In class today, we went over two examples of integration of trigonometric functions. In this note, I’ll show you the facts you need to know from this section, with examples for each technique. 1 R Integrals of the form odd natural number sinm (x) cosn (x)dx, where m is an Method: 1. Set aside one copy of sin(x), and place it next to the differential dx. 2. You have an even number (m − 1) of copies of sin(x) remaining. Since m − 1 = 2k for some number k, write: R = sinm−1 (x) cosn (x)sin(x)dx R = sin2k (x) cosn (x)sin(x)dx R = (sin2 (x))k cosn (x)sin(x)dx 3. Rewrite sin2 (x) = 1 − cos2 (x) to get: = R (1 − cos2 (x))k cosn (x)sin(x)dx 4. Make the substitution: u = − cos(x). Then cos(x) = −u, and du = sin(x)dx, so we get: = R (1 − (−u)2 )k (−u)n du 5. Expand the integrand. You will get a polynomial function of u. 6. Integrate the resulting polynomial function of u, and substitute back for u. Example: R sin5 (x) cos10 (x)dx Solution: 1. = R sin4 (x) cos10 (x)sin(x)dx 2. = R sin2·2 (x) cos10 (x)sin(x)dx = 3. = R (1 − cos2 (x))2 cos10 (x)sin(x)dx 4. = R (1 − (−u)2 )2 (−u)10 du = R 5. = R (1 + u4 − 2u2 )u10 du = (u10 + u14 − 2u12 )du 6. = u11 11 + u15 15 13 − 2 u13 = R R (sin2 (x))2 cos10 (x)sin(x)dx (1 − u2 )2 u10 du (− cos(x))11 11 + (− cos(x))15 15 1 − 2 (− cos(x)) 13 13 +C 2 Integrals of the form odd natural number R sinm (x) cosn (x)dx, where n is an Method: 1. Set aside one copy of cos(x), and place it next to the differential dx. 2. You have an even number (n − 1) of copies of cos(x) remaining. Since n − 1 = 2k for some number k, write: R = R cosn−1 (x) sinm (x)cos(x)dx = R cos2k (x) sinm (x)cos(x)dx = (cos2 (x))k sinm (x)cos(x)dx 3. Rewrite cos2 (x) = 1 − sin2 (x) to get: = R (1 − sin2 (x))k sinm (x)cos(x)dx 4. Make the substitution: u = sin(x). Then du = cos(x)dx, so we get: = R (1 − (u)2 )k (u)m du 5. Expand the integrand. You will get a polynomial function of u. 6. Integrate the resulting polynomial function of u, and substitute back for u. Example: R sin4 (x) cos5 (x)dx Solution: 1. = R sin4 (x) cos4 (x)cos(x)dx 2. = R cos2·2 (x) sin4 (x)cos(x)dx = 3. = R (1 − sin2 (x))2 sin4 (x)cos(x)dx 4. = R (1 − (u)2 )2 (u)4 du = 5. = R (1 + u4 − 2u2 )u4 du = 6. = u5 5 + u9 9 7 − 2 u7 = R (cos2 (x))2 sin4 (x)cos(x)dx (1 − u2 )2 u4 du R R (sin(x))5 5 (u4 + u8 − 2u6 )du + (sin(x))9 9 7 − 2 (sin(x)) +C 7 2 3 Integrals of the form odd natural number R secm (x) tann (x)dx, where n is an Method: 1. Set aside one copy of sec(x) tan(x), and place it next to the differential dx. 2. You have an even number (n − 1) of copies of tan(x) remaining. Since n − 1 = 2k for some number k, write: R = tann−1 (x) secm−1 (x)sec(x) tan(x)dx R = R tan2k (x) secm−1 (x)sec(x) tan(x)dx = (tan2 (x))k secm−1 (x)sec(x) tan(x)dx 3. Rewrite tan2 (x) = sec2 (x) − 1 to get: = R (sec2 (x) − 1)k secm−1 (x)sec(x) tan(x)dx 4. Make the substitution: u = sec(x). Then du = sec(x) tan(x)dx, so we get: = R (u2 − 1)k um−1 du 5. Expand the integrand. You will get a polynomial function of u. 6. Integrate the resulting polynomial function of u, and substitute back for u. Example: R sec4 (x) tan5 (x)dx Solution: 1. = R sec3 (x) tan4 (x)sec(x) tan(x)dx 2. = R sec3 (x) tan2·2 (x)sec(x) tan(x)dx = 3. = R (sec2 (x) − 1)2 sec3 (x)sec(x) tan(x)dx 4. = R ((u)2 − 1)2 (u)3 