause each species has a different influencesits maximumgrowthrate (a0) (Ingestad and Agren 1991). We assume thatthe grass requirementfor nutrientsis ng = 1, that trees have a lower nutrientrequirement because of theirslower biomass turnover(nt = 1/3)(Berendse et al. 1987; Chapin 1993), and thatmoss growthis not nutrientlimited(n,,,= 0.01) (Skre and Oechel 1979). Effectsof Grazers We assume thatthe rate of biomass loss to mammaliangrazersis proportionalto grazer biomass, which, in turn,is proportionalto biomass of theirfood, which consists, by of biomass for grasses, definition,mainlyof grass (Bg). Thus, consumption/destruction mosses, and trees are (fromeq. [B11])cg *Bg, C,2 Bg, and ct * Bg, respectively,where ci is the sensitivityof each species to a given grazer biomass. We assume that over long timeperiods (decades to centuries)predatorskeep herbivoredensityat a level optimalfor grass growthso thatovergrazingdoes not occur. Since moderategrazingpromotesgrowth of grasses in tundra(Peshkova and Andreiashchkina1983; Kucheruk 1985), the negative impact of grazers on grasses is compensatedby a positive one, so that cg = 0; that is, grazers have no long-termdirect effecton grass biomass. The net result is that in an ecosystem in which there is no huntingand grazers are in equilibriumwith theirfood supply,grazers have an intermediateeffecton mosses (c,,, = 0.5), which decline (ct 0.2) whenlargegrazersare absent(i.e., whenonlysmallgrazerslike lemmingsare present). Lastly, we assume thattrees are an orderof magnitudeless sensitiveto the presence of grazers than are mosses (ct = 0.1 * c,72). We did an extensiveanalysis of the sensitivityof our model resultsto our assumption thatgrazers have no long-termdirecteffecton grass biomass. For each set of conditions illustratedin figure3, cg was varied from -0.1 c cg C 0.1, in incrementsof 0.05, and compared to finalbiomass when cg = 0. The maximumbiomass differencewas less than 10% and did not change any of the patternswe observed when cg = 0. The CommunityModel Combiningthe above equations, we can include the effectsof competitionand grazing on changes in biomass of each functionalgroup: dBg dt= (ag - rg- dg - C ' Bg) BV B g- 0, (BlIla) HERBIVORE-DRIVEN dt = (a,12-r,1 -d,7 - BIOME SHIFT 789 > (Bllb) C,i Bg), B,2 B, ?0 and dB dt (at - it- BtBt:-0 d, - ct Bg Bg)B1,B10, (Bllc) where a,=a? ,(11- ag=a*(u-ag at=a,*(u-at*B B,7 -kg,1 *ag*Bg - kt,,*at. Bg-k,g *a, -k,1 , - B,)/i , kg aB)u, a,* B,1 -kg' ag *Bg)/u, and ui = V/fQ,which is the maximumpotentialgross productivitycorrespondingto complete consumptionof the limitingresource. LITERATURE CITED Alexandrova, V. D. 1980.TheArcticandAntarctic: theirdivision intogeobotanical areas.Cambridge University Press,Cambridge. Anderson, P. M. 1985.Late Quaternary vegetational changeintheKotzebueSoundarea,northwesternAlaska.Quaternary Research24:307-321. Barnosky, C. W., P. M. Anderson, andP. J.Bartlein.1987.The northwestern U.S. during deglaciation:vegetational history andpaleoclimatic implications. Pages289-321inW. F. Ruddiman andH. E. Wright, Jr.,eds. NorthAmericaandadjacentoceansduring thelastdeglaciation: thegeologyofNorthAmerica.GeologicalSocietyofAmerica,Boulder,Colo. ofgrazerson tundravegetation Batzli,G. 0. 