– Homework 5 – tran – (52970) This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 1. y = ′ 2. y = 3. y ′ = ′ 4. y = 5. y ′ = 6. y ′ = 2. f ′ (x) = 18 sin(18x + 5) 3. f ′ (x) = −18 sin(18x + 5) correct 10.0 points Find the derivative of y when √ √ √ y = 8 sin( x) − 10 x cos( x) . ′ 1 sin(√x) √ 5 cos( x) − 9 x √ sin( x) √ √ 4 sin( x) + 9 x √ √ sin( x) 4 cos( x) + √ x cos(√x) √ √ 5 sin( x) − 9 x √ √ cos( x) 5 sin( x) − √ correct x √ √ cos( x) 4 sin( x) + √ x √ Explanation: By the Product and Chain Rules, cos(√x) cos(√x) ′ √ √ y =4 −5 x x √x sin(√x) √ +5 . x Consequently, √ √ cos( x) ′ y = 5 sin( x) − √ . x 002 10.0 points Find the derivative of f when f (x) = cos(9x + 7) cos(9x − 2) − sin(9x + 7) sin(9x − 2) . 1. f ′ (x) = sin(9x + 7) cos(9x − 2) 4. f ′ (x) = cos(9x + 7) sin(9x − 2) 5. f ′ (x) = −9 sin(18x + 5) Explanation: Since f (x) = cos(9x + 7) cos(9x − 2) − sin(9x + 7) sin(9x − 2) h i = cos (9x + 7) + (9x − 2) = cos(18x + 5) , we see that f ′ (x) = −18 sin(18x + 5) . 003 10.0 points Find f ′ (x) when f (x) = 2 sec2 x − tan2 x . 1. f ′ (x) = 2 tan2 sec x 2. f ′ (x) = 6 sec2 x tan x 3. f ′ (x) = −2 sec2 x tan x 4. f ′ (x) = −2 tan2 sec x 5. f ′ (x) = 2 sec2 x tan x correct 6. f ′ (x) = 6 tan2 sec x Explanation: Since d sec x = sec x tan x, dx d tan x = sec2 x, dx – Homework 5 – tran – (52970) Thus the Chain Rule ensures that f ′ (x) = 4 sec2 x tan x − 2 tan x sec2 x . Consequently, f ′ (x) = 2 sec2 x tan x . 004 10.0 points Determine f ′ (x) when r x−1 f (x) = . x+1 2 1. f (x) = 1/2 (x − 1) (x + 1)3/2 ′ 2. f ′ (x) = − 3. f ′ (x) = 5. f ′ (x) = 6. f ′ (x) = 1 f (x) = 2 ′ x+1 x−1 1/2 · 2 . (x + 1)2 Consequently, f ′ (x) = 1 (x − 1)1/2 (x + 005 1)3/2 Find the derivative of f when f (x) = 2 tan 4x cos3 4x . 2 3. f ′ (x) = 8 cos 4x (1 − 3 cos2 4x) (x − 1)3/2 (x + 1)1/2 1 correct 1/2 (x − 1) (x + 1)3/2 Explanation: To apply the Chain Rule it’s simpler to write r 1/2 x−1 x−1 f (x) = = . x+1 x+1 For then, 2. f ′ (x) = 8 cos 4x (1 + 3 sin2 4x) 4. f ′ (x) = 2 cos 4x(1 − 3 cos2 4x) 5. f ′ (x) = 8 cos 4x (1 − 3 sin2 4x) correct Explanation: Using the fact that d 1 tan x = , dx cos2 x x−1 x+1 1 = 2 x+1 x−1 −1/2 1/2 d x−1 dx x + 1 d x−1 . dx x + 1 But by the Quotient Rule, (x + 1) − (x − 1) d x−1 = dx x + 1 (x + 1)2 2 = . (x + 1)2 d cos x = − sin x, dx together with the Chain rule, we obtain f ′ (x) = 1 f (x) = 2 . 10.0 points 1. f ′ (x) = 2 cos 4x(3 sin2 4x − 1) 2 3/2 (x − 1) (x + 1)1/2 ′ 1 1/2 (x − 1) (x + 1)3/2 1 3/2 (x − 1) (x + 1)1/2 4. f ′ (x) = − 2 8 cos3 4x 2 cos 4x − 24 tan 4x cos2 4x sin 4x. Consequently, f ′ (x) = 8 cos 4x (1 − 3 sin2 4x) . Notice that the problem slightly simpler if we observe that tan 4x = sin 4x , cos 4x – Homework 5 – tran – (52970) 3 Determine f ′ (x) when so that √ f (x) = 2 sin 4x cos2 4x, and then differentiate this function using the known derivatives of sin 4x and cos 4x. 006 10.0 points ′ Find the value of F (2) when F (x) = f (g(x)) f (x) = e 2x+3 . √ 2e 2x+3 1. f ′ (x) = √ 2x + 3 √ 2. f ′ (x) = 2e √ 3. f ′ (x) = e 2x+3 2x+3 √ 2x + 3 √ and ′ g(2) = 5, g (2) = 3 , f ′ (2) = 2, f ′ (5) = 4 . ′ 1. F (2) = 8 1 e 2x+3 4. f (x) = √ 2 2x + 3 ′ √ e 5. f ′ (x) = √ 2x+3 2x + 3 correct Explanation: By the chain rule ′ 2. F (2) = 11 √ ′ f (x) = e 3. F ′ (2) = 12 correct 2x+3 √ 4. F ′ (2) = 10 e = √ d√ 2x + 3 dx 2x+3 2x + 3 . 