11/8/2015
Section A
Doug Bingle
Mathematica Lab #11
#1
Compute the sum of the reciprocals of 3,5,7,9,...,63.
In[59]:=
Clear[lista, lista1]
In[60]:=
lista = Range[3, 63, 2]
Out[60]=
In[61]:=
Out[61]=
In[62]:=
{3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63}
lista1 = 1 lista
1 1 1
, , ,
3 5 7
1 1
,
,
31 33
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
9 11 13 15 17 19 21 23 25 27 29
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
,
,
,
,
,
,
,
,
,
,
,
,
,
,
35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
Total[lista1]
31 674 468 729 962 723 297 623 231
Out[62]=
18 472 920 064 106 597 929 865 025
#2
Compute 1/(1+1/(1+1/(1+(1/2))))
In[63]:=
first = 1 second
5
Out[63]=
In[64]:=
8
second = 1 + 1 third
8
Out[64]=
In[65]:=
5
third = 1 + 1 fourth
5
Out[65]=
In[66]:=
3
fourth = 1 + 1 2
3
Out[66]=
2
Printed by Wolfram Mathematica Student Edition
Page 1 of 6
11/8/2015
In[67]:=
Section A
Doug Bingle
first
5
Out[67]=
8
#3
Obtain a 50 signifigant digit approximation to the square root of Pi.
In[98]:=
Out[98]=
N√ (Pi), 50
1.7724538509055160272981674833411451827975494561224
#4
What is the 1000th prime?
In[69]:=
Out[69]=
Prime[1000]
7919
#5
Sketch the graphs of y=sin[x], y=sin[2x], and y=sin[3x], 0 ≤ x ≤ 2π, on one set of axes.
In[70]:=
Plot[{Sin[x], Sin[2 x], Sin[3 x]}, {x, 0, 2 π}]
1.0
0.5
Out[70]=
1
2
3
4
5
-0.5
-1.0
#6
What is the prime factorization of 2,381,400?
In[100]:=
Clear[x]
Printed by Wolfram Mathematica Student Edition
Page 2 of 6
6
11/8/2015
In[101]:=
Out[101]=
In[102]:=
Out[102]=
Section A
Doug Bingle
x = FactorInteger[2 381 400]
2
3
5
7
3
5
2
2
List[x]
( {2, 3} {3, 5} {5, 2} {7, 2} )
#7
Find two ways to find an approximate value for x for which 2x =100.
Method 1
In[72]:=
Clear[x]
In[73]:=
NSolve[2 ^ x ⩵ 100, x, Reals]
Out[73]=
{{x → 6.64386}}
Method 2
In[74]:=
Out[74]=
N[Log[2, 100]]
6.64386
#8
What is the 115 Fibonacci number? The 1115 Fibonacci number?
In[75]:=
Out[75]=
In[76]:=
Out[76]=
Fibonacci[115]
483 162 952 612 010 163 284 885
Fibonacci[1115]
46 960 625 891 577 894 920 915 085 010 622 289 470 462 518 359 149 677 075 881 383 631 822 660 890 718 642 869 603
700 018 836 567 361 824 279 444 479 341 088 310 462 978 732 670 769 895 389 845 153 583 927 059 046 832 024 176 024
794 070 671 098 298 816 588 315 827 802 770 672 734 166 457 585 412 100 971 385
#9
What are the greatest common divisor and least common multiple of 5,355 and 40,425?
Printed by Wolfram Mathematica Student Edition
Page 3 of 6
11/8/2015
In[77]:=
Out[77]=
In[78]:=
Out[78]=
Section A
Doug Bingle
GCD[5355, 40 425]
105
LCM[5355, 40 425]
2 061 675
#10
Find two ways to compute the sum of the squares of the first 20 consecutive integers.
Method 1
In[79]:=
Clear[x]
In[80]:=
Sum[x ^ 2, {x, 1, 20}]
Out[80]=
2870
Method 2
In[81]:=
Clear[x]
In[82]:=
x^2
20
x=1
Out[82]=
2870
#11
Compute the sum of the reciprocals of 15,17,19,21,...,51.
In[83]:=
Clear[lista, lista1]
In[84]:=
lista = Range[15, 51, 2]
Out[84]=
In[85]:=
Out[85]=
In[86]:=
{15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51}
lista1 = 1 lista
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
,
1
,
1
,
1
,
1
,
1
15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Total[lista1]
63 501 391 475 806 044 193
Out[86]=
1
96 845 140 757 687 397 075
Printed by Wolfram Mathematica Student Edition
Page 4 of 6
11/8/2015
Section A
Doug Bingle
#12
1
Compute the value of ( 1 +
1
2
+
1
3
1
2
+ 4 ) +( 1 +
2
2
+
2
3
Method 1
In[87]:=
Out[87]=
1
1
25
+
1
2
+
1
3
+
1
4
+
2
1
+
2
2
+
2
3
+
2
4
+
3
1
+
3
2
+
3
3
+
3
4
2
Method 2
In[88]:=
Out[88]=
In[89]:=
Out[89]=
In[90]:=
Out[90]=
In[91]:=
Out[91]=
list1 = Range[1, 3, 1]
{1, 2, 3}
list2 = Range1 2, 3 2, 1 2
1
3
, 1,
2
2
list3 = Range1 3, 3 3, 1 3
1 2
, , 1
3 3
list4 = Range1 4, 3 4, 1 4
1 1 3
, ,
4 2 4
In[92]:=
Clear[a, b, c, d, e]
In[93]:=
a = Total[list1]
b = Total[list2]
c = Total[list3]
d = Total[list4]
Out[93]=
6
Out[94]=
3
Out[95]=
2
3
Out[96]=
2
Printed by Wolfram Mathematica Student Edition
2
3
+ 4 )+( 1 +
Page 5 of 6
3
2
+
3
3
3
+ 4)
11/8/2015
In[97]:=
Section A
e = a+b+c+d
25
Out[97]=
2
Printed by Wolfram Mathematica Student Edition
Page 6 of 6
Doug Bingle
© Copyright 2026 Paperzz