1977.The influence andsoils.Circumpolar Conference on Northern 1:215-225. Ecology,Proceedings Batzli,G. O., andS. Sobaski.1980.Distribution, abundance, andforaging patterns ofgroundsquirrels nearAtkasook,Alaska.ArcticandAlpineResearch12:501-510. Batzli,G. O., R. G. White,S. F. MacLean,Jr.,F. A. Pitelka,andB. D. Collier.1980.Theherbivorebased trophicsystem.Pages 335-410in J. Brown,P. C. Miller,L. L. Tieszen,and F. L. thecoastaltundra Bunnell,eds. Anarcticecosystem: at Barrow,Alaska.Dowden,Hutchinson & Ross, Stroudsburg, Pa. onnutrient inwetheathland andJ.Bol.1987.A comparative Berendse, F., H. Oudhof, study cycling ecosystheplant.Oecologia(Berlin) tems.I. Litter production andnutrient lossesfrom 74:174-184. Bormann,F. H., and G. E. Likens.1979.Patternand processin a forested ecosystem.Springer, New York. Bryant,J. P., and F. S. ChapinIII. 1986.Browsing-woody plantinteractions duringborealforest plantsuccession.Pages213-225in K. Van Cleve,F. S. ChapinIII, P. W. Flanagan,L. A. in theAlaskantaiga:a synthesis of Viereck,and C. T. Dyrness,eds. Forestecosystems structure New York. andfunction. Springer, J.P., andP. J.Kuropat.1980.Selectionofwinter vertebrates: Bryant, foragebysubarctic browsing theroleofplantchemistry. AnnualReviewofEcologyand Systematics 11:261-285. T. P. Clausen,and J. T. du Toit. 1991. Bryant,J. P., F. P. Provenza,J. Pastor,P. B. Reichardt, metaboInteractions betweenwoodyplantsandbrowsing mammals mediated bysecondary lites.AnnualReviewofEcologyandSystematics 22:431-446. Budyko,M. I. 1984.Evoliutsiia biosfery. Gidrometeoizdat, Leningrad. to environmental New York. Campbell,G. S. 1977.An introduction biophysics. Springer, ofgrazing 1984.Theeffects Cargill,S. M., andR. L. Jefferies. bylessersnowgeeseon thevegetation ofa sub-arctic ofAppliedEcology21:669-686. saltmarsh.Journal nutrition ofwildplants.AnnualReviewofEcologyandSystematChapin,F. S., III. 1980.Themineral ics 11:233-260. ofmultiple environmental stresseson nutrient anduse. Pages67-88 1991.Effects availability 790 THE AMERICAN NATURALIST in H. A. Mooney, W. E. Winner,and E. J. Pell, eds. Response of plantsto multiplestresses. Academic Press, San Diego, Calif. 1993. Functionalrole of growthformsin ecosystemand global processes. Pages 287-312 in J. R. Ehleringerand C. B. Field, eds. Scaling physiologicalprocesses: leaf to globe. Academic Press, San Diego, Calif. Chapin, F. S., III, and G. R. Shaver. 1981. Changes in soil propertiesand vegetationfollowing disturbancein Alaskan arctictundra.Journalof Applied Ecology 18:605-617. 1985. Individualisticgrowthresponse of tundraplantspecies to environmentalmanipulations in the field.Ecology 66:564-576. 1989. Differencesin growthand nutrientuse among arctic plant growthforms.Functional Ecology 3:73-80. Chapin, F. S., III, J. D. McKendrick,and D. A. Johnson.1986. Seasonal changes in carbon fractions in Alaskan tundraplants of differing growthform:implicationsfor herbivores.Journalof Ecology 74:707-731. Chapin, F. S., III, N. Fetcher,K. Kielland, K. R. Everett,and A. E. Linkins. 