5. F ′ (2) = 9 008 Explanation: By the Chain Rule, If y is defined implicitly by F ′ (x) = f ′ (g(x))g ′(x) . Thus ′ ′ ′ F (2) = f (g(2))g (2) = f ′ (5)g ′ (2) . Consequently, when g(2) = 5, g ′ (2) = 3 , f ′ (2) = 2, f ′ (5) = 4 , we see that F ′ (2) = 12 . Notice that the value of f ′ (2) was not needed. 007 10.0 points 10.0 points 4y 2 − xy − 6 = 0 , find the value of dy/dx at (10, 3). dy 3 1. = correct dx (10, 3) 14 dy 3 2. = − dx (10, 3) 14 dy 1 3. = dx (10, 3) 5 dy 2 4. = − dx (10, 3) 7 2 dy = 5. dx (10, 3) 7 Explanation: – Homework 5 – tran – (52970) Differentiating implicitly with respect to x we see that 8y dy dy −y−x = 0. dx dx Thus dy y = . dx 8y − x keywords: implicit differentiation, Folium of Descartes, derivative, 010 Find dy 2 − sec2 (x + y) = dx sec2 (x + y) + 3 2. dy 3 + sec2 (x + y) = dx sec2 (x + y) + 2 3. dy 2 − sec2 (x + y) = dx sec2 (x + y) − 3 4. 3 − sec2 (x + y) dy = dx sec2 (x + y) − 2 dy 3y + x2 = dx 2y 2 + 3x 5. 3 − sec2 (x + y) dy = correct dx sec2 (x + y) + 2 3y − x2 dy = dx 2y 2 − 3x 6. dy 2 + sec2 (x + y) = dx sec2 (x + y) − 3 Find 10.0 points dy when dx x3 − 2y 3 − 9xy − 1 = 0 . 2. 3. dy x2 + 3y = dx 2y 2 − 3x dy x2 − 3y 4. = correct dx 2y 2 + 3x 5. tan(x + y) = 3x − 2y . 1. 009 1. 10.0 points dy when dx At (10, 3), therefore, dy 3 . = dx (10, 3) 14 4 x2 − 3y dy = dx 2y 2 − 3x Explanation: We use implicit differentiation. For then 3x2 − 6y 2 dy dy − 9y − 9x = 0, dx dx which after solving for dy/dx and taking out the common factor 3 gives dy 3 (x2 − 3y) − 3 (2y 2 + 3x) = 0 . dx Explanation: Differentiating implicitly with respect to x, we see that dy dy 2 = 3−2 . sec (x + y) 1 + dx dx After rearranging, this becomes dy 2 sec (x + y) + 2 = 3 − sec2 (x + y) . dx Consequently, dy 3 − sec2 (x + y) = . dx sec2 (x + y) + 2 Consequently, dy x2 − 3y = . dx 2y 2 + 3x keywords: 011 10.0 points – Homework 5 – tran – (52970) Now we can use the point-slope formula to find an equation for the tangent line: y−2 = 9 (x − 1) . 4 2. f ′ (x) = √ 9 1 y = x− . 4 4 013 3. f ′ (x) = √ 10.0 points 4. f ′ (x) = √ Find dy/dx when e2y = 10x2 + 5y 2 . 1. dy 2x = 2 dx 2x + 5y 2 − 5y 2. 5x dy = 2 dx 2x + y 2 + y 3. 2x dy = 2 dx 2x + y 2 + y 5. f ′ (x) = √ 6. f ′ (x) = √ 3 1 − x2 6 4 − x2 2 4 − x2 6 1 − x2 together with the Chain Rule shows that 3 1 ′ f (x) = p . 2 2 1 − (x/2) Consequently, Explanation: Differentiating f ′ (x) = √ e2y = 10x2 + 5y 2 015 implicitly with respect to x we see that dy dy = 20x + 10y , dx dx so dy 10x = 2y . dx e − 5y dy 2x = 2 dx 2x + y 2 − y 10.0 points . 