School of Natural Resources and Environment 440 Church Street, 3012 Dana Building Ann Arbor, MI 48109-1041 734-764-1412 | css.snre.umich.edu DRAFT(9/13/2016)LiteratureReviewofProductEnvironmentalFootprints: TOMATOES Overview TomatoesareubiquitousintheU.S.diet:intermsofper-capitaconsumption,theyarethefourthmost popularfresh-marketvegetable,andtheU.S.issecondonlytoChinaintomatoproduction1.Butasany backyardgardenerknows,notalltomatoesarecreatedequal,andthisholdstruefortheir environmentalfootprintaswell.How,when,andwheretomatoesaregrown,processedanddistributed allaffecttheoverallfootprint. Thepurposeofthissummaryistohighlightwhatisknownabouttheenvironmentalimpactsoftomato production,processing,distributionandconsumptionbasedonareviewofpublicallyavailablelifecycle assessment(LCA)studies.Suchstudiescanidentifythosepartsofthevaluechainwith disproportionatelyhighenvironmentalburdens,allowingimprovementeffortstofocuswheretheyare likelytohavethemostbearing.TheseLCAstudiescanalsopointtopotentialtrade-offsbetween environmentalindicatorsorabatementstrategies.Thissummarydoesnotprovideinformationthatis specifictoOregontomatoproduction,butneverthelessmaybeusefultobothproducersandusersof tomatoesandtomatoproductsinOregonaswellasotherlocations. TomatoesareproducedintheU.S.fortwodistinctlydifferentmarkets:fresh-andprocessing.Freshmarkettomatovarietiesarejuicierand,incommercialproduction,oftenharvestedpriortobeingripein ordertotolerateshippingandextendshelflife.Processingvarietiescontainhigherpercentagesof solublesolids,arevineripened,andtypicallyhaveathickerskininordertowithstandmechanical harvestingandbulktransport.Processingtomatoesareconvertedtotomatopastes,sauces,juicesand cannedtomatoproducts.ThetotalU.S.productionoffresh-markettomatoesin2015was1.3billionkg, with87millionkgofthisgrownunderprotectivestructures;13.4billionkgofprocessingtomatoeswere alsoproduced.Californiaaccountsfor96%ofU.S.processingtomatooutput.Fresh-markettomatoesare producedineverystateinthecountry,buttwo-thirdstothree-fourthsofcommercialscaleproduction occursinCaliforniaandFlorida.Fresh-markettomatoessoldinOregonthatarenotproducedlocally likelycomefromMexicointhewinterandCaliforniaduringtherestoftheyear,althoughhothouse tomatoesfromBritishColumbiaarealsocommon. AvailableLCAresearch Tomatoeshavebeenwellstudiedinthelifecycleassessment(LCA)literature;weidentified17separate publishedreports,allfrompeer-reviewedjournals.Whilewesoughtstudiesdatingbackto2005,all identifiedtomatostudieswerepublishedbeginningin2011.Agivenstudywilloftenconsiderdifferent productionpracticesorscenarios;59separatescenarioswereidentifiedacrossthe17reports.U.S. basedstudiesarelimitedtooneconsideringprocessingtomatoesgrowninCaliforniaandonelookingat openfieldproductioninFlorida.TheremainingstudiesconsiderproductioninItaly,Spain,France, 1 http://www.ers.usda.gov/topics/crops/vegetables-pulses/tomatoes.aspx Page2 Austria,Australia,UK,Switzerland,IranandMorocco.Themajorityofstudiesfocusongreenhousegas emissions(GHGE)andenergyuse,withsomeconsiderationofwateruse.Ahandfulofstudiesconsidera broaderspectrumofenvironmentalimpacts(eutrophication,acidification,humanandeco-toxicity)but ingeneral,itisfarmoredifficulttodrawbroadlyapplicableconclusionsastheseimpactstendtocarry highuncertaintyandaremuchmorelocalizedandspatiallydependent.Thus,conclusionsinthis summaryfocusonGHGE. TomatoLifeCycleDiagram(Fresh-marketandProcessing) ProductionCategories Forthepurposesofreviewingenvironmentalfootprints,itisusefultodividetomatoproduction methodsintothefollowingfourcategories: • Openfield,processing–Nearlyallprocessingtomatoesaregrowninopenfieldconditionsas