1988. Productivityand nutrientcyclingof Alaskan tundra:enhancementby flowingsoil water. Ecology 69:693-702. Chapin, F. S., III, R. R. Shaver, A. E. Giblin,K. G. Nadelhoffer,and J. A. Laundre. 1995. Response of arctictundrato experimentaland observed changes in climate. Ecology 76:694-711. Chernov, Y. I. 1978. Strukturazhivotnogonaseleniia Subarktiki.Nauka, Moscow. . 1980. Zhizn' tundry.Mysl', Moscow. Chernov, Y. I., N. V. Matveeva, and L. L. Zanokha. 1983. Opyt izucheniia prirostatsvetkovykh rasteniiv coobshchestvakhTaimyra. Doklady Akademiia Nauk SSSR 272:999-1002. of the earth's surfaceat the last glacial maximum.GeologiCLIMAP. 1981. Seasonal reconstructions cal Society of America map and chart series map MC. Geological Society of America, Boulder, Colo. COHMAP. 1988. Climatic changes of the last 18,000 years: observations and model simulations. Science (Washington,D.C.) 241:1043-1052. oftheBeringland bridge.Ecological Monographs34:297-329. Colinvaux,P. A. 1964.The environment Colinvaux, P. A., and F. H. West. 1984. The Beringianecosystem.QuarterlyReview of Archaeology 5:10-16. Collatz, G. J.,J. T. Ball, C. Grivet,and J. A. Berry.1991. Physiologicaland environmentalregulation of stomatalconductance,photosynthesisand transpiration:a model thatincludes a laminar boundarylayer. Agriculturaland Forest Meteorology54:107-136. Coulson, J. C., and J. Butterfield.1978. An investigationof the biotic factorsdeterminingthe rates of plantdecompositionon blanketbog. Journalof Ecology 66:631-650. Davis, M. B. 1981. Quaternaryhistoryand the stabilityof forestcommunities.Pages 132-153 in D. C. West, H. H. Shugart,and D. B. Botkin,eds. Forest succession: concepts and applications. Springer,New York. deToit, J. T., J. P. Bryant,F. D. Provenza, J. Pastor, P. B. Reichardt,and T. P. Clausen. 1991. Interactionsbetweenwoody plantsand browsingmammalsmediatedby secondary metabolites. Annual Review of Ecology and Systematics22:431-446. Edwards, M. E., and W. S. Armbruster.1989. A tundra-steppetransitionon Kathul Mountain, Alaska, U.S.A. Arcticand Alpine Research 21:296-304. Farquhar,G. D., and T. D. Sharkey. 1982. Stomatalconductanceand photosynthesis.Annual Review of Plant Physiology33:317-345. Field, C., F. S. Chapin III, P. A. Matson, and H. A. Mooney. 1992. Responses of terrestrialecosystems to the changingatmosphere:a resource-basedapproach. Annual Review of Ecology and Systematics23:201-235. Fox, J. F. 1978.Forestfiresand thesnowshoehare-Canada lynxcycle. Oecologia (Berlin)31:349-374. Furness, S. B., and J. P. Grime. 1982. Growthrate and temperatureresponses in bryophytes.II. A comparativestudyof species of contrastedecology. Journalof Ecology 70:525-536. Gavrilova, M. K. 1973. Klimat Tsentral'noiIakutii. Iakutskoe Knizhnoe Izdatel'stvo, Yakutsk. Giterman,R. E. 1976. Rastitel'nost'kholodnykhepokh pleistotsenaKolymskoinizmennostiv sviazi s problemoilandshaftovPolyarnoiBeringii.Pages 166-171 in V. L. Kontramavichus,ed. Beringiiv Kainozoe. Dal'nii-VostochniiNauchnyiTsentrAN SSSR, Vladivostok. HERBIVORE-DRIVEN BIOME SHIFT 791 Grichuk,V. P. 1984. Late Pleistocene vegetationhistory.Pages 155-178 in A. A. Velichko, ed. Late Quaternaryenvironmentsof the Soviet Union. Universityof Minnesota Press, Minneapolis. Grichuk,V. P., Y. Y. Gurtovaya,E. M. Zelikson, and 0. K. Borisova. 