Earth Science & Climatic Change Research Article Research Article Mekawy, J Earth Sci Climate Change 2012, 3:3 http://dx.doi.org/10.4172/2157-7617.1000121 Open OpenAccess Access Unusual Factor Affecting the Preservation of Fossils from Northern Sinai, Egypt Manal S. Mekawy* University of Suez Canal, Department of Geology, Ismailia, Egypt Abstract The preservational quality of fossils varies greatly from place to place, due in part to variation in factors such as sedimentary environment, diagenetic processes and taphonomic conditions. High-quality preservation of marine invertebrate animals is often associated with rapid burial in sediment. Depositional environments with high sedimentation rates are often associated with tectonic deformation (folds and faults). For example, the Syrian Arc System has formed a highly folded and deformed tectonic regime in the northern Sinai Peninsula. The resulting heavy sedimentation rates in the adjacent Tethys Sea produced thick packages of fossiliferous (sandstones, mudstones, limestones) during the Cretaceous. This study details the tectonic context of the abundant and well-preserved marine invertebrate faunas in the northern Sinai, of Egypt, focusing on the Gebel Yelleg and Gebel Mistan sites. Keywords: Rock; Deformation; Cretaceous; Fauna; Sediments Introduction Fossils, the preserved remains or evidence of past life, are the direct means of documenting the history of life on Earth [1]. Preservation can be highly variable from place to place, so palaeontologists commonly target the particular regions and environments that were characterized by a relatively continuous sediment accumation and by postmortem conditions that favoured to fossil preservation [2]. Accordingly, numerous palaeontologists studied the fossils of the Sinai Peninsula, especially in northern part because this region is one of the best fossil sites in Egypt, yielding well preserved specimens of Cretaceous time that most of them represent a shallow, near shore environment. The present work focusses on the relationship between rock deformation and the preservation of Cretaceous macro-invertebrate fauna from two northern Sinai sites in Egypt: Gebel Yelleg and Gebel Mistan (Figure 1). The main goal of this work is attempt to explain presence of abundant and well-preserved marine Cretaceous macrofauna of northern Sinai despite the rock deformation found and to stimulate further research on this interesting subject. Geological Setting In this work, the author selected Gebel Mistan and Gebel Yelleg sites in northern Sinai, Egypt, to achieve the goal of the present study (Figure 1). The Sinai Peninsula (Figure 1) is triangular in shape and occupies an area of nearly 6000 km2. The geology of Sinai Peninsula ranges from Precambrian basement rocks to Quaternary sediments. The southern sector of the peninsula is occupied by rigid Precambrian basement rocks, while the central and northern sectors are covered with a north-ward-draining limestone plateau with a series of northeasttrending anticlinal and synclinal gables. These folds, extending from the Western Desert in the west to Jordan and Syria in the east, follow the Syrian Arc System [3]. The Sinai Peninsula is bounded by rocks that were deposited in the Tethys Sea, by the Oligo-Miocene Gulf of Suez rifted basin to the west, and by the Late Miocene to recently transformed Dead Sea-Gulf of Aqaba rift to the east. Each of these major elements has dramatically affected the structure and tectonic evolution of the northern Sinai area [3], an area that is highly folded and deformed due to the Syrian arc system [4]. The hills, including the Gebel Maghara, Gebel Halal, and Gebel Yelleg, are the expression of doubly plunging anticlines with axial surfaces striking