) ( )x ) ( )5

Unit 5 – 1
Name
Monomial
Examples
1. 3
2.
3. 5
(one term)
Binomial
1. 2 −
2.
−3
3. −3
(two terms)
Trinomial
1. −2
(three terms)
2.
Polynomial
(one or more terms)
1. 3
2. 5
3.
(
degree:4
degree:2
degree:0
degree:3
Name:
Non-Examples
1. 2
2. 5√
3. 3
1.
degree:1
degree:9
2. √
−2
+2 −3
degree:3
1.
+2 −5
+2
degree:5
2. 2 + 3 − 5
degree:4
1. 3
+2
+
− 2)
−5 +1
degree:6
√ +1 −3
degree:4
+
2. 2 + 3√
1. EXPAND and SIMIPLIFY
b. (5x3 – 3x4 − 2x – 9x2 – 2) + (3x3 +2x2 – 5x – 7)
a. (7x  3)  (2  2x)
d.  23 x  2 y   5 x  6 y   2 x  7
c. 3( x  5)  8 x

 
f. 2 x 3  5 x  8  5 x 3  9 x 2  11x  5

g. 2 x  33x  5

 
e. 2 x 2  5 x  6 x 2  2 x
h. 2 x  5
2

(1 Continued). EXPAND and SIMIPLIFY

i. 4 y 2 y 2  2 y

k.  x  3 x  5
j. - 6y 2 (3y 2 - 2y - 7)
l.
m.
Determine an expression that represents:
Determine an expression that represents:
Perimeter =
Perimeter =
Volume =
Volume =
2. Divide the following.
a.
32a 5  24a 3
8a 3
b.
21x 4  3x 3
3x 2
c.
36a 3d 5  72a 2d 3
6ad 2
3. Factor the GCF from each expression
a. 15x 4  3x 5
b. 16 x 2  24
b.
a.
c. 18x 4 y 7  36 x 3 y 6  42 x 5 y 5
c.
d. 3 x x  3  2 x  3
d.