1984. Methods and results of Late Pleistocenepaleoclimaticreconstructions. Pages 251-260 in A. A. Velichko, ed. Late Quaternaryenvironmentsof the Soviet Union. Universityof MinnesotaPress, Minneapolis. Grime,J. P., and R. Hunt. 1975. Relative growthrate: its rangeand adaptive significancein a local flora.Journalof Ecology 63:393-422. Guthrie,R. D. 1982. Mammals of the mammothsteppe as paleoenvironmentalindicators. Pages 307-326 in D. M. Hopkins, J. V. Matthews,Jr.,C. E. Schweger, and S. B. Young, eds. Paleoecology of Beringia.Academic Press, New York. 1984a. Alaskan megabucks, megabulls,and megarams: the issue of Pleistocene gigantism. Pages 482-510 in H. H. Genoways and M. R. Dawson, eds. Contributionsin Quaternary vertebratepaleontology:a volume in memorialto JohnE. Guilday. Carnegie Museum of Natural History,Pittsburgh,Pa. 1984b. Mosaics, allelochemicsand nutrients.Pages 259-298 in P. S. Martinand R. G. Klein, eds. Quaternaryextinctions:a prehistoricrevolution.Universityof Arizona Press, Tucson. 1990. Frozen fauna of the mammothsteppe: the storyof Blue Babe. Universityof Chicago Press, Chicago. Guthrie,R. D., and J. V. Matthews,Jr. 1971. The Cape Deceit fauna: early Pleistocene mammalian assemblage fromthe Alaskan Arctic. QuaternaryResearch 1:474-510. Gutierrez,J. R., and W. G. Whitford.1987. Chihuahuan desert annuals: importanceof water and nitrogen.Ecology 68:2032-2045. Hamilton,T. D. 1982. A Late Pleistocene glacial chronologyforthe southernBrooks Range: stratigraphicrecordand regionalsignificance.Geological Society of AmericaBulletin93:700-716. Haynes, G. 1982. Utilizationand skeletal disturbancesof North American prey carcasses. Arctic 35:266-281. Holdridge, L. R. 1947. Determinationof world plantformationsfromsimple climaticdata. Science (Washington,D.C.) 105:367-368. Hopkins, D. M. 1967. The Cenozoic historyof Beringia-a synthesis.Pages 451-484 in D. M. Hopkins, ed. The Beringland bridge.StanfordUniversityPress, Stanford,Calif. 1982. Aspects of the paleogeographyof Beringiaduringthe late Pleistocene. Pages 3-28 in D. M. Hopkins, J. V. MatthewsJr.,C. E. Schweger,and S. B. Young, eds. Paleoecology of Beringia.Academic Press, New York. Hopkins, D. M., J. V. MatthewsJr,C. E. Schweger,and S. B. Young, eds. 1982. Paleoecology of Beringia.Academic Press, New York. Huntly,N. 1991. Herbivores and the dynamicsof communitiesand ecosystems. Annual Review of Ecology and Systematics22:477-503. on biomass allocation. Ecological Ingestad,T., and G. 1. Agren. 1991.The influenceof plantnutrition Applications2:168-174. Jarvis,P. G., and K. G. McNaughton. 