northeast-southwest. These folds affect Jurassic J Earth Sci Climate Change ISSN:2157-7617 JESCC, an open access journal through Cretaceous carbonates, which were deposited on a shallow platform that deepened towards an open Tethys Sea to the north [5]. The Jurassic and Cretaceous sedimentation of north and central Sinai Peninsula was cyclical and controlled by the clastic supply from the Arabian-Nubian Shield, the eustatic sea level, and local and regional tectonics [5]. The Early Cretaceous was marked by sharply accelerated continental rifting activity, as evidenced by the development of dominantly E-W trending grabens in northern Egypt and northeastern Libya [6]. The rift tectonics seems to have terminated at the end of the Early Cretaceous. During the early Late Cretaceous (Cenomanian), the North African margin was widely transgressed by the Neo-Tethys [7]. In central Sinai, Cenomanian sediments are predominantly formed by marls and shales, whereas in northern Sinai carbonates are increasingly common. Turonian shales, marls, limestones, and sandstones were deposited conformably on the Cenomanian beds. In northern and central Sinai, the Senonian deposits are predominantly chalks [6]. Gebel Yelleg Gebel Yelleg is located in the northern Sinai of Egypt at 33°15´33°47´ E and 30°15´-30°36´ N. This site is a large, elongated asymmetric dome of Cretaceous rocks ranging from pre-Cenomanian rock (Lower Cretaceous sand stones) to Campanian Chalk [8]. The Cretaceous rock units from base to top are the Galala formation (422 m) (Late Albian-Late Cenomanian), the Wata Formation (102 m) (Early-Late Turonian), the Themed Formation (15 m) (Coniacian-Santonian), and the Sudr Chalk (Campanian- Maastrichtian) [9-11]. Gebel Mistan Gebel Mistan is located at 33°30´-33°40´E and 30°45´-30°55´N. This site is one of the hills comprising Gebel Maghara proper [8]. Gebel *Corresponding author: Manal S. Mekawy, University of Suez Canal, Department of Geology, Ismailia, Egypt, E-mail: [email protected] Received August 25, 2012; Accepted October 08, 2012; Published October 11, 2012 Citation: Mekawy MS (2012) Unusual Factor Affecting the Preservation of Fossils from Northern Sinai, Egypt. J Earth Sci Climate Change 3:121. doi:10.4172/21577617.1000121 Copyright: © 2012 Mekawy MS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Volume 3 • Issue 3 • 1000121 Citation: Mekawy MS (2012) Unusual Factor Affecting the Preservation of Fossils from Northern Sinai, Egypt. J Earth Sci Climate Change 3:121. doi:10.4172/2157-7617.1000121 Page 2 of 7 N Mediterranean Sea 33˚25` 33˚ 30` 33˚ 45` G .R isa nA Raghawi Risan Aneiza Maghara Mistan Halal 31˚ Yelleg Suez 30˚ Arief El Naga G. r ut h afr M Um m an M ist Aqab uez fS a G 35˚ Wadi El-Fath G. Um m As ag il 30˚ 45` an zo ur 33˚ G. lf o a .R i av gh 32˚ 30˚ 50` G. Gulf of Gu W. El Ghaib Ekma iza ra Am Themed 29˚ ne 30˚ 55` Sinai 28˚ 33˚ 40` 33˚ 35` M G. Maghara G. 30˚ 40` G. Maaza 30˚ 35` 30˚ 30` G. Yelleg 30˚ 25` Wadi El-Hassana Campanian-Masstrichtian Coniacian-Santonian 0 5 Wata Formation (Turonian) 10 km Halal Formation (Albian-Cenomanian) Risan Aneiza Formation (Barremian-Albian) Malha Formation (Barremian-Albian) Jurassic Normal fault Plunging anticlines Studied sections Figure 1: Location map of the study area. J Earth Sci Climate Change ISSN:2157-7617 JESCC, an open access journal Volume 3 • Issue 3 • 1000121 Citation: Mekawy MS (2012) Unusual Factor Affecting the Preservation of Fossils from Northern Sinai, Egypt. J Earth Sci Climate Change 3:121. doi:10.4172/2157-7617.1000121 Page 3 of 7 Mistan is a part of the great Maghara Dome in northern Sinai and ranges in age from Upper Aptian to Cenomanian (incomplete) [1215]. Gebel Mistan is subdivided from base to top into the Malha, Risan Aneiza (160 m), and Halal (140 m) formations [13]. Field Observation and Types of Fossil Preservation The study area is characterized by high abundance of Cretaceous macro and micro- marine faunas with good preservation. Gebel Yelleg represents Upper Cretaceous fauna while Lower Cretaceous fauna are concentrated in Gebel Mistan. In Gebel Yelleg the author focused on Cenomanian and Turonian macrofauna and table 1 show some of the recorded Cenomanian and Turonian macrofauna on the Formation Macro-fauna genera gastropods ammonites echinoids Phymosoma, Coenholectypus, Petalobrissus Petalobrissus, Hemiaster Coilopoceras Thomasites, Choffaticeras, Neolobites, Turritella, Tylostoma, Tylostoma, Cimolithium, Nerinea, Micopedina, Heterodiadema, Coenholectypus Tetragramma, Coenholectypus Tetragramma, Goniopygus, Coenholectypus Hemiaster Barbatia, Nayadina, Ceratostreon, Ilymatogyra, Rhynchostreon, Chondrodonta, Praeradiolites, Lucina, Galala Formation Nucula, Inopera, Barbatia, Pseudoptera,Plagiostoma, Ceratostreon,Rhynchostreon,G yrostrea, Chondrodonta, Eoradiolites,Maghrebella Aporrhais, Pterodonta, Pterocera, Ampullina Brachidontes, Barbatia, Cucullaea, Nayadina, Costagyra, Ceratostreon, Ilymatogyra, Rhynchostreon, Ambigostrea, Rastellum, Chondrodonta, Late Middle Early Cenomanian Gebel Yelleg is a highly fossiliferous sites with diverse of marine Curostrea, Pholadomya Phelopteria, Curostrea, Curostrea, Praeradiolites, Durania, Pholadomya Wata Formation Middle Early Turonian Late bivalves Gebel Yelleg fauna Nerinea, Aptyxiella , Aporrhais, Pterodonta, Pterocera, Ampullina, Age level of genera based on the studies of El-Qot [15], and Mekawy [13] (the present author) For more details refer to [15]. In Gebel Mistan, the recorded macrofauna in table 2 based on the studies of Mekawy (the present author) and Abu-Zeid [13] (for bivalves and gastropods) and Hamama, 2010 (for ammonites) and personal field observations (for corals and echinoids). The stratigraphic columnar section of the Cenomanian and Turonian rocks of Gebel Yelleg shown in figure 2 while the stratigraphic columnar section of the Upper Aptian-Albian rocks of Gebel Mistan shown in figure 3. Table 1: Upper Cretaceous macro-fauna genera that recorded from Gebel Yelleg. J Earth Sci Climate Change ISSN:2157-7617 JESCC, an open access journal Volume 3 • Issue 3 • 1000121 Citation: Mekawy MS (2012) Unusual Factor Affecting the Preservation of Fossils from Northern Sinai, Egypt. J Earth Sci Climate Change 3:121. doi:10.4172/2157-7617.1000121 Page 4 of 7 Macro-fauna species echinoids Hemiaster sp., Coenholectypus sp. Teragonaites nautilodes Ceratostreon flabelatum, Neithea quinquecostata Protocardia hillana, Pinna robinaldina, Pholadomya gigantean, Chlamys goldfussi, Glossus aquilinus ammonites Valdedorsella akuschense, Zuercherella aff. zuercheri, Uhligella clansayensis, Phylloceras moreti, Teragonaites nautilodes, Teragonites aff. heterosulcatus, Teragonites sp., Discotectus sp. Ampullina ervyna, Diastoma ornate, Nerinea mistanensis, Pseudomesalia deserti, Riselloidea tricarinata, Turriscala darwishi Epistreptophyllum manzourensis, Epistreptophyllum sp.,Trochosmilia cretacea,Mixastraea sp.,Paracycloseris sp.,Stylina regularis, Montlivaltia sp. Aneiza Risan Late bivalves Nucula magaritifera, Maghrebella deserti, Corbula magharensis, Modiolus manzourensis, Cameleopha pharaonis Acteonella delgadoi, Drepanocheilus magharensis, Ampullina prolonga, Glauconia deserti, Nerinea abbassi Halal Late Middle Early Albian Aptian gastropods Petrocera incerta, Colombellina fusiformis, Drepanocheilus muli,Pleurotomaria neocomiensis Corals Gervillaria alaeformis, Gervillaria sowerbyana,Gervillaria sp., Spharea corrugate, Ptychomya robinaldina, Trigonia undulatocostata, Cucullaea orintalis, Pterotrigonia scabra