3 . 4 − x2 10.0 points Find the derivative of f (x) = tan−1 (e3x ) . 1. f ′ (x) = 1 1 + e6x 2. f ′ (x) = 3 1 + e6x Thus 014 3 correct 4 − x2 d 1 arcsin(x) = √ , dx 1 − x2 2x dy = correct 2 dx 2x + y 2 − y 2e2y 2 1 − x2 Explanation: Use of 5x dy = 4. 2 dx 2x + y 2 − y 5. Determine the derivative of x . f (x) = 3 arcsin 2 1. f ′ (x) = √ After simplification this becomes 6 3. f ′ (x) = √ 4. f ′ (x) = 3e3x 1 − e6x e3x 1 + e6x – Homework 5 – tran – (52970) Consequently, 3 5. f (x) = √ 1 − e6x ′ 6. f ′ (x) = √ 7. f ′ (x) = √ 8. f ′ (x) = f ′ (θ) = 4 cot 4θ . e3x 1 − e6x 017 1 1 − e6x 3e3x correct 1 + e6x d ax e = aeax , dx the Chain Rule ensures that 3e3x f (x) = . 1 + e6x ′ 016 10.0 points Find the derivative of f when f (θ) = ln (sin 4θ) . 1. f ′ (θ) = cot 4θ 2. f ′ (θ) = Find the derivative of f when p f (x) = 2 ln(x − x2 − 9), (x > 3) . 2. f ′ (x) = √ 4. f ′ (x) = − √ 6. f ′ (x) = √ 5. f ′ (θ) = − tan 4θ 1 cos 4θ Explanation: By the Chain Rule, f ′ (θ) = 4 cos 4θ 1 d (sin 4θ) = . sin(4θ) dθ sin 4θ −9 4 x2 − 9 1 x2 − 9 1 x2 − 9 2 x2 − 9 2 x √ 1− √ x − x2 − 9 x2 − 9 f ′ (x) = = −√ 018 4. f (θ) = 4 tan 4θ correct Explanation: By the Chain Rule 4 sin 4θ ′ −9 4 3. f ′ (x) = − √ 5. f ′ (x) = √ 2 x2 x2 3. f ′ (θ) = 4 cot 4θ correct 6. f ′ (θ) = 10.0 points 1. f ′ (x) = − √ Explanation: Since 1 d tan−1 x = , dx 1 + x2 7 2 x2 − 9 10.0 points Find the derivative of s f (x) = ln 1. f ′ (x) = 2. f ′ (x) = . 1 + 2x2 . 1 − 2x2 4x correct 1 − 4x4 2x 1 − 4x2 3. f ′ (x) = − 4x 1 − 4x4 – Homework 5 – tran – (52970) 4. f ′ (x) = − 4x3 1 − 4x4 6. y ′ = xy(2 ln x − 1) 7. y ′ = 2x3 5. f (x) = − 1 − 4x2 ′ Explanation: Properties of logs ensure that s 1 + 2x2 ln 1 − 2x2 q q 2 = ln (1 + 2x ) − ln (1 − 2x2 ) 1 ln(1 + 2x2 ) − ln(1 − 2x2 ) . 2 By the Chain rule, therefore, 4x 1 4x f ′ (x) = + 2 1 + 2x2 1 − 2x2 = 2x (1 − 2x2 ) + (1 + 2x2 ) 1 − 4x2 Consequently, f ′ (x) = 019 4x 1 − 4x4 . 10.0 points Determine y ′ when y = x1/x . 1. y ′ = −xy(2 ln x + 1) Explanation: After taking natural logs we see that ln y = 3. y ′ = y(ln x + 1) 4. y ′ = −y(ln x + 1) y (ln x − 1) correct x2 1 ln x . x Thus by implicit differentiation, 1 dy 1 1 = − 2 ln x + 2 . y dx x x Consequently, y′ = − 020 Find . y (ln x − 1) . x2 10.0 points dy when dx y ln x + y 2 = x . 1. dy x+y = dx x ln x − 2xy 2. 1−y dy = dx ln x + 2y 3. dy 1+y = dx ln x + 2y 4. dy x−y = dx ln x − 2xy 5. dy 1 + xy = dx x ln x − 2y 6. dy x−y = correct dx x ln x + 2xy 2. y ′ = xy(2 ln x + 1) 5. y ′ = − y (ln x − 1) x2 8. y ′ = −y(2 ln x − 1) 4x3 6. f ′ (x) = 1 − 4x4 = 8 Explanation: Differentiating implicitly with respect to x we see that 1 dy dy y + (ln x) + 2y = 1, x dx dx – Homework 5 – tran – (52970) which after rearrangement becomes (ln x + 2y) y dy = 1− . dx x Consequently, dy x−y = dx x ln x + 2xy . 9
© Copyright 2026 Paperzz