1986. Stomatal controlof transpiration:scaling up fromleaf to region.Advances in Ecological Research 15:1-49. Jelinek,A. J. 1967. Man's role in the extinctionof Pleistocenefaunas. Pages 193-200 in P. S. Martin, and H. E. WrightJr.,eds. Pleistocene extinctions:the search fora cause. Yale University Press, New Haven, Conn. Jensen,M. E., R. D. Burman,and R. G. Allen, eds. 1990. Evapotranspirationand irrigationwater requirements.Manuals and reportson engineeringpractice, no. 70. American Society of Civil Engineers,New York. Johnson, L. C., and A. W. H. Damman. 1991. Species controlledSphagnum decay on a south Swedish raised bog. Oikos 61:234-242. Klein, D. R. 1988. The establishmentof muskox populationsby translocation.Pages 298-317 in L. Nielsen and R. D. Brown, eds. Translocationof wild animals. Wisconsin Humane Society, Milwaukee. Kriuchkov,V. V. 1973. Krainii Sever: problemyratsional'nogoispol'zovaniia prirodnykhresursov. Mysl', Moscow. Kucheruk, V. V. 1985. Travoiadnye mlekopitaiushchiev aridnykhekosistemakhvnetropicheskoi THE AMERICAN NATURALIST 792 v nazemnykh ekosistemakh. Evrasii.Pages166-224in V. E. Sokolov,ed. Mlekopitaiushchie Nauka,Moscow. ofchanging orbitalparameters and surface Kutzbach,J. E., and P. J.Guetter.1986.The influence ofAtmospheric boundary conditions onclimatesimulations forthepast18,000years.Journal Sciences 43:1726-1759. oftheclimateof 18,000yearsB.P.: results Jr.1985.Simulation Kutzbach,J. E., and H. E. Wright, withthegeologic fortheNorthAmerican/North Atlantic/European sectorand comparison recordofNorthAmerica.Quaternary ScienceReviews4:147-187. ofgrassesand cereals.Pages 213-226in F. L. Milthorpe Langer,R. H. M. 1966.Mineralnutrition ofcerealsandgrasses.Butterworths, London. andJ.D. Ivins,eds. Thegrowth Berlin. Larcher,W. 1980.Physiological plantecology.Springer, andtheirpaleoclimatic Lebedeva,I. M., andV. G. Khodakhov.1984.LatePleistocene glacierregimes oftheSoviet ed. LateQuaternary environments significance. Pages55-65in A. A. Velichko, Union.University ofMinnesota Press,Minneapolis. of theworld.Pages 237-263in H. Leithand Leith,H. 1975.Modelingthe primary productivity ofthebiosphere.Springer, R. H. Whittaker, eds. Primary Berlin. productivity in miniature. Nature(London)362:288-289. Lister,A. M. 1993.Mammoths of continental ice sheetson theclimateof an Manabe,S., and A. J. Broccoli.1985.The influence ice age. Journal ofGeophysical Research90D:2167-2190. a prehistoric extinctions: revolution. P. S., andR. G. Klein,eds. 1984.Quaternary University Martin, ofArizonaPress,Tucson. andphosphorus fertilizaofnitrogen McKendrick, J.D., V. J.Ott,andG. A. Mitchell.1978.Effects tionon carbohydrateand nutrientlevels in Dupontiafisheriand Arctagrostislatifolia.Pages 509-537inL. L. Tieszen,ed. Vegetation andproduction ecologyofan Alaskanarctictundra. New York. Springer, ofmammalian andJ.C. Swanson.1980.Someeffects McKendrick, J.D., G. 0. Batzli,K. R. Everett, Arcticand AlpineResearch12: herbivores andfertilization on tundrasoilsand vegetation. 