seasonalityandappearancearelessofaconcern.Theyareoftenmechanicallyharvestedand undergovariousdegreesofprocessingtobecomepurée,sauce,paste,juice,etc. • Openfield,fresh-market–Thiscategoryincludesin-groundproductionwithoutoverhead protection.OpenfieldproductionisseasonalinnearlyalllocationsintheU.S.Fertilizationand irrigationmethodscanvarywidely.Tomatoesgrownforfreshmarketaretypicallyhandharvested. • Protected,fresh-market–Protectedproductionuseslow-orhigh-tech“greenhouse,”shadehouseortunnelstructuresthatprovideprotectionfromweatherandpests,butdonotinvolve supplementalheatorlight.Productioncanbeintheground,insoillessmedia,orhydroponic.The addedprotectionoffershigheryieldandmoreconsistentqualitythanopenfieldproduction.In milderclimates,suchprotectionissufficienttopermitgrowingincoolerseasons. • Greenhouse,freshmarket–Inthissummary,greenhousespecifiesenclosedstructureswith supplementalheatingand/orlightingforoff-seasonproductionincoldclimateregions.These systemstypicallyusesoillessmedia,hydroponicsorotherabove-groundgrowingapproaches. TheymayalsoinvolveCO2enrichment(increasingthein-houseatmosphericconcentrationof CO2)topromotehigheryields. School of Natural Resources and Environment | Center for Sustainable Systems | 440 Church Street, 3012 Dana Building | Ann Arbor, MI 48109-1041 | 734-764-1412 | css.snre.umich.edu Page3 KeyFindings Fulllifecycleresults Tosummarizetheresultsfromidentifiedstudies,wedividedthescenariosfoundintheliteratureinto thefourproductioncategorieslistedabove,compiledreportedGHGEvaluesatmajorlifecyclestages, andaveragedvaluesatlifecyclestages(Figure1).Thismeta-analysisisdonewithprudenceasstudies varyinmethodologicalapproaches,boundaryconditionsandscenariospecifics.Still,general characterizingtrendscanbeobserved. Thefollowinglifecyclestages,representedinthediagramabove,havebeenincludedinFigure1: • Agricultureincludesallimpactsuptofarmgate,includingtheproductionoffarminputs (fertilizer,pesticides,greenhouses,tractorfuel)and(inmostcases)fieldemissionsofnitrous oxide,apotentgreenhousegasthatcanformwhenagriculturalfieldsarefertilized.The agriculturalstageisconsideredinmoredetailbelow. • Processingisonlyexpectedtobeanimportantstageforprocessingtomatoesasfresh-market tomatoesexperiencenoprocessing.Insightsarepresentedinthe“Processingtomatoes”section below. • Packagingshouldincludeallmaterialsusedtoencloseandprotectproductsfromfarmto consumer.Smallamountsofpackagingareusedforfresh-markettomatoes,butthisstageisfar moreimportantforprocessingtomatoes(see“Processingtomatoes”sectionbelow). • Transport&logisticsincludesthemovementofproductfromfarmtoprocessortoretail.Despite thefocusonfoodmilesinrecentyears,environmentalimpactstendtodependmoreon transportmode(seafreight,rail,truck,airfreight)thanondistancetraveled.Still,distance matters,andthestudiespresentedinFigure1assumeawiderangeoftraveldistances,makingit challengingtodrawconclusionsontheimportanceoftransport.Afewgeneralobservations, however,areworthnoting:1)astransporttimeislessimportantforalreadyprocessedtomato products,moreefficienttransportmodes(seafreight,rail)canbeused,thusreducingthe environmentalimpact,evenoverlongdistances;2)anadvantageofheatedgreenhouse productioninoff-seasonscanbesimplifyingtransportlogisticsandreducingdistance. • RetailstagesinfoodLCAstypicallyincludeaproduct’sshareoftheoverheadenergyuse(lighting, heating,airconditioning,refrigeration)ingrocerystores.NoneofthetomatoLCAstudies includedthisstage.Giventhattomatoesaretypicallynotrefrigeratedatretail,thecarbon footprintofthisstageisexpectedtobeminimal. • Consumptionstagescanincludepersonalvehicletransportfromretailtohome,refrigerationin