CHAPTER 20 BINARY, OCTAL AND HEXADECIMAL EXERCISE 84 Page 177 1. Convert the following binary numbers to decimal numbers: (a) 110 (b) 1011 (c) 1110 (d) 1001 (a) 1102 = 1× 22 + 1× 21 + 0 × 20 = 4 + 2 + 0 = 610 (b) 10112 = 1× 23 + 0 × 22 + 1× 21 + 1× 20 = 8 + 0 + 2 + 1 = 1110 (c) 11102 = 1× 23 + 1× 22 + 1× 21 + 0 × 20 = 8 + 4 + 2 + 0 = 1410 (d) 10012 =1× 23 + 0 × 22 + 0 × 21 + 1× 20 = 8 + 0 + 0 + 1 = 910 2. Convert the following binary numbers to decimal numbers: (a) 10101 (b) 11001 (c) 101101 (d) 110011 (a) 101012 = 1× 24 + 0 × 23 + 1× 22 + 0 × 21 + 1× 20 = 16 + 0 + 4 + 0 + 1 = 2110 (b) 110012 = 1× 24 + 1× 23 + 0 × 22 + 0 × 21 + 1× 20 = 16 + 8 + 0 + 0 + 1 = 2510 (c) 1011012 = 1× 25 + 0 × 24 + 1× 23 + 1× 22 + 0 × 21 + 1× 20 = 32 + 0 + 8 + 4 + 0 + 1 = 4510 (d) 1100112 = 1× 25 + 1× 24 + 0 × 23 + 0 × 22 + 1× 21 + 1× 20 = 32 + 16 + 0 + 0 + 2 + 1 = 5110 311 © 2014, John Bird 3. Convert the following binary numbers to decimal numbers: (a) 101010 (b) 111000 (c) 1000001 (d) 10111000 (a) 1010102 =1× 25 + 0 × 24 + 1× 23 + 0 × 22 + 1× 21 + 0 × 20 = 32 + 0 + 8 + 0 + 2 + 0 = 4210 (b) 1110002 =1× 25 + 1× 24 + 1× 23 + 0 × 22 + 0 × 21 + 0 × 20 = 32 + 16 + 8 + 0 + 0 + 0 = 5610 (c) 10000012 =1× 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1× 20 = 64 + 0 + 0 + 0 + 0 + + 0 + 1 = 6510 (d) 101110002 =1× 27 + 0 × 26 + 1× 25 + 1× 24 + 1× 23 + 0 × 22 + 0 × 21 + 0 × 20 = 128 + 0 + 32 + 16 + 8 + 0 + 0 + 0 = 18410 4. Convert the following binary numbers to decimal numbers: (a) 0.1101 (b) 0.11001 (c) 0.00111 (d) 0.01011 (a) 0.1101 2 = 1 × 2–1 + 1 × 2–2 + 0 × 2–3 + 1 × 2–4 =1× = 1 1 1 1 +1× +0× +1× 22 24 23 2 1 1 1 + + 2 4 16 = 0.5 + 0.25 + 0.0625 = 0.8125 10 (b) 0.11001 2 = 1 × 2–1 + 1 × 2–2 + 0 × 2–3 + 0 × 2–4 + 1 × 2–5 =1× = 1 1 1 1 1 +1× +0× +0× +1× 23 22 2 24 25 1 1 1 + + 2 4 32 = 0.5 + 0.25 + 0.03125 = 0.7812510 (c) 0.00111 2 = 0 × 2–1 + 0 × 2–2 + 1 × 2–3 + 1 × 2–4 + 1 × 2–5 312 © 2014, John Bird =0× = 1 1 1 1 1 +0× +1× +1× +1× 3 2 4 2 2 2 2 25 1 1 1 + + 8 16 32 = 0.125 + 0.0625 + 0.03125 = 0.2187510 (d) 0.01011 2 = 0 × 2–1 + 1 × 2–2 + 0 × 2–3 + 1 × 2–4 + 1 × 2–5 =0× = 1 1 1 1 1 +1× +0× +1× +1× 23 2 22 24 25 1 1 1 + + 4 16 32 = 0.25 + 0.0625 + 0.03125 = 0.3437510 5. Convert the following binary numbers to decimal numbers: (a) 11010.11 (b) 10111.011 (c) 110101.0111 (d) 11010101.10111 (a) 11010.112 = 1× 24 + 1× 23 + 0 × 22 + 1× 21 + 0 × 20 + 1× 2−1 + 1× 2−2 = 16 + 