565-578. in the S. J. 1979.Grazingas an optimization relationships McNaughton, process:grass-ungulate American Naturalist 113:691-703. Serengeti. andtheradiocarbon lateQuaternary extinctions Mead,J.I., andD. J.Meltzer.1984.NorthAmerican a record.Pages 440-450in P. S. Martinand R. G. Klein,eds. Quaternary extinctions: revolution. ofArizonaPress,Tucson. prehistoric University B. A. Yurtsev,andR. Howenstein.1983.Biogeographic D. F., B. M. Murray, significance Murray, Proin subarctic Alaska.Permafrost: FourthInternational ofsteppevegetation Conference, ceedings4:883-888. and I. V. Klimovskii. 1973.Posledneeoledeneniei kriolitozona Nekrasov,I. A., E. V. Maksimov, Verkhoian'ia. IakutskoeKnizhnoeIzdatel'stvo,Yakutsk. yuzhnogo andheterotrophic Ecology57:1244-1253. O'Neill,R. V. 1976.Ecosystempersistence regulation. at 1978.Primary Oechel,W. C., and B. Sveinbjornsson. production processesin arcticbryophytes andproduction ecologyof Barrow,Alaska.Pages269-298in L. L. Tieszen,ed. Vegetation an Alaskanarctictundra.Springer, Heidelberg. thepivotalroleof megaherbivores. R. N. 1987.Pleistocene extinctions: Paleobiology Owen-Smith, 13:351-362. 1988.Megaherbivores: theinfluence ofverylargebodysizeonecology.Cambridge University Press,Cambridge. Khersonskoi Pachosskii,I. K. 1917.Opisanierastitel'nosti gubernii: Stepi.Kherson. foreststo CO2-induced climatechange. Pastor,J., and W. M. Post. 1988.Responsesof northern Nature(London)334:55-58. Pastor,J.,R. J.Naimen,B. Dewey,andP. McInnes.1988.Moose,microbes, andtheborealforest. BioScience38:770-777. and soil Pastor,J.,B. Dewey,R. J.Naiman,P. F. McInnes,andY. Cohen.1993.Moose browsing in theborealforests ofIsle RoyaleNationalPark.Ecology74:467-480. fertility N. V., andN. I. Andreiashchkina. 1983.Produktivnost' dvukhpodvidovCarex aquatilis i ee Peshkova, izmenenie otchuzhdeniia nadzemnoi 4:30-35. biomassy. Ekologiya podvliianiem mnogokratnogo HERBIVORE-DRIVEN BIOME SHIFT 793 geologyandarchaeology of Pewe,T. L., D. M. Hopkins,andJ. L. Giddings.1965.The quaternary oftheUnited andD. G. Frey,eds. The Quaternary Alaska.Pages355-374in H. E. Wright N.J. Press,Princeton, University States.Princeton andA. M. Solomon.1992. R. Leemans,R. A. Monserud, S. P. Harrison, I. C., W. Cramer, Prentice, andclimate. soilproperties anddominance, A globalbiomemodelbasedonplantphysiology 19:117-134. Journal ofBiogeography Streletskoi stepipriotsutstvii past'byskotai senorastitel'nosti N. A. 1940.Izmenenie Prozorovskii, gos. zapovednika. kosheniya. TrudiTsentra-Chernozem Journalof GeophysicalResearch92D: Rind, D. 1987. Componentsof the ice age circulation. 4241-4281. ofthenorthYukon.Pages vegetation Ritchie,J. C., and L. C. Cwynar.1982.The lateQuaternary Jr.,C. E. Schweger,and S. B. Young,eds. 113-126in D. M. Hopkins,J. V. Matthews, ofBeringia.AcademicPress,New York. Paleoecology prediction fromclimatoofterrestrial communities: production M. L. 1968.Netprimary Rosenzweig, 102:67-74. Naturalist logicaldata.American R. A. L. F. Huenneke,W. M. Jarrell, W. H., J. F. Reynolds,G. L. Cunningham, Schlesinger, Science 1990.Biologicalfeedbacksin globaldesertification. Virginia, and W. G. Whitford. D.C.) 247:1043-1048. (Washington, of easternBeringia:pollenanalysisof dated Schweger,C. E. 1982.Late Pleistocenevegetation and S. B. Jr.,C. E. Schweger, alluvium.Pages95-112in D. M. Hopkins,J.V. Matthews, AcademicPress,New York. ofBeringia. Young,eds. Paleoecology andHolocene. intheU.S.S.R. intheLate Pleistocene glaciation L. R. 1984.Mountain Serebryanny, of the SovietUnion. environments Pages 45-54 in A. A. Velichko,ed. Late Quaternary ofMinnesota Press,Minneapolis. University andbiomassoftussock on production Shaver,G. R., andF. S. ChapinIII. 