Instrumentation: Transmission Electron Microscopy Knoll and Ruska (1932) the first Transmission Electron Microscope Contents: 1. Introduction 2. Sources 3. Lenses 4. Spectrometers and Filters 5. STEM 6. Advanced Instrumentation imaging system specimen illumination system light source Basic functions of an optical microscope H.J. Penkalla light (electron) source illumination system specimen Imaging system Arrangement of the main components at the TEM H.J. Penkalla Electron Beam Sources: Thermal Emitter Electron Beam Sources: Field-Emitter Lens Aberrations: Spherical and Chromatic Aberration Specimen preparation: ion beam thinning 2.5 - 4.0 kV Specimen preparation: electroytical jet thinning Specimen preparation: ultramicrotomy Specimen preparation: carbon replica A new era in nanoanalysis: Gate-width 12,5 nm Design of a Focused Ion Beam Workstation FIB FIB-nanolithography : Nanodevices FIM/TAP - Tips Test-masks for EUVmicroscopy Magnetic memory FIB Preparation of TEM lamellae Contrast enhancement by the use of the objective aperture H.J. Penk Structure Chemistry Bonding High Resolution Transmission Electron Microscopy plane wave HRTEM Transmission function FourierTransformation Diffraction pattern FourierTransformation real image HRTEM: Nb/Sapphire Interfaces Contrast Transfer: Incoherent Imaging System Rayleigh Criterion Artifacts? Specimen phase shift of scattered wave: -π/2 phase shift by defocus: -π/2 Intensity contrast Spherical Aberration Magnetic Lens Gaussian Image Plane Contrast Transfer Function (CTF) Scherzer Focus, no damping Contrast Transfer: Real Imaging System Spherical Aberration Magnetic Lens Gaussian Image Plane Aberration corrected electron optics Lens CS = 0 P Image plane ¾ TU Darmstadt ¾ EMBL Heidelberg ¾ Forschungszentrum Jülich Volkswagen Stiftung Haider, Rose, Urban et al. Nature 392, 768 (1998) Hexapole Cs-Corrector (Rose, Haider) Example: SrTiO3, calculated images Structure model without corrector Cs-corrector, Cs = + 40 µm Cs-corrector, Cs = - 40 µm, changes in oxygen sublattice Jia, Lentzen, Urban, Science 299 (2003) Twin Boundaries in BaTiO3 Jia and Urban, Science 303 (2004) CsxNb2.54W2.46O14 Focal-series reconstruction of the object exit-plane wave function Th. Weirich J. Barthel, A. Thust (ER-C) G. Cox, H. Hibst (BASF) Phase image = projected potential for thin object CsxNb2.54W2.46O14 b a averaged phase image + p2gg symmetry correction projected crystal structure Th. Weirich, J. Barthel, A. Thust (ER-C), G. Cox, H. Hibst (BASF) Structure Chemistry Bonding Analytical TEM: Electron Intensity Distribution Inelastic Scattering, low energy losses: phonon and plasmon excitation Inelastic Scattering: Analytical Information D E0 hν (2) Ekin (1) E0 - Δ E, Δ E = EB + Ekin Schematical Energy Loss Spectrum D E0 hν (2) Ekin (1) E0 - Δ E, Δ E = EB + Ekin Energy Loss Spectrometer (magnetic prism) B The Omega Energy Filter Cathode Condensor System (Köhler Illumination) Analytical Objective Lens First Projector System Imaging Imaging ½-Spectrometer Ω−Spectrometer Second Projector System Viewing Chamber Electron Detector and Camera Specimen Eucentric Goniometer Energy Filter Energy Selecting Energy selecting Slit slit The Gatan Imaging Filter Elemental Distribution Images: Three Window Technique
© Copyright 2026 Paperzz