Review for Quiz 18 Math 143 page 1 Review Problems 1. Compute the exact value of cos 15 . 2. Simplify each of the following. 16 a) 3log9 (a ) 1 log3 10 b) log10 50 + log10 60 c) 5log25 (x+y) log5 (x+y) 3. Solve the system of equation 4log2 (x+y) log4 (x+y) x 2 = 3 = 16 y 4 4. Solve each of the following. a) 4x 2x+1 = 8 b) log2 x + logx 2 = 29 10 c) 3x + 1 2x 7 5 3 5. Prove each of the following identities. a) sin 3x = 4 sin3 x + 3 sin x b) cos 3x = 4 cos3 x 3 cos x c) tan2 x + 1 = sec2 x 6. Derive the sum-formula for cotangent. 2 7. Let (an ) be a geometric sequence with a1 = 50 and r = . 3 a) Find an approximate value (up to 4 decimal places) of a7 . b) Find an approximate value (up to 4 decimal places) of s10 . 8. Find the exact value of the in…nite sum of the geometric sequence 180; 60; 20; ::: 9. Find the exact value of sin x if cos 2x = 10. Find the exact value of cos x if cos 2x = 119 : 169 7 9 11. Let (an ) be an arithmetic sequence with …rst element a1 = 4: Find the common di¤erence in the sequence if a3 ; a5 ; and a13 ; in this order, form consecutive elements of a non-constant geometric sequence. 5 12. Let l be the line y = x: Let k be the line that bisects the angle formed by l and the positive 12 part of the x axis. Find an equation of k. Review for Quiz 18 Math 143 page 2 13. Consider a square with sides 1 unit long. To the inside of each side, we draw an isosceles triangle with its greatest angle, opposite the unit long base, measures 150 . Cosider all vertices of these triangles that are not on the square. If we connect these vertices, we obtain a square. Compute the exact value of the area of this square. 14. Graph each of the following functions. p a) f (x) = x + 3 2 b) f (x) = log2 (x + 2) + 1 c) f (x) = 1 x+1 3 d) f (x) = jx 2j 3 2j 3 Answers p 1.) 2+ 4 p 6 4.) a) 2 b) 8.) 270 p 5 c) p 4; 4 2 12 13 p -2 -1 y 0 1 2 3 4 1 3 3.) x = 2; y = 1 [ [38; 1) 2 3 2 3 5.) see solutions = 147: 398 770 5 1 12.) y = x 5 11.) 3 y 5 x 5 -1 6.) see solutions 10 2 b) f (x) = log2 (x + 2) + 1 c) f (x) = 3 0 7 2 b) 50 10.) x+3 1 -3 1 x+y 1 2 -4 1; = 4: 389 574 76 14.) a) f (x) = -5 c) p 1 9.) y b) 3 6 2 3 7.) a) 50 2.) a) a8 p 13.) 2 1 x+1 3 3 d) f (x) = jx y 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0 -2 -2 -1 0 1 2 3 4 5 6 7 8 x -5 -4 -3 -2 -1 0 -1 1 2 3 4 5 x -4 -3 -2 -1 0 -3 -1 -1 -4 -2 -2 -2 -5 -3 -3 -3 -6 -4 -4 -4 -7 -5 -5 -5 1 2 3 4 5 6 x Review for Quiz 18 Math 143 page 3 Solutions: 1. c) log (x+y) log25 (x+y) log5 (x+y) 5 251=2 25 5log25 (x+y) = = 5log5 (x+y) 5log5 (x+y) p x+y 1 =p = x+y x+y 25log25 (x+y) = 5log5 (x+y) 1=2 (x + y)1=2 = x+y 4 sin3 x + 3 sin x 5.) a) sin 3x = sin 3x = sin (x + 2x) = sin x cos 2x + cos x sin 2x = sin x cos2 x sin2 x + cos x (2 sin x cos x) = sin x cos2 x sin2 x + 2 sin x cos2 x = sin x 1 2 sin2 x + 2 sin x 1 sin2 x = sin x 2 sin3 x + 2 sin x 2 sin3 x = 4 sin3 x + 3 sin x b) cos 3x = 4 cos3 x cos 3x = = = = 3 cos x cos (x + 2x) = cos x cos 2x sin x sin 2x = cos x cos 2x sin x sin 2x cos x cos2 x sin2 x sin x (2 sin x cos x) = cos x 2 cos2 x 1 2 sin2 x cos x cos x 2 cos2 x 1 2 1 cos2 x cos x = 2 cos3 x cos x 2 cos x + 2 cos3 x = 4 cos3 x 3 cos x c) tan2 x + 1 = sec2 x sin2 x sin2 x cos2 x sin2 x + cos2 x 1 tan x + 1 = + 1 = + = = = sec2 x 2 2 2 2 2 cos x cos x cos x cos x cos x 2 6.) Derive the sum-formula for cotangent. cot (x + y) = cos (x + y) cos x cos y sin x sin y = sin (x + y) sin x cos y + cos x sin y divide both numerator and denominator by sin x sin y cos x cos y sin x sin y cos x cos y sin x sin y sin x sin y cot (x + y) = = sin x cos y + cos x sin y sin x cos y + cos x sin y sin x sin y cos x cos y sin x sin y cot x cot y 1 sin x sin y sin x sin y = = sin x cos y cos x sin y cot x + cot y + sin x sin y sin x sin y Math 143 Review for Quiz 18 page 4 13.) ]AF B = 150 =) ]F AB = ]DAE = 15 =) ]EAF = 60 ]EAF = 60 =) triangle AEF is regular =) EF = AF We compute AF in the right triangle AF M where M is the midpoint of side AB. 1 2 cos 15 = =) AF 1 1 2 AF = = = cos 15 2 cos 15 1 2 p p p =p p != 2+ 6 6+ 2 2+ 6 2 2 4 p p p p p p p p 2 6 2 2 6 2 6 2 6 2 2 p p p = = = = p 4 2 6 2 6+ 2 6 2 p p !2 p 6 2 2 Then the area of the square is EF = =2 3 2 p 1
© Copyright 2026 Paperzz