8 + 0 + 2 + 0 + 1 1 + = 26.7510 2 4 (b) 10111.0112 = 1× 24 + 0 × 23 + 1× 22 + 1× 21 + 1× 20 + 0 × 2−1 + 1× 2−2 + 1× 2−3 = 16 + 0 + 4 + 2 + 1 + 1 1 + = 23.37510 4 8 (c) 110101.01112 = 1× 25 + 1× 24 + 0 × 23 + 1× 22 + 0 × 21 + 1× 20 + 0 × 2−1 + 1× 2−2 + 1× 2−3 + 1× 2−4 = 32 + 16 + 0 + 4 + 0 + 1 + 1 1 1 = 53.437510 + + 4 8 16 (d) 11010101.101112 = 1× 27 + 1× 26 + 0 × 25 + 1× 24 + 0 × 23 + 1× 22 + 0 × 21 + 1× 20 + 1× 2−1 + 0 × 2−2 + 1× 2−3 + 1× 2−4 + 1× 2−5 = 128 + 64 + 16 + 4 + 1 + 1 1 1 1 = 213.7187510 + + + 2 8 16 32 313 © 2014, John Bird EXERCISE 85 Page 179 1. Convert the following decimal numbers to binary numbers: (a) 5 (a) (b) 15 (c) 19 (d) 29 2 5 Remainder 2 2 1 2 1 0 2 0 1 (most significant bit) → 1 0 1 ← (least significant bit) Thus, (b) 5 10 = 101 2 2 15 Remainder 2 7 1 2 3 1 2 1 1 2 0 1 1 1 1 1 Thus, (c) 1510 = 1111 2 2 19 Remainder 2 9 1 2 4 1 2 2 0 2 1 0 2 0 1 1 0 0 1 1 314 © 2014, John Bird Thus, (d) 19 10 = 100112 2 29 Remainder 2 14 1 2 7 0 2 3 1 2 1 1 2 0 1 1 1 1 0 Thus, 1 29 10 = 111012 2. Convert the following decimal numbers to binary numbers: (a) 31 (b) 42 (a) (c) 57 2 31 Remainder 2 15 1 2 7 1 2 3 1 2 1 1 0 1 (most significant bit) → Thus, (d) 63 1 1 1 1 1 ← (least significant bit) 3110 = 111112 315 © 2014, John Bird (b) 2 42 Remainder 2 21 0 2 10 1 2 5 0 2 2 1 2 1 0 0 1 1 0 1 0 1 0 Thus, 4210 = 101010 2 (c) 2 57 Remainder 2 28 1 2 14 0 2 7 0 2 3 1 2 1 1 0 1 1 1 1 0 0 1 Thus, (d) 57 10 = 111001 2 2 63 Remainder 2 31 1 2 15 1 2 7 1 2 3 1 2 1 1 0 1 1 1 1 1 1 1 316 © 2014, John Bird Thus, 63 10 = 1111112 3. Convert the following decimal numbers to binary numbers: (a) 47 (b) 60 (a) (c) 73 (d) 84 2 47 Remainder 2 23 1 2 11 1 2 5 1 2 2 1 2 1 0 0 1 1 0 1 1 1 1 Thus, (b) 4710 = 101111 2 2 60 Remainder 2 30 0 2 15 0 2 7 1 2 3 1 2 1 1 0 1 1 1 1 1 0 0 Thus, 6010 = 111100 2 317 © 2014, John Bird (c) 2 73 Remainder 2 36 1 2 18 0 2 9 0 2 4 1 2 2 0 2 1 0 0 1 1 0 0 1 0 0 1 Thus, (d) 7310 = 1001001 2 2 84 Remainder 2 42 0 2 21 0 2 10 1 2 5 0 2 2 1 2 1 0 0 1 1 0 1 0 1 0 0 Thus, 8410 = 1010100 2 4. Convert the following decimal numbers to binary numbers: (a) 0.25 (b) 0.21875 (c) 0.28125 (d) 0.59375 318 © 2014, John Bird (a) 0.25 × 2 = 0. 50 0.50 × 2 = 1. 00 (most significant bit) . 0 Hence, (b) 1 (least significant bit) 0.2510 = 0.01 2 0.21875 × 2 = 0. 4375 0.4375 × 2 = 0. 875 0.875 ×2= 1. 75 0.75 × 2= 1. 50 0.50 × 2= 1.00 . 