du = 5. = R (u4 + 1 − 2u2 )u3 du = 6. = u8 8 + u4 4 6 − 2 u6 = (tan2 (x))2 sec3 (x)sec(x) tan(x)dx R (u2 − 1)2 u3 du R R (sec(x))8 8 (u7 + u3 − 2u5 )du + (sec(x))4 4 6 − 2 (sec(x)) +C 6 3 4 Integrals of the form even natural number R secm (x) tann (x)dx, where m is an Method: 1. Set aside two copies of sec(x) (that is, set aside sec2 (x)), and place them next to the differential dx. 2. You have an even number (m − 2) of copies of sec(x) remaining. Since m − 2 = 2k for some number k, write: R = R tann (x) secm−2 (x)sec2 (x)dx = R tann (x) sec2k (x)sec2 (x)dx = (sec2 (x))k tann (x)sec2 (x)dx 3. Rewrite sec2 (x) = tan2 (x) + 1 to get: = R (tan2 (x) + 1)k tann (x)sec2 (x)dx 4. Make the substitution: u = tan(x). Then du = sec2 (x)dx, so we get: = R (u2 + 1)k un du 5. Expand the integrand. You will get a polynomial function of u. 6. Integrate the resulting polynomial function of u, and substitute back for u. Example: R sec4 (x) tan5 (x)dx Solution: 1. = R sec2 (x) tan5 (x)sec2 (x)dx 2. = R sec2 (x) tan5 (x)sec2 (x)dx = 3. = R (tan2 (x) + 1)1 tan5 (x)sec2 (x)dx 4. = R (u2 + 1)u5 du = 5. = u8 8 + u6 6 = R (tan(x))8 8 R (sec2 (x))1 tan5 (x)sec2 (x)dx u7 + u5 du + (tan(x))6 6 +C 4 R Integrals of the form sinm (x) cosn (x)dx, where both m and n are even natural numbers 5 This time, we aren’t able to use a substitution immediately. Instead, we’ll use the double angle formulae to transform the integrand. Method 1: Remember that cos(2x) = cos2 (x) − sin2 (x) = 2 cos2 (x) − 1 = 1 − 2 sin2 (x). Rearranging this, we get: cos2 (x) = 1 + cos(2x) 2 sin2 (x) = 1 − cos(2x) . 2 and Example: R cos2 (x) sin2 (x)dx. Solution: = R )( 1−cos(2x) )dx ( 1+cos(2x) 2 2 = 1 4 R (1 + cos(2x))(1 − cos(2x))dx = 1 4 R 1 − cos2 (2x)dx = 1 4 R 1dx − = 14 x − 1 4 R 1 4 cos2 (2x)dx R cos2 (2x)dx At this step, we can apply the formula above again, to get: = 14 x − 1 4 R 1+cos(4x) dx 2 = 41 x − 1 8 R 1dx − = 14 x − 18 x − 1 8 R 1 8 R cos(4x)dx cos(4x)dx Finally, we can use a substitution u = 4x to get: = 14 x − 18 x − 1 32 sin(4x) + C 5 Method 2: Remember that sin(2x) = 2 sin(x) cos(x). Rearranging this, we get: sin(x) cos(x) = Example: R cos2 (x) sin2 (x)dx. Solution: = R (cos(x) sin(x))2 dx = R ( 21 sin(2x))2 dx = 1 4 R sin2 (2x)dx Using the formulas from Method 1, we get: = 1 4 R 1−cos(4x) dx 2 = 1 8 R 1 − cos(4x)dx = 1 8 R 1dx − = 18 x − 1 32 1 8 R cos(4x)dx sin(4x) + C 6 1 sin(2x). 2 6 The integral Fact: R R tan(x)dx tan(x)dx = − ln | cos(x)| + C = ln | sec(x)| + C Proof: R tan(x)dx = R sin(x) cos(x) dx Using the substitution u = cos(x), we get that du = − sin(x)dx, so dx = = R =− sin(x) −1 u sin(x) du R 1 u du = − ln |u| + C = − ln | cos(x)| + C giving the first result. Next, = ln |(cos(x))−1 | + C 1 = ln | (cos(x)) |+C = ln | sec(x)| + C giving the second result. 7 −1 sin(x) du, and 7 The integral Fact: R R sec(x)dx sec(x)dx = ln | sec(x) + tan(x)| + C Proof: This proof is clearer if we go backwards: d dx [ln | sec(x) + tan(x)|] = 1 d sec(x)+tan(x) dx [sec(x) = 1 sec(x)+tan(x) [sec(x) tan(x) = 1 sec(x)+tan(x) [tan(x) + tan(x)] + sec2 (x)] + sec(x)] sec(x) = sec(x) Therefore, integrating both sides of the equation: sec(x) = d [ln | sec(x) + tan(x)|], dx we get: Z sec(x)dx = ln | sec(x) + tan(x)| + C which is the result. 8
© Copyright 2026 Paperzz