1986.Effectoffertilizer tundra, Alaska,U.S.A. ArcticandAlpineResearch18:261-268. Sibiri. severo-vostochnoi mlekopitaiushchikh plio-pleistotsenovykh Sher,A. V. 1988.Sredaobitaniia Aziii Tikhookeanskogo otlozhenii i korreliatsiia chetvertichnykh Pages78-79in Stratigrafiia AkademiiNaukSSSR, Vladivostok. simposiuma. regiona:tezisymezhdunarodnogo mamont. Nauka, Shilo,N. A., N. A. Lozhkin,E. E. Titov,and I. V. Shumilov.1983.Kirgiliakhskii Moscow. andclimatechange.Science(WashShukla,J.,C. Nobre,andP. Sellers.1990.Amazondeforestation ington, D.C.) 247:1322-1325. in a blacksprucePicea marianaforestwith Skre,O., and W. C. Oechel. 1979.Moss production withtwopermafrost-free stands.Holarctic nearFairbanks, Alaska,as compared permafrost Ecology2:249-254. ininterior Alaska.I. Seasonal,phenotypic, indifferent taigaecosystems 1981.Mossfunctioning andresponsepatterns. effects onphotosynthesis Oecologia(Berlin)48:50-59. anddrought Systems,Hanover,N.H. StellaII user'sguide.1990.HighPerformance taranidusgroenlandicus) caribou(Rangifer Thing,H. 1984.FeedingecologyofthewestGreenland in theSismiutKangerlussuaq region.DanishReviewofGameBiology12:1-52. offieldand intheprincipal Barrow,Alaska,species:a summary Tieszen,L. L. 1978.Photosynthesis andproduction ecology responses. Pages241-268in L. L. Tieszen,ed. Vegetation laboratory New York. ofan Alaskanarctictundra.Springer, iakutskoiloshadi.Ekologiya4: kolymskoi populiatsii Tikhonov,V. G. 1987.Sezonnaiaaktivnost' 73-75. v ekosistemakh tundry. Pages 38-67 in mlekopitaiushchie Tishkov,A. A. 1985.Rastitel'noiadnye v nazemnykh ekosistemakh. Nauka,Moscow. V. E. Sokolov,ed. Mlekopitaiushchie i osvoenieterritorii Nedra, zonyvechnoimerzloty. protsessy Tomirdiaro, S. V. 1978.Prirodnye Moscow. times. Asia duringlate Quaternary 1982.Evolutionof lowlandlandscapesin northeastern andS. B. Young,eds. Jr.,C. E. Schweger, Pages29-37inD. M. Hopkins,J.V. Matthews, PaleoecologyofBeringia.AcademicPress,New York. Van Cleve, K., C. T. Dyrness,L. A. Viereck,J. Fox, F. S. ChapinIII, and W. C. Oechel. 1983. ininterior Alaska.BioScience41:78-88. Taigaecosystems 794 THE AMERICANNATURALIST Van Cleve,K., F. S. ChapinIII, C. T. Dryness,and L. A. Vireck.1991.Elementcyclingin taiga control.BioScience41:78-88. forest:state-factor Vartanyan, S. L., V. E. Garutt,and A. V. Sher. 1993.Holocenedwarfmammoths fromWrangel Islandin theSiberianArctic.Nature(London)362:337-340. Velichko,A. A. 1973.The naturalprocessin thePleistocene.Nauka,Moscow. reconstructions. 