0 0 0.21875 10 = 0.00111 2 i.e. (c) 0.28125 × 2 = 0. 5625 0.5625 × 2 = 1. 125 0.125 ×2= 0. 25 0.25 × 2= 0. 50 0.50 × 2= 1.00 . 0 1 0.59375 × 2 = 1. 1875 0.1875 × 2 = 0. 375 0.375 ×2= 0. 75 0.75 × 2= 1. 50 0.50 × 2= 1.00 . 1 0 i.e. 0 0 1 0.28125 10 = 0.01001 2 i.e. (d) 1 1 1 0 1 1 0.59375 10 = 0.10011 2 319 © 2014, John Bird 5. Convert the following decimal numbers to binary numbers: (a) 47.40625 (b) 30.8125 (c) 53.90625 (d) 61.65625 (a) 2 47 Remainder 2 23 1 2 11 1 2 5 1 2 2 1 2 1 0 0 1 1 0 1 1 1 1 0.40625 × 2 = 0. 8175 0.8175 × 2 = 1. 625 0.625 ×2= 1. 25 0.25 × 2= 0. 50 0.50 × 2= 1.00 . 0 1 1 0 1 Thus, 47.4062510 = 101111.011012 (a) 2 30 Remainder 2 15 0 2 7 1 2 3 1 2 1 1 2 0 1 1 1 1 1 0 320 © 2014, John Bird 0.8125 × 2 = 1. 625 0.625 × 2 = 1. 25 ×2= 0. 50 0.50 × 2 = 1. 00 0.25 . 1 1 0 1 Thus, 30.812510 = 11110.11012 (c) 2 53 Remainder 2 26 1 2 13 0 2 6 1 2 3 0 2 1 1 0 1 1 1 0 1 0 1 0.90625 × 2 = 1. 8125 0.8125 × 2 = 1. 625 0.625 ×2= 1. 25 0.25 × 2= 0. 50 0.50 × 2= 1.00 . 1 1 1 0 1 Thus, 53.9062510 = 110101.111012 321 © 2014, John Bird (d) 2 61 Remainder 2 30 1 2 15 0 2 7 1 2 3 1 2 1 1 0 1 1 1 1 1 0 1 0.65625 × 2 = 1. 3125 0.3125 × 2 = 0. 625 0.625 ×2= 1. 25 0.25 × 2= 0. 50 0.50 × 2= 1.00 . 1 0 1 0 1 Thus, 61.6562510 = 111101.101012 322 © 2014, John Bird EXERCISE 86 Page 180 1. Determine in binary form: 10 + 11 10 + 11 sum 101 carry 1 2. Determine in binary form: 101 + 110 + sum carry 101 110 1011 1 3. Determine in binary form: 1101 + 111 + sum carry 1101 111 10100 1111 4. Determine in binary form: 1111 + 11101 1111 + 11101 sum 101100 carry 1 1 1 1 1 5. Determine in binary form: 110111 + 10001 110111 + 10001 sum 1001000 carry 1 1 1 1 1 6. Determine in binary form: 10000101 + 10000101 323 © 2014, John Bird 10000101 + 10000101 sum 100001010 carry 1 1 1 7. Determine in binary form: 11101100 + 111001011 11101100 + 111001011 sum 1010110111 carry 1 1 1 1 8. Determine in binary form: 110011010 + 11100011 110011010 + 11100011 sum 1001111101 carry 11 1 9. Determine in binary form: 10110 + 1011 + 11011 + sum carry 10110 1011 11011 111100 111 1 10. Determine in binary form: 111 + 10101 + 11011 + sum carry 111 10101 11011 110111 11111 11. Determine in binary form: 1101 + 1001 + 11101 + sum carry 1101 1001 11101 110011 1 111 324 © 2014, John Bird 12. Determine in binary form: 100011 + 11101 + 101110 100011 11101 + 101110 sum 1101110 carry 111111 325 © 2014, John Bird EXERCISE 