Galaxy Structure through Bayesian Hierarchical modelling Josh Argyle Supervisors: Jairo Méndez-Abreu & Vivienne Wild DEX, Edinburgh, 9th January 2017. [email protected] 2D Photometric Decompositions PGC 35772 Erwin 2014 *see Lange et al. 2016 for more details. 2D Photometric Decompositions PGC 35772 Erwin 2014 Problems with conventional methods: 1) Local minima trapping. 2) Unrealistic solutions. 3) Which model? 4) Representation of errors. *see Lange et al. 2016 for more details. Bayesian Inference Baye’s Rule: Posterior Joint distribution ˿ Likelihood function x Prior distribution 1/3 Bayesian Inference Baye’s Rule: Posterior Joint distribution ˿ Likelihood function x Prior distribution 1/3 Bayesian Inference Baye’s Rule: Posterior Joint distribution ˿ Likelihood function x Prior distribution a b uniform 1/3 Bayesian Inference Baye’s Rule: Posterior Joint distribution ˿ Likelihood function x Prior distribution a b uniform Previous Problems: 1) Local minima trapping. 2) Unrealistic solutions. 3) Which model? 4) Representation of errors. Markov Chain Monte Carlo Solutions: 1) Exploration of parameter space. 2) Priors. 3) Bayesian model selection. 4) Posterior probabilities. 1/3 2.80 Joint posterior 2.70 2.60 2.50 2.40 n n 2.20 True value 2.00 Posterior median 1.80 3.25 3.20 3.2 3.0 2.8 Sérsic Sersicindex, Index, n n h [/pixels] h [/Pixels] 5.30 5.20 5.10 5.00 10 4.5 9 4.0 3.5 3.0 4.70 3.00 3.20 2.50 2.60 2.70 2.80 2.90 3.00 Re [/Pixels] log(Ie) [/counts] Re [/pixels] 1.60 1.80 2.00 n n 2.20 2.40 3.05 3.10 3.15 3.20 log I0 [/counts] 3.25 4.70 4.80 4.90 5.00 5.10 5.20 5.30 h [/Pixels] log(I0) [/counts] h [/pixels] 7 6 5 2.0 4 2.5 2.0 1.5 1.0 1. 3.05 3.10 3.15 log Ie [/counts] 8 2.5 4.90 4.80 3.1 5.0 3.15 3.05 3.2 3.0 3.0 3.10 3.3 2.6 0 log(Ilog0)I [/counts] [/counts] 1.60 3.4 log Central Intensity, I0 2.90 3.4 Scale length, h log log effective intensity, Ie Effective Intensity, Ie 3.00 e Re [/pixels] R [/Pixels] e Marginalised posterior log effective Re Effective Radius,radius, Re [/Pixels] log(Ilog e)I [/counts] [/counts] Bayesian Inference 10. 100. Iteration Iteration 1000. Hierarchical Bayesian Inference Hierarchical Bayesian Inference Population Hierarchical Bayesian Inference Population Piece-wise constant representation*: Heaviside step function - Probability of finding an object in the bin labelled d *Mathematical description of a d-dimensional histogram Hierarchical Bayesian Inference log(Re) [/pc] Joint posteriors Marginalised posterior 0.25 Gadotti ’09 fit to elliptical galaxies n Probability 0.20 0.15 0.10 μ0 [i-mag arcsec-2] 0.05 0.00 0 2 4 Sersic index, n log(h) [/pc] Higher probability <μe> [i-mag arcsec-2] log(Re) [/pc] n μ0 [i-mag arcsec-2] Lower probability 6 8
© Copyright 2026 Paperzz