Formation Turritella mordi, Nerinea magharensis, Nerinea mistanensis, Tylostoma magharensis,Tylostoma globosum, Pyrazus magharensis,Pyrazus sexangulatus,Pseudomesalia quadrilineata, Pseudomesalia deserti, Ampullina ervyna, Age Table 2: Lower Cretaceous macro-fauna species that recorded from Gebel Mistan. macro-invertebrate fauna, especially in the Cenomanian and Turonian rocks. Most of them show low degree of disarticulation and fragmentation. Skeletal remains are randomly oriented, relatively poorly sorted and oysters and rudists occur in clusters and in growth position. They do not show any signs of deformation or compaction. The most common taxa are represented by bivalves (such as oysters, rudists), followed by gastropods (such as Turritellidae, Nerinea, Tylostoma), echinoids (such as Hemiaster, Coenholectypus), and cephalopods (such as ammonites, nautiloids) (Figure 4). The site also yields microfauna such as foraminifera and ostracods [15]. Gebel Mistan fauna Lower Cretaceous assemblages (Upper Aptian- Albian) of Gebel J Earth Sci Climate Change ISSN:2157-7617 JESCC, an open access journal Mistan are very well preserved especially those that occur in shales and carbonates where those that occur in chalky limestone and dolomitic limestone are not well preserved. Assemblages are densely packed, moderately sorted, randomly oriented, with low degree of disarticulation and fragmentation. Most of the shells were preserved in life position and no folded and deformed fauna is found. The most common macro-invertebrate fossils are represented by bivalves (such as Gervillaria, Trigonia, oysters), followed by gastropods (such as Nerinea, Tylostoma, Pyrazus) Mekawy and Abu-Zeid [13], and ammonites (such as Barremites, Phylloceras, Tetragonites) [14]. Brachiopods, colonial and solitary corals are common in the lower part of Gebel Mistan and can be found scattered on the surface (Figure 5). Foraminifer microfossils have been recorded at Gebel Mistan [12]. Volume 3 • Issue 3 • 1000121 Citation: Mekawy MS (2012) Unusual Factor Affecting the Preservation of Fossils from Northern Sinai, Egypt. J Earth Sci Climate Change 3:121. doi:10.4172/2157-7617.1000121 Page 5 of 7 Lithology Larger f.Macro Biozones Stage Fm Mb. P. cretacea upper carbonate U. 22 Conc.-San.? Ca. Middle 23 Sd. No. Middle Bed Themed Stage Fm 21 20 19 Bed Lithology Ammonite Zones No. 59 Pycnodonte ( Phygraea ) vesicularis 58 57 56 55 P. (C.) costei - O. dichotoma - P. ferryi Cucullaea (Idonearca) maresi Metatissotia ewaldi 54 Coilopoceras requienianum 53 52 51 50 49 Durania arnaudi - Praeradiolites 46 45 lower carbonate Lower Lower 15 Galala Formation Phymosoma abbatei Tylostoma (T.) globosum 44 Legend Sandy dolostone Dolostone 43 42 Hemiaster (M.) heberti turonensis Coenholectypus turonensis 41 40 16 Cenomanian ponsianus aegyptiacus Praeradiolites irregularis 47 middle clastic 17 Wata Formation Turonian Gyrostrea delettrei Rhynchostreon suborbiculatum Hemiaster (Hemiaster) gabrielis Middle 48 18 Biozones based on other macrofossils Dolomitic limestone Argillaceous limestone 39 Choffaticeras segne Thomasites rollandi Sandy limestone Pycnodonte ( Phygraea ) vesiculosa Rastellum carinatum 38 14 Costagyra olisiponensis 37 Limestone Sandstone 13 Upper 12 Eoradiolites liratus 24m Galala Formation 0 Cenomanian 9 8 7 Upper Chalk Neolobites vibrayeanus Chalky limestone 29 27 Middle 0. conica 4 Albian 32 31 30 28 6 5 33 Shale Marl 34 8m 10 Ambigostrea pseudovillei llymatogyra africana 35 16m 11 Siltstone 36 Ceratostreon flabellatum Pterocera incerta 3 26 Nerinea gemmifera Praeradiolites biskraensis 25 2 24 Mal ? 