Differential Calculus 201-NYA-05 Vincent Carrier Exercise Sheet 17 4.4 Derivative of the Other Trigonometric Functions Find dy/dx. √ tan x 4. y = cot(x4 + 3) 5. y = tan2 x sec2 x √ 3. y = csc x √ 3 6. y = sec tan x 7. y = cot(csc2 x2 ) 8. y = x tan x sec x 9. tan xy = x + y 1. y = 2. y = sec3 2x Find the equation of the tangent line to the curve at the given value of x. 10. y = tan3 x x= 5π 6 x=− 11. y = csc x cot x 3π 4 Find the slope of the tangent line to the curve at the given value of x. 12. y = tan x sec x + tan x 13. y = csc2 x + cot2 x x=π x=− 5π 6 4.5 Inverse Trigonometric Functions Find the following quantities. 14. arcsin (−1) √ 15. arctan 3 18. arctan 1 √ ! 3 19. arccos − 2 22. arccos 0 1 23. arcsin − 2 Find the derivative. √ 26. y = arctan x − 1 √ 29. z = t arcsin t + 1 − t2 32. y = arcsin x arccos x 1 16. arccos − 2 1 20. arcsin √ 2 24. arctan 1 √ 3 27. z = arcsin2 t3 1 30. g(z) = arctan z √ 33. f (x) = arcsin 3 x 17. arcsin √ ! 3 2 √ 21. arctan − 3 1 25. arccos − √ 2 28. f (x) = 31. y = √ 3 1 arccos 3x arccos x2 34. z = arctan3 t4 Find the equation of the tangent line to the curve at the given value of x. x=− 35. y = arcsin 2x 1 4 36. y = arctan x2 Find the slope of the tangent line to the curve at the given value of x. √ √ arcsin x 3 37. y = x= 38. y = (arctan x)2 x 2 x= √ 4 3 x=1 Answers: 1. dy sec2 x = √ dx 2 tan x 2. dy = 6 sec3 2x tan 2x dx 3. √ √ dy csc x cot x =− √ dx 2 x 4. dy = −4x3 csc2 (x4 + 3) dx 5. dy = 2 tan x sec2 x (sec2 x + tan2 x) dx 6. dy sec = dx 7. dy = 4x csc2 (csc2 x2 ) csc2 x2 cot x2 dx 8. dy = sec x(tan x + x tan2 x + x sec2 x) dx 9. dy 1 − y sec2 xy = dx x sec2 xy − 1 √ 10. dy 4 = 3 tan2 x sec2 x; y = x − dx 3 11. √ dy = − csc x(cot2 x + csc2 x); y = 3 2x + dx 14. − 20. π 2 15. π 4 3 + 10π 9 π 3 21. − π 3 √ 2(9π − 4) 4 16. 2π 3 17. 22. π 2 23. − dz 6t2 arcsin t3 = √ dt 1 − t6 26. dy 1 √ = dx 2x x − 1 27. 29. dz = arcsin t dt 30. g 0 (z) = − 32. dy arccos x − arcsin x √ = dx 1 − x2 33. f 0 (x) = 1 p 3x2/3 1 − x2/3 √ dy 2 4 6−π 3 √ = √ ; y = √ x+ dx 3 6 3 1 − 4x2 36. 35. 37. √ tan x tan 3 tan x sec2 x 3(tan x)2/3 12. sec x dy = ; −1 dx (sec x + tan x)2 13. √ dy = −4 csc2 x cot x; −16 3 dx π 3 π 6 18. π 4 19. 5π 6 24. π 6 25. 3π 4 28. f 0 (x) = √ 1 1 + z2 √ √ dy x − 1 − x2 arcsin x 12 3 − 4π √ = ; dx 9 x2 1 − x2 √ 3 3 1 − 9x2 arccos2 3x 31. dy 2x √ =− dx 3(arccos x2 )2/3 1 − x4 34. dz 12t3 arctan2 t4 = dt 1 + t8 √ √ 4 dy 2x 3 2π − 3 3 = ; y = x + dx 1 + x4 2 6 38. √ dy arctan x π = √ ; dx x(1 + x) 8
© Copyright 2025 Paperzz