home,andpotentiallycooking.Theonetomatostudythatincludedconsumptionwasbasedin Australiaandinterviewed50shopperstogiveanindicationofdistancetravelledtothe supermarket,aswellashowoftentomatoesarestoredintherefrigerator.Whileobviouslya smallsampleforastagewithhighvariability,theresultofthisstudy(seeninopenfield,freshmarketandgreenhouse,fresh-marketcategoriesinFigure1)suggeststhattheseconsumption stageimpactscanbenotable.ThisisinagreementwithotherfoodLCAstudies. School of Natural Resources and Environment | Center for Sustainable Systems | 440 Church Street, 3012 Dana Building | Ann Arbor, MI 48109-1041 | 734-764-1412 | css.snre.umich.edu Page4 • Wastemanagementtypicallyincludestheend-of-lifeimpactsofdisposingproductsortheir associatedpackaging.Noneofthestudiesconsideredhereexplicitlyreportedvaluesforwaste management.Thisdoesnotnecessarilymeanthatsuchimpactswerenotconsideredinthe study,butthattheywerenotreportedseparatelyfromotherstages. Asterisks (*) means data were not available for stage Figure1.Lifecyclegreenhousegasemissionresultsfromallstudiesreviewed,dividedintoproductioncategories anddisplayedacrosslifecyclestages.Circlesrepresentindividualstudyresults,offeringasenseofthedataspread orcluster.Horizontalblackbarsrepresentaveragesforeachstage,andgreyblocksare95%confidenceintervals aroundtheaverages.The“ReportedTotal”columnshowstotalsfromagivenstudy,althoughitisimportantto recognizethatnotallstudiesincludethefulllifecyclestagesrepresentedhere.Stagesmarkedwithanasterisk(*) arethoseforwhichsomeenvironmentalimpactsareexpectedtooccur,butnodatawereavailableinthe identifiedstudies.Redbarsindicatethesumoftheaveragesfromeachlifecyclestage,foreachproduction category. School of Natural Resources and Environment | Center for Sustainable Systems | 440 Church Street, 3012 Dana Building | Ann Arbor, MI 48109-1041 | 734-764-1412 | css.snre.umich.edu Page5 Nextweexploreafewlifecyclestagesinmoredetail:agriculturalproduction,packagingand transportation. AgriculturalProduction:Greenhouses(usually)meanmoreGHGE Focusingonlyontheagriculturalproductionoftomatoes,thereisadistinctdifferenceinGHGEperkgof tomatoesbetweenheatedgreenhouseproductionandotherproductioncategories(Figure2). Manufacturingofthegreenhouseinfrastructurecancontributemildlytothis,butitislargelydueto supplementalheatingrequiredtooperatesuchgreenhousesout-of-seasonincoldclimates.Greenhouse heatingaverages64%oftheagriculturalstage(high=77%,low=37%)acrossthesixheatedgreenhouse scenariosthatreportsufficientdetailtodisaggregatecontributions.Oftengreenhousesareheatedwith naturalgasorotherfossilfuels,bututilizationofwasteheatorintegrationwithcombinedheatand powersystemscanleadtoimprovementsinenvironmentalperformance.Productionyieldsstrongly influenceenvironmentalimpactsperkgofproductforallproductionsystems,butespeciallyforheated greenhouses,asitisthevolumeofthespacethatmustbeheated,andbiggeryieldmeansmorekgper unitvolume. Figure2.Agriculturalstage(cradletofarmgate)greenhousegasemissionsaveragedacrossidentifiedliteratureforfour distinctproductioncategories.Thenumberofreportedvaluesincludedineachaverageare21,8,11and19foropenfield processing,openfieldfresh-market,protectedfresh-marketandheatedgreenhousefresh-market,respectively.Errorbars represent95%confidenceintervals.Notethatthevaluefor“openfield,processing”appearslowerherethaninFigure1 asithasbeencorrectedheretobasisofakgofwhole(farmgate)tomato,whereastheagriculturestagevalueinFigure1 reflectsthequantityoffarmgatetomatoesneededperkgofprocessedproduct. School of Natural Resources and Environment | Center for Sustainable Systems | 440 Church Street, 3012 Dana Building | Ann Arbor, MI 48109-1041 | 734-764-1412 | css.snre.umich.edu Page6 Thedominantcontributionstotheagriculturalstageforprotected,freshmarketproductionare(on average)fromagrochemicals–primarilyfertilizerproduction–andsubsequentfieldemissions2(37%), andthegreenhouseinfrastructure(22%).UsingastudyfromFlorida(Jonesetal.2012)asa representativeexampleofopenfield,fresh-markettomatoproduction,pesticideproductioncontributes 39%ofagriculturalrelatedGHGs,followedbya17%contributionfromfertilizerproductionand17% fromfieldemissions,andanadditional7%fromfieldmachineryemissions.IrrigationintheFloridastudy isbetween3and27%ofagriculturalproduction,dependingontheirrigationmethod. Processingtomatoes:Packagingmatters Acrossthe21processingtomatoentriesconsidered,agriculturalproductionaverages32%ofthetotal lifecycleGHGE,processingaverages23%,whereaspackagingisanaverage36%ofthetotal.Thus,while, agriculturalproductionandprocessingrepresentsignificantcontributionstoGHGE,packaging’slarge impactsarenotablebecausereductionscanreadilybeachieved. OnestudylookingatItaliangrownandprocessedtomatoesconsideredvaryingdegreesofprocessing (peeled,chopped,puréed)andpackagingformats(DelBorghietal.2014).Onaweightbasisofpackaged product,thisstudyfoundverylittledifferencebetweenprocessingmethods,butpapercarton-based containershadconsiderablylowerGHGEthanglassorsteelcontainers,andimpactsdecreasedwith largerformatpackaging.Whensteelcanswereused,packagingrepresented50%ormoreoftheoverall lifecycleGHGE;withglass,packagingis40-45%ofthetotallifecycle;withcarton-basedcontainers, packagingisaround5%ofthetotal. AnotherstudyconsiderstheenvironmentalfootprintofprocessedtomatoesgrowninCalifornia(Brodt etal.2013).Accordingtothisstudy,1kgoftomatopasterequires4.6timestheamountofraw tomatoesas1kgofdicedtomatoesbecauseoftheconcentrationthatoccurs.Thus,onabasisoffinal productweight,theagriculturalandprocessingstagesfortomatopastehave4.5-5.5timestheimpactin GHGEandenergydemandasdodicedtomatoes,buttheimpactsfromconsumerpackagingareabout thesame.Infact,packagingdicedtomatoesintypical14.5oz.steelcansrepresentsmorethanhalfof thetotallifecycleenergydemandandGHGE(whenexcludingtransport).However,thetypicalserving sizeismuchsmallerfortomatopaste,33gcomparedto122gfordicedtomatoes.Onaservingsize basis,agriculturalproductionandprocessingarecomparablebetweenpasteanddiced,butimpactsof consumerpackagingaswellastransportperservingare3.5timesgreaterfordiced.Thissuggeststhat,if theservingsizedifferencesarerepresentativeandtherearen’tnotabledifferencesinconsumer-level preparation(cooking,forexample),thensomesavingsperservingcanberealizedbyusingpasteover diced,merelybecauseofreducedpackagingvolumeandtransportweight. 2 Fieldemissions:Nitrousoxide(N2O),agreenhousegas265timesaspowerfulasCO2,canbereleasedfromnitrifyingand denitrifyingactivitiesinthesoilwhennitrogenfertilizersareaddedtoagriculturalsoils. School of Natural Resources and Environment | Center for Sustainable Systems | 440 Church Street, 3012 Dana Building | Ann Arbor, MI 48109-1041 | 734-764-1412 | css.snre.umich.edu Page7 Figure3showsthedistributionacrosslifecyclestagesofanumberofenvironmentalimpactsforthe productionanddeliverytoretailofItaliantomatopurée(ManfrediandVignali2014).Formost environmentalimpacts,packagingisthesinglelargestcontributor.Thisstudyconsideredafew achievablescenariosaimedatreducingimpacts:a15%reductioninnaturalgasconsumption(through energyoptimizationofprocessingequipment);replacingallgridelectricityusedinthesystem (productionthroughdistribution)withphotovoltaicelectricity;reducingtheaveragedistancefrom