1 Figure 2: Stratigraphy of the Upper Cretaceous succession exposed at Gebel Yelleg, North Sinai, Egypt (after Abdel-Gawad et al., 2004). Results and Discussion The low degree of disarticulation and fragmentation, relatively poor to moderate sorting, randomly orientation of organisms in life position suggest that the fossil assemblages at both sites were quickly covered with sediment, possibly while some of them were still alive which may be due to the tectonic movements. The absence of deformed fossils may support the idea that the deformation of Cretaceous rocks took place during the life of the fauna. The Cretaceous sedimentary rocks of northern Sinai represent one of the thickest sequences in Egypt due to the transgression of the Neo-Tethys (previous studies). The thickness and the bedded nature of the sedimentary rocks make it easily deformable into faults and folds. The time of deformation in the northern part of the Syrian arc and northern Sinai in the Cretaceous, which coincided with an abundance J Earth Sci Climate Change ISSN:2157-7617 JESCC, an open access journal and diversity of marine organisms, may be responsible for a quick cover of fauna by sediments and therefore good preservation. The well-preserved organisms must have been embedded by rapid burial. The animals buried in this way were most likely alive in many cases and may have been killed by the effect of tectonic movement, which would explain the dominance of marine fauna with a large proportion of complete specimens and good preservation. Finally, the discussion above may be explaining the presence of fossils in a well-preserved condition in northern Sinai despite the rock deformation found. Conclusions 1) The northern Sinai is highly folded and deformed due to geomorphic effects of the Syrian arc system. Volume 3 • Issue 3 • 1000121 Citation: Mekawy MS (2012) Unusual Factor Affecting the Preservation of Fossils from Northern Sinai, Egypt. J Earth Sci Climate Change 3:121. doi:10.4172/2157-7617.1000121 Page 6 of 7 2) The present study details the relationship between northern Sinai’s tectonic regime and the preservational quality and completeness of two marine invertebrate faunas: Gebel Yelleg (Upper Cretaceous) and Gebel Mistan (Lower Cretaceous). 3) Marine invertebrates observed in the study area are well preserved and in life position, with low degrees of disarticulation and fragmentation, random orientations, and moderate to poor sorting; no folded or deformed fossils have been found. a b c d e f Samples Lithology 66 65 64 Halal 54 48 Risan Aneiza 65 64 55 100 m Figure 5: Deformed rocks of Gebel Mistan (A), Aptian corals from Gebel Mistan (B), Aptian Nerinea bed from Gebel Mistan (C), Albian Nerinea bed from Gebel Mistan (D), Albian rudist bed from Gebel Mistan (E), Albian ammonite from Gebel Mistan (F). 53 48 50 m 43 38 36 Upper Apt Lower Albian Middle Albian Upper Alb Age Formation Bed no. 4) Taphonomic conditions of the studied faunas suggest rapid 38 34 36 35 34 31 30 31 30 28 27 26 25 24 28 27 18 26 25 24 18 14 13 11 14 13 11 7 6 1 burial by sediments, potentially resulting from regional tectonic deformation associated with high erosion rates. 0.0 m 7 6 1 The arrow pointing to the study beds Sandstone Crossbedded sandstone Shale Dolostone Limestone Oysters Bivalves Rudists Echinoids Gastropods Orbitolines Marl Ammonites Corals Figure 3: Stratigraphic columnar section of the Lower Cretaceous of Gebel Mistan, North Sinai, Egypt. a b 5) The absence of folded and deformed fauna in the study area supports the author’s hypothesis that sediment deposition occurred while the fauna was still alive. Acknowledgments Thanks to everyone in Journal of Earth Science & Climatic Change who has contributed toward the progress of this work especially Gracia S. Oliver, Assistant Managing Editor to respond to any request I asked her. I am deeply grateful to Kathleen S. Lyons, Action Editor, Department of Paleobiology, and University of New Mexico, USA for critical review of the manuscript. Deep and grateful thanks to Sims HJ and Adam Tomasovych, Geology Institute, Slovak Academy of Sciences, Slovak Republic for their critical review of the manuscript and useful comments. Refferences 1. Stringer G L (2002) Fossils from the Cane River Site, North-central Louisiana. Louisiana Geological Survey, Public information Series No.10. 