87 Page 182 1. Convert the following decimal numbers to binary numbers, via octal: (a) 343 (a) (b) 572 8 343 8 42 7 8 5 2 8 0 5 (c) 1265 Remainder 5 From Table 20.1, 7 4 6 326 1 34310 = 101010111 2 8 572 Remainder 8 71 4 8 8 7 8 1 0 0 1 1 From Table 20.1, 0 10748 = 001 000 111 100 2 i.e. (c) 7 5278 = 101 010 111 2 i.e. (b) 2 572 10 = 1000111100 2 8 1265 Remainder 8 158 1 8 19 6 8 2 3 0 2 2 3 © 2014, John Bird From Table 20.1, 12658 = 010 011 110 001 2 i.e. 572 10 = 10011110001 2 2. Convert the following decimal numbers to binary numbers, via octal: (a) 0.46875 (b) 0.6875 (c) 0.71875 (a) Multiplying repeatedly by 8, and noting the integer values, gives: 0.46875 × 8 = 3.75 ×8= 6.00 0.75 . 3 6 Thus, 0.46875 10 = 0.36 8 From Table 20.1, 0.36 8 = 0.011 1102 0.46875 10 = 0.01111 2 i.e. (b) Multiplying repeatedly by 8, and noting the integer values, gives: 0.6875 × 8 = 5.50 ×8= 4.00 0.50 . 5 4 Thus, 0.6875 10 = 0.548 From Table 20.1, i.e. 0.54 8 = 0.101 1002 0.6875 10 = 0.1011 2 (c) Multiplying repeatedly by 8, and noting the integer values, gives: 0.71875 × 8 = 5.75 ×8= 6.00 0.75 . 5 6 Thus, From Table 20.1, i.e. 0.71875 10 = 0.56 8 0.56 8 = 0.101 1102 0.71875 10 = 0.10111 2 327 © 2014, John Bird 3. Convert the following decimal numbers to binary numbers, via octal: (a) 247.09375 (a) (b) 514.4375 8 247 8 30 7 8 3 6 8 0 3 (c) 1716.78125 Remainder 3 6 7 367 8 = 011 110 111 2 From Table 20.1, i.e. 367 10 = 11110111 2 0.09375 × 8 = 0.75 ×8= 6.00 0.75 . 0 6 Thus, 0.09375 10 = 0.06 8 From Table 20.1, 0.09375 10 = 0.00011 2 i.e. 247.09375 = 367.06 = 11110111.000112 10 8 Hence, (b) 0.06 8 = 0.000 110 2 8 514 Remainder 8 64 2 8 8 0 8 1 0 0 1 1 From Table 20.1, 0 0 2 514 8 = 001 000 000 010 2 328 © 2014, John Bird i.e. 514 10 = 10000000102 0.4375 × 8 = 3.50 ×8= 4.00 0.50 . 3 4 Thus, 0.437510 = 0.34 8 From Table 20.1, i.e. 0.34 8 = 0.011 100 2 0.4375 10 = 0.0111 2 Hence, 514.4375 = = 1002.34 1000000 010.01112 10 8 (c) 8 1716 Remainder 8 214 4 8 26 6 8 3 2 0 3 3 6 4 1716 8 = 011 010 110 100 2 From Table 20.1, i.e. 1716 10 = 110101101002 0.78125 × 8 = 6.25 ×8= 2.00 0.25 2 . 6 2 Thus, From Table 20.1, i.e. 0.78125 10 = 0.62 8 0.628 = 0.110 010 2 0.7812510 = 0.110012 Hence, 1716.78125 = 3264.62 = 11010110100.110 012 10 8 329 © 2014, John Bird 4. Convert the following binary numbers to decimal numbers via octal: (a) 111.011 1 (b) 101 001.01 (c) 1 110 011 011 010.001 1 (a) 111.0111 = 111.011 100 2 = 7 . 