Fourier analysis (MMG710/TMA362) Time: 2012-01-07, 08:30–12:30 Tools: Only the attached sheet of formulas. No calculator or handbook is allowed. Questions: Ragnar Freij, 0703-088304. Grades: Each problem gives 4 points. For MMG710 grades are G (12-17 points) and VG (18-24 points). For TMA362 grades are 3 (12-14 points), 4 (15-17 points) and 5 (18-24 points). 1 Use Fourier transform to compute the integral Z ∞ −∞ (x2 1 dx. + 2x + 2)2 2 Solve the boundary value problem u0t = 2u00xx , t > 0, u(0, t) = u(π, t) = 0, 3 Let 0 < x < π, u(x, 0) = cos(3x). ( t, 0 < t < 1, f (t) = 1, t > 1. Use Laplace transform to solve the initial value problem y 0 + 2y = f, y(0) = 0. 4 Formulate and prove Bessel’s inequality (any version is fine). 5 Let cn be the coefficients in the Fourier series 2 ex = ∞ X cn einx , 0 < x < 2π. n=−∞ Is it true or false that x2 2xe = ∞ X incn einx , 0 < x < 2π? n=−∞ Motivate your answer carefully. If you use a known theorem, formulate it precisely and explain why all conditions in the theorem hold. 6 Find the complex Fourier series of the function (cos x)n , where n is a positive integer. Use the result to compute the sum n 2 X n k k=0 (where nk = n!/k! (n − k)!). Good luck! Hjalmar Some formulas in Fourier analysis Trigonometric identities eix − e−ix eix + e−ix , sin x = , 2 2i cos(x + y) = cos x cos y − sin x sin y, sin(x + y) = sin x cos y + cos x sin y, 1 − cos 2x 1 + cos 2x sin2 x = , cos2 x = , 2 2 cos(x − y) − cos(x + y) cos(x − y) + cos(x + y) sin x sin y = , cos x cos y = , 2 2 sin(x + y) + sin(x − y) sin x cos y = . 2 eix = cos x + i sin x, cos x = Hyperbolic functions cosh x = ex + e−x , 2 sinh x = ex − e−x . 2 Laplace transforms f (t) F (s) f (t) F (s) tk k! eat 1 s−a sk+1 f (at) F (s/a)/a sin(at) a a2 + s2 ect f (t) F (s − c) cos(at) s a2 + s2 f (t − a)H(t − a) e−as F (s) (n) Pfn (t) s F (s) − j=1 sn−j f (j−1) (0) n Fourier transforms e−x f (x) fˆ(ξ) √ 2 /2 2π e−ξ 2 /2 1 x2 + 1 πe−|ξ| e−|x| 2 ξ2 + 1 χ(x) 2 sin ξ ξ sin x x πχ(ξ) (where χ(x) equals 1 for |x| < 1 and 0 else) f (x) fˆ(ξ) f (x − c) e−icξ fˆ(ξ) eicx f (x) fˆ(ξ − c) f (ax) fˆ(ξ/a)/a f 0 (x) iξ fˆ(ξ) xf (x) i(fˆ)0 (ξ) fˆ(x) 2πf (−ξ) tf (t) −F 0 (s)
© Copyright 2026 Paperzz