Algebra Practice Test plus Answers

______
_________
________
________
MFM
Practice
Algebra
2P1
Test
Name:
Answer the following questions in the space provided.
Show all of your work as done in class.
Instructions:
1 Name the following a monomial, binomial or trinomial.
.
Expression
2. If x = —3, y
a)
3x
b)
2y
y
—
2
c)
2
5+x
=
4 and z
=
—
I
Type ofPolynomial
y
—2 evaluate each of the following.
,
(b)
(a) z—y—x
—3z—2yz
2
x
3. Simplify. Answers in the blank provided.
a) 6x—4x=
b) 2
+3y
9y
=
c) —3x+8x=
d) 7x—x+5x=
e) —4y+y—2y=
6x
+7x
—2x
—
03
=
4. Simplify by collecting like terms.
a) 5x—3y—7x—lOy
b) xy—6z—4xy—2z
c) 2
13—x
+7--8x—5x
—3x
—
b) x(3x—4)
c) —6(5y—8)
6. Expand.
a) 2(x+4)
d) 4x(2x+7)
7. Expand then collect like terms.
a) 3(x+3)—2(x—2)
b) 2x(x—4)+x(x+3)
c) 3x(4x_1)_(3x2+6x_2)
TURN OVER !!!
d) —2(x+3)+3(1—2x)—(x+4)
e) 3x(2x+1)—6+4(2x
+3)—7x
2
8. Expand then collect like terms.
a) (x + 2)(x + 7)
b)’ + 8)(y 4)
c) (x + 4)(2x —9)
d) (x—7)
2
e) (3y+2)(2y+9)
f) (2x—3)(5x+7)
—
9. Expand then collect like terms.
a) 3(2x+l)(3x—5)
c) —5(x—6)(x+4)+3(x+3)(x—5)
d) (2x—7)
—4(2x+1)(4x—5)
2
2
b) —3(2x+1)
_______
2P1
MFM
______
________
___________________________
______________________
___________________________
Al2ebra
Practice
Test
Name:
Instructions:
Answer the following questions in the space provided.
Show all ofyour work as done in class.
1 Name the following a monomial, binomial or trinomial.
.
3x
a)
2. If x
—3, y
=
b)
-2y
2
y
c)
—y
2
5+x
=
4 and z
=
—2 evaluate each ofthe following.
,
—3z—2yz
2
x
(b)
(a) z—y—x
(da.._(fl_r&•i)
.
.-L( ‘)()
(c?(-
1
‘1
+3
31
3. Simplify. Answers in the blank provided.
a) 6x—4x
b) 9y
2
2
+
2=
3y
“1.-
I#h
c)—3x+8x=
(Lj
43
d) 7x—x+5x
I 1
e)-4y+y—2y=______
0
+7x
—2x
—
3
6x
4. Simplify by collecting like terms.
a) 5x—3y—7x—lOy
b) xy—6z—4xy—2z
+7—8x—5x
—3x
—
13—x
c) 2
;4_
6. Expand.
a) 4)
“
d) 4x(2x+7)
c) —6(5y—8)
b) x(3x—4)
.qx
7. Expand then collect like terms.
•A
a) 3(x+3)—2(x—2)
3,(
*1 2,+L4
) H3
b) 2x(x—4)+x(x+3)
?
2
1
).c
‘
c) 3x(4x_1)_(3x2 +6x_2)
12
:j
e) 3x(2x+1)—6+4(2x +3)—7x
d) —2(x+3)+3(1—2x)—(x+4)
4gr’(
#i%ieb+i?.7x
—qx-?
8. Expand then collect like terms.
b) (y + 8)(y 4)
a) (x +2)(x+7)
c) (x + 4)(2x —9)
—
Yê4(
41HL1
1
d) (x
29-
+‘4(3..b?)
7)2
0
e) (3y + 2X2y + 9)
-
+1%
)
.
.
.iLtL+.41
9. Expand then collect like terms.
a) 3(2x + lX3x
—
b)
5)
—
3(2x + 1)2
f3
Iiw2I
3(
,Ic
.
c)
—5(x—6Xx+4)+3(x+3Xx—5)
)(-I
( r)_
c;Ie
.4r
c(12L.2(-2J(-4c)
‘*Ioic
ho
s,)(
j74ç
d) (2x—7)—4(2x+1X4x—5)
3
q
1
g_)L
±CI
y
(2x
—
3)(5x +7)