1984.LatePleistocene spatialpaleoclimatic Pages261-285in A. A. Velichko, of the SovietUnion.University ed. Late Quaternary environments of MinnesotaPress, Minneapolis. N. K. 1988.Paleogeografia i paleoekologiia zvereimamontovoi Vereshchagin, faunyv chetvertichnom periodeSevernoiEvrasii.Pages 20-32 in A. G. Voronov,ed. Obshchaiai regional'naia teriografiia. Nauka,Moscow. limitation on landand in thesea: howcan it Vitousek,P. M., and R. W. Howarth.1991.Nitrogen occur?Biogeochemistry 13:87-115. i fenologicheskie v Veliko-Anadole G. N. 1901.Biologicheskie, nabliudeniia Vysotskii, pochvennye (1892-1893).St. Petersburg. Walker,D. A., and K. R. Everett.1987.Road dustand itsenvironmental impacton Alaskantaiga andtundra.ArcticandAlpineResearch19:479-489. ofnorthern andtoposequenceat Prudhoe 1991.Loess ecosystems Alaska:regional gradient Bay. EcologicalMonographs 61:437-464. K. R. Everett, andS. K. Short.1991.Steppevegetation onsouth-facing Walker, M. D., D. A. Walker, slopes ofpingos,central arcticcoastalplain,Alaska,U.S.A. ArcticandAlpineResearch23:170-188. oftheearthandecologicalsystems ofthegeo-biosphere. New Walter,H. 1979.Vegetation Springer, York. Webb,T., andP. J.Bartlein.1992.Globalchangesduring thelastthreemillion years:climatic controls andbioticresponses.AnnualReviewofEcologyand Systematics 23:141-173. variation of thevegetation and itsproductivity, Webber,P. J. 1978.Spatialand temporal Barrow, Alaska.Pages37-112in L. L. Tieszen,ed. Vegetation andproduction ecologyofan Alaskan arctictundra.Springer, New York. ofBeringia.ColumbiaUniversity West,F. H. 1981.The archaeology Press,New York. and forageconsumption White,R. G., and J. Trudell.1980.Habitatpreference by reindeerand caribounearAtkasook,Alaska.ArcticandAlpineResearch12:511-529. R. H. 1975.Communities andecosystems. New York. Whittaker, Macmillan, F. E., L. C. Bliss,J.Svoboda,andG. Doyle.1981.Primary oftundra.Pages Wielgolaski, production 187-225in L. C. Bliss,0. W. Heal,andJ.J.Moore,eds. Tundraecosystems: a comparative analysis.Cambridge University Press,Cambridge. Wolff,J. 0. 1980.The roleof habitatpatchinessin thepopulationdynamicsof snowshoehares. 50:111-129. EcologicalMonographs F. I. 1987.Climateandplantdistribution. Woodward, Cambridge University Press,Cambridge. Young,S. B. 1971.The vascularfloraof St. LawrenceIslandwithspecialreference to floristic zonationin theArcticregions.Contributions fromtheGreyHerbarium of HarvardUniversity201:11-115. in the Chukotkatundraand the Pleistocene"tundraYurtsev,B. A. 1974.Steppecommunities Zhurnal59:484-501. steppe."Botanicheskii 1981.Reliktovye stepnyekompleksi Severo-Vostochnoi Azii. Nauka,Novosibirsk. 1982.Relicsofthexerophyte vegetation ofBeringiain northeastern Asia. Pages 157-177in D. M. Hopkins,J.V. Matthews, Jr.,C. E. Schweger, and S. B. Young,eds. Paleoecology ofBeringia.AcademicPress,New York. Zimov,S. A. 1990.Cheloveki prirodaSevera:garmoniia protivopolozhnostei. VestnikAkademii NaukSSSR 2:118-133. Zimov,S. A., and V. I. Chuprinin. 1989.Ustoichivye sostoianiiaecosistemSevero-Vostoka Azii. DokladyAkademii Nauk308:1510-1514. 1991.Ekosistemy: ustoichivost', konkurentsia tselenapravlennoe preobrazovanie. Nauka, Moscow. Associate Editor: Deborah E. Goldberg
© Copyright 2025 Paperzz