2. Kidwell S M, Holland S M (2002) The quality of the fossil record: Implications for evolutionary analyses. Annu Rev Ecol Syst 33:561-588. 3. Alsharhan A S, Salah M G (1996) Geologic setting and hydrocarbon potential of north Sinai, Egypt. Bulletin of Canadian petroleum Geology 44:615-631. c d 4. Aita S K, Bishta A Z (2009) Geology and radioactivity of Gabal El Minsherah-El Hasanah District, northern Sinai, Egypt. Egyptian Journal of Remote Sensing and Space Science 12:149-164. 5. Jenkins D A (1990) North and Central Sinai. In: Said, R (Edn), the Geology of Egypt. Balkama, Rotterdam 51-59. e f 6. Abd El-Motaal E, Kusky T M (2003) Tectonic evolution of the intraplate s-shaped Syrian Arc Fold-Thrust Belt of the Middle East Region in the context of Plate Tectonics. The third international conference on the Geology of Africa 2:139-157. 7. Dercourt J, Ricou L E, Vrielynck B (1993) Atals Tethys palaeoenvironmental maps. Gauthier-Villars, Paris 1-307. 8. Moon F W, Sadek H (1921) Topography and Geology of Northern Sinai. Part 1. Petrol Res Bull 10:1-142. Figure 4: Deformed rocks of Gebel Yelleg (A-C), Cenomanian oyster beds from Gebel Yelleg (D & F), Cenomanian rudist bed from Gebel Yelleg (E). J Earth Sci Climate Change ISSN:2157-7617 JESCC, an open access journal 9. Abdel-Gawad GI, El Sheikh HA, Abdelhamid MA, El Beshtawy MK, Abed MM, Fürsich FT, et al. (2004) Stratigraphic studies on some upper Cretaceous successions in Sinai, Egypt. Egyptian J Paleontol 4:263-303. Volume 3 • Issue 3 • 1000121 Citation: Mekawy MS (2012) Unusual Factor Affecting the Preservation of Fossils from Northern Sinai, Egypt. J Earth Sci Climate Change 3:121. doi:10.4172/2157-7617.1000121 Page 7 of 7 10.Mekawy M S (2007) Taphonomy of Cenomanian oysters from Gebel Yelleg, North Sinai, and Egypt. Egyptian J Paleontol 7:335-348. 13.Mekawy MS, Abu-Zied RH (2008) Lower Cretaceous molluscan fauna from North Sinai, Maghara area, Egypt. Egyptian J Paleontol 8:291-334. 11.Mekawy M S (2010) Factors affecting the behavior and trait of some Cenomanian oysters from Sinai, Egypt. Egyptian J Paleontol 10:107-121. 14.Hamama H (2010) Barremian and Aptain Mollusca of Gabal Mistan and Gabal Um Mitmani, Al Maghara Area, Northern Sinai, Egypt. Journal of American Science 6:1702-1714. 12.Said R, Barakat MG (1957) Lower Cretaceous foraminifera from Khashm el Mistan, northern Sinai, Egypt. Micropaleontology 3:39-47. 15.El Qot G M (2006) Late Cretaceous macrofossils from Sinai, Egypt. Beringeria 36:3-163. Submit your next manuscript and get advantages of OMICS Group submissions Unique features: • • • User friendly/feasible website-translation of your paper to 50 world’s leading languages Audio Version of published paper Digital articles to share and explore Special features: • • • • • • • • 200 Open Access Journals 15,000 editorial team 21 days rapid review process Quality and quick editorial, review and publication processing Indexing at PubMed (partial), Scopus, DOAJ, EBSCO, Index Copernicus and Google Scholar etc Sharing Option: Social Networking Enabled Authors, Reviewers and Editors rewarded with online Scientific Credits Better discount for your subsequent articles Submit your manuscript at: www.omicsonline.org/submission J Earth Sci Climate Change ISSN:2157-7617 JESCC, an open access journal Volume 3 • Issue 3 • 1000121
© Copyright 2025 Paperzz