3 3 4 = 7.437510 48 = 7 × 80 + 3 × 8−1 + 4 × 8−2 = 7 + + 8 82 (b) 101001.01 = 101 001.010 2 = 5 1 . 28 = 5 × 81 + 1× 80 + 2 × 8−1 = 40 + 1 + 2 = 41.2510 8 (c) 1110011011010.0011 = 001 110 011 011 010.001 100 2 = 1 6 3 3 2 . 1 48 = 1× 84 + 6 × 83 + 3 × 82 + 3 × 81 + 2 × 80 + 1× 8−1 + 4 × 8−2 = 4096 + 3072 + 192 + 24 + 2 + 330 1 4 = 7386.187510 + 8 64 © 2014, John Bird EXERCISE 88 Page 184 1. Convert E7 16 into its decimal equivalent. E 716 = E×161 + 7×160 = 14×16 + 7×1 = 224 + 7 = 23110 2. Convert 2C 16 into its decimal equivalent. 2 C16 = 2×161 + C×160 = 32 +12 = 4410 3. Convert 98 16 into its decimal equivalent. 9816 = 9 ×161 + 8 ×160 = 9 ×16 + 8 ×1 = 144 + 8 = 15210 4. Convert 2F1 16 into its decimal equivalent. 2 F116 = 2×162 + F×161 +1×160 = 2×162 +15×161 +1×160 = 512 + 240 + 1 = 75310 5. Convert 54 10 into its hexadecimal equivalent. 16 54 16 Remainder 3 6 ≡ 6 16 0 3 ≡ 3 16 most significant bit → 3 Hence, 6 ← least significant bit 54 10 = 36 16 6. Convert 200 10 into its hexadecimal equivalent. 331 © 2014, John Bird 16 200 Remainder 16 12 8 ≡ 8 16 0 12 ≡ C 16 C 8 20010 = C816 Hence, 7. Convert 91 10 into its hexadecimal equivalent. 16 91 16 Remainder 5 11 ≡ B 16 0 5 ≡ 5 16 5 Hence, B 91 10 = 5B 16 8. Convert 238 10 into its hexadecimal equivalent. 16 238 16 Remainder 14 14 ≡ B 16 0 14 ≡ E 16 E E Hence, 23810 = EE16 332 © 2014, John Bird EXERCISE 89 Page 185 1. Convert 11010111 2 into its hexadecimal equivalent. 110101112 = 1101 0111 grouping in 4s = D 7 16 from Table 20.2 i.e. 110101112 = D 716 2. Convert 11101010 2 into its hexadecimal equivalent. 111010102 = 1110 1010 grouping in 4s = E A 16 from Table 20.2 i.e. 111010102 = EA16 3. Convert 10001011 2 into its hexadecimal equivalent. 100010112 = 1000 1011 grouping in 4s = 8 B 16 from Table 20.2 i.e. 100010112 = 8B16 4. Convert 10100101 2 into its hexadecimal equivalent. 101001012 = 1010 0101 grouping in 4s = A 5 16 from Table 20.2 i.e. 101001012 = A 516 5. Convert 37 16 into its binary equivalent. 3716 = 0011 0111 2 = 110111 2 from Table 20.2 6. Convert ED 16 into its binary equivalent. ED16 = 1110 1101 2 from Table 20.2 333 © 2014, John Bird 7. Convert 9F 16 into its binary equivalent. 9F16 = 1001 1111 2 from Table 20.2 8. Convert A21 16 into its binary equivalent A2116 = 1010 0010 0001 2 from Table 20.2 334 © 2014, John Bird
© Copyright 2026 Paperzz