New test - March 25, 2014 [37 marks] The diagram shows a circle of radius 8 metres. The points ABCD lie on the circumference of the circle. ^D = 73∘ . ^ C = 104∘ , and BC BC = 14 m, CD = 11.5 m, AD = 8 m, AD 1a. Find AC. [3 marks] Markscheme evidence of choosing cosine rule (M1) eg c2 = a2 + b2 − 2ab cos C , C D2 + AD2 − 2 × CD × AD cos D correct substitution A1 eg 11.52 + 82 − 2 × 11.5 × 8 cos 104 , 196.25 − 184 cos 104 AC = 15.5 (m) A1 N2 [3 marks] 1b. (i) (ii) ^D . Find AC ^B . Hence, find AC [5 marks] Markscheme (i) METHOD 1 evidence of choosing sine rule eg sin A a sin B b = , sin AĈD AD ^D sin AC 8 = ^ D = 30.0∘ AC sin D AC A1 correct substitution eg = (M1) sin 104 15.516… A1 N2 METHOD 2 (M1) evidence of choosing cosine rule eg c2 = a2 2 + b − 2ab cos C A1 correct substitution 2 2 e.g. 8 = 11.5 + 15.516…2 − 2(11.5)(15.516 …) cos C ^ D = 30.0∘ AC (ii) A1 N2 ^ D from 73 subtracting their AC (M1) ^ D , 70 − 30.017 … eg 73 − AC ^ B = 43.0∘ AC A1 N2 [5 marks] 1c. (c) (d) Find the area of triangle ADC. [6 marks] Hence or otherwise, find the total area of the shaded regions. Markscheme (c) correct substitution eg area ΔADC = area = 44.6 (m2) (A1) 1 (8)(11.5) sin 104 2 A1 N2 [2 marks] (d) attempt to subtract (M1) eg circle − ABCD , πr2 − ΔADC − ΔACB area ΔACB = 12 (15.516 …)(14) sin 42.98 correct working (A1) A1 2 eg π(8) − 44.6336 … − 12 (15.516 …)(14) sin 42.98 , 64π − 44.6 − 74.1 shaded area is 82.4 (m2) [4 marks] Total [6 marks] A1 N3 The following diagram shows a triangle ABC. ^ C = 50∘ . The area of triangle ABC is 80 cm2 , AB = 18 cm , AC = x cm and BA 2. Find x . [3 marks] Markscheme correct substitution into area formula eg (A1) 1 (18x) sin 50 2 setting their area expression equal to 80 (M1) eg 9x sin 50 = 80 x = 11.6 A1 N2 [3 marks] The following diagram shows a circle with centre O and radius r cm. ^ B = 1.4 radians . Points A and B are on the circumference of the circle and AO ^O = The point C is on [OA] such that BC 3. π 2 radians . The area of the shaded region is 25 cm2 . Find the value of r . [7 marks] Markscheme correct value for BC −−−−−−−−−−−− eg BC = r sin 1.4 , √r2 − (r cos 1.4)2 (A1) area of ΔOBC = 12 r sin 1.4 × r cos 1.4 (= 12 r2 sin 1.4 × cos 1.4) area of sector OAB = 12 r2 × 1.4 A1 A1 (M1) attempt to subtract in any order eg sector – triangle, 12 r2 sin 1.4 × cos 1.4 − 0.7r2 correct equation A1 eg 0.7r2 − 12 r sin 1.4 × r cos 1.4 = 25 attempt to solve their equation eg sketch, writing as quadratic, r = 6.37 A1 (M1) 25 0.616… N4 [7 marks] Note: Exception to FT rule. Award A1FT for a correct FT answer from a quadratic equation involving two trigonometric functions. The following diagram shows a circular play area for children. The circle has centre O and a radius of 20 m, and the points A, B, C and D lie on the circle. Angle AOB is 1.5 radians. 4. Angle BOC is 2.4 radians. Find the area of the shaded region. [3 marks] Markscheme calculating sector area using their angle AOC e.g. 1 (2.38 …)(202 ) 2 (A1) , 200(2.38 …) , 476.6370614 … (M1) shaded area = their area of triangle AOB + their area of sector e.g. 199.4989973 … + 476.6370614 … , 199 + 476.637 shaded area = 676.136 … (accept 675.637 … = 676 from using 199) shaded area = 676 [676, 677] A1 N2 [3 marks] The following diagram shows a triangle ABC. BC = 6 , C ÂB = 0.7 radians , AB = 4p , AC = 5p , where p > 0 . 5. (i) Show that p2 (41 − 40 cos 0.7) = 36 . [4 marks] (ii) Find p . Markscheme (i) evidence of valid approach (M1) e.g. choosing cosine rule correct substitution (A1) 2 e.g. 6 = (5p) + (4p)2 − 2 × (4p) × (5p) cos 0.7 2 simplification e.g. 36 = 25p2 A1 + 16p2 − 40p2 cos 0.7 p2 (41 − 40 cos 0.7) = 36 AG N0 (ii) 1.85995 … p = 1.86 A1 N1 Note: Award A0 for p = ±1.86 , i.e. not rejecting the negative value. [4 marks] P^Q = ∘ P^R = ∘ ^ R = 45∘ . ^ Q = 70∘ and PQ The following diagram shows ΔPQR , where RQ = 9 cm, PR 6. Find the area of ΔPQR . [2 marks] Markscheme correct substitution (A1) e.g. area = 12 × 9 × 7.02 … × sin 70∘ 29.69273008 area = 29.7 A1 N2 [2 marks] Consider the triangle ABC, where AB =10 , BC = 7 and C ÂB = 30∘ . 7. Find the two possible values of AĈ B . [4 marks] Markscheme Note: accept answers given in degrees, and minutes. evidence of choosing sine rule e.g. sin A a = sin B b correct substitution e.g. sin θ 10 = (M1) sin 30∘ 7 A1 , sin θ = 5 7 AĈ B = 45.6∘ , AĈ B = 134∘ A1A1 N1N1 Note: If candidates only find the acute angle in part (a), award no marks for (b). [4 marks] © International Baccalaureate Organization 2014 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional® Printed for Colegios del BI de Costa Rica
© Copyright 2026 Paperzz