3.6 SOLUTIONS 2. 4. 6. 8. 10. dy = 2 · 3(8x − 1)2 · 8 = 48(8x − 1)2 dx dy = − sin(− x3 )(− 13 ) = 31 sin(− x3 ) dx dy = cos(x − cos x)(1 + sin x) dx dy = − sec(x2 + 7x) tan(x2 + 7x)(2x + 7) dx y = u9 , where u = 4 − 3x. Then dy = 9(4 − 3x)8 (−3) = −27(4 − 3x)8 dx √ 14. y = u, where u = 3x2 − 4x + 6. Then dy 1 = (3x2 − 4x + 6)−1/2 (6x − 4). dx 2 20. y = eu , where u = 32 x. Then 2 2x dy = e3. dx 3 √ u 2 22. y = e , where u = 4 x + x . Then √ dy 2 = e4 x+x (2x−1/2 + 2x) dx ds = 3π 26. cos( 3π t) − 2 2 dt 36. Use product rule 3π 2 sin( 3π t) 2 dy = 2e−2x − 2(1 + 2x)e−2x . dx 38. Use product rule dy 3 3 = (18x − 6)ex + (9x2 − 6x + 2)(ex )(3x2 ). dx dy = 2 sec(πt) sec(πt) cos(πt)π = 2π sec2 (πt) cos(πt) dt dy = 3(esin(t/2) )2 esin(t/2) cos( 21 t) 12 = 32 (esin(t/2) )2 esin(t/2) cos( 21 t) 58. dt dy 62. = − sin(5 sin( 13 t))(5 cos( 13 t))( 13 ) = − 53 sin(5 sin( 31 t)) cos( 13 t) dx 68. We compute 52. dy = 4 cos3 (sec2 (3t))(− sin(sec2 (3t))(2 sec(3t) sec(3t) tan(3t)3) dt = −24 cos3 (sec2 (3t)) sin(sec2 (3t)) sec(3t) sec(3t) tan(3t). 1 2 3.6 SOLUTIONS dy du = u−2 . Furthermore = (1 − x)−2 . When x = −1, we du dx have u = 1/2. Then by the chain rule dy dy du 1 = = 4 · = 1. dx du dx 4 80. Let y = f (u). Then x=−1 u=1/2 x=−1 dy du 82. Let y = f (u). Then = 1 − cos23 u and = π. When x = 1/4, u = π/4. By chain du dx rule dy du 2 dy 8 = = (1 − √ )π = (1 − √ )π. 3 dx x=1/4 du u=π/4 dx x=1/4 ( 2/2) 2 88. a. We compute 5f 0 (1) − g 0 (1) = 5(−1/3) − (−8/3) = 1. b. Use product rule f 0 (0)g 3 (0) + f (0)3g 2 (0)g 0 (0) = 5(13 ) + 1(3(12 )(1/3)) = 6. c. Use quotient rule (−4 + 1)(−1/3) − (3)(−8/3) (g(1) + 1)f 0 (1) − f (1)g 0 (1) = = 1. 2 (g(1) + 1) (−4 + 1)2 d. Use chain rule 1 f 0 (g(0))g 0 (0) = f 0 (1)(1/3) = (−1/3)(1/3) = − . 9 e. Use chain rule 40 g 0 (f (0))f 0 (0) = g 0 (1)5 = (−8/3)5 = − . 3 f. Use power rule with chain rule 1 −2(111 + f (1))−3 (11(110 ) + f 0 (1)) = −2(4)−3 (32/3) = − . 3 g. We compute 20 f 0 (0 + g(0))(1 + g 0 (0)) = f 0 (1)(1 + 1/3) = 5(1 + 1/3) = . 3 dy 92. Note that this exercise is allowing you to verify that = 32 x1/2 . dx dy du 1 −1/2 2 a. = 3u and = 2x . Then by chain rule, we have du dx √ 1 dy 3 = 3( x)2 x−1/2 = x1/2 . dx 2 2 dy du b. = 12 u1/2 and = 3x2 . Then by the chain rule du dx dy 1 3 3 = (x3 )−1/2 (3x2 ) = x−3/2 x2 = x1/2 . dx 2 2 2
© Copyright 2026 Paperzz