processortoretailerfrom550kmto400km;andreducingthejarglassweightby20%.Allofthese scenarioshadminimaleffectsofa2-3%reductionincradle-to-distributionimpactsonthefirsteight categoriesinFigure3(waterfootprintwasnotincluded)exceptreducingglassweight,whichresultedin 7-12%reductionsinallcategoriesbuteutrophicationpotential,wherethereductionwasaround3%. Again,thisemphasizestheimportanceofpackagingintheoveralllifecycleofprocessedtomato products. Figure3.DistributionofenvironmentalimpactsacrosslifecyclestagesfortheproductionanddeliverytoretailofItalian tomatopurée.AdaptedfromManfrediandVignali2014. School of Natural Resources and Environment | Center for Sustainable Systems | 440 Church Street, 3012 Dana Building | Ann Arbor, MI 48109-1041 | 734-764-1412 | css.snre.umich.edu Page8 Productionvs.transport:Sowhataboutfoodmiles? Heatedgreenhousesallowoff-seasonlocalproductionincoldclimates.Buthowdoestheenvironmental impactofheatingcomparewithlongdistancetransportfromwarmerregions?Studiescomparinglocal, out-of-seasonproductionoffreshtomatoesinNorthernEuropewithimportsfromsouthernproduction regionsofferpotentialparallelstoaNorthAmericansituation.Allofthefollowingexamplesshowthatit isenvironmentallypreferable,intermsofGHGE,toshiptomatoeslongdistancesthantoheatalocal greenhouse. OnestudyconsidersfouroptionsfortomatoesconsumedinVienna,Austria:in-season,freshtomatoes grownorganicallyunderprotection;out-of-seasonproductioninaheatedAustriangreenhouse;out-ofseason,freshtomatoesgrowninprotectedcultureinSpainandshippedtoAustria,andItaliancanned tomatoes(Theurletal.2014).Thein-season,localtomatoescontributedthelowestGHGEperkgof tomatoes.Out-of-season,freshtomatoesshippedfromSpain(growninprotectedstructures)have lowerGHGEthancannedtomatoesfromItaly(growninopenfield)orlocal,freshtomatoesproducedin heatedgreenhouses.Inallcases,themanufacturingofgreenhouse/hoophousestructurescontributes lessthan10%tooverallGHGE,socontributionsfrombuildingthestructuresareminor.Inthecaseof cannedtomatoesfromItaly,theprocessingandpackagingcontributemorethanthreetimestheGHGE asdoesthelongdistancetransport(1600km)toVienna. AseparatestudyfoundthatproductionoffreshtomatoesinheatedglasshousesintheUKrequiredfour timestheenergyandresultedinthreetimestheGHGEperkgdeliveredtoaregionaldistributioncenter intheUKthanprotectedcultureproductioninSpainthatisshipped2300kmviatruck(Webbetal. 2013).ThisisdespitetomatoyieldintheUKgreenhousesbeing2-3timesthatinSpain.Thetransport energyinshippingtomatoesfromSpaintotheUKwasaboutonethirdofthetotalfortheSpanishcase. AnotherstudycomparedtomatoproductionunderprotectedcultureinMoroccoandtransportedto Francewithlocal(French)off-seasonproductioninheatedgreenhouses,andfoundasimilartrend (Payenetal.2015).Local,off-seasonproductionhasgreaterimpactnotonlyonclimatechange,butalso non-renewableenergyconsumptionandmarineeutrophication.However,thisstudyalsoevaluated wateruseimpact–waterdeprivation–andwateruseforgrowingtomatoesinMoroccohadnearlyfour timestheimpactasout-ofseasonproductioninFrance(seeFigure4).Thisresultsuggeststhatwhileit appearsthatlong-distancetransportispreferabletoheatingagreenhouse,theremaybetrade-offs dependingonthedistantproductionneeds. ResearchGaps WhilegeneralanalogiescanbedrawnfromEuropeanstudies,moreNorthAmericanstudiesareneeded totrulyunderstandtheimpactsoftomatoproductionanddistributionoptionsavailableintheU.S. AnalysisoftomatoproductioninMexico,especially,wouldbeavaluableaddition. School of Natural Resources and Environment | Center for Sustainable Systems | 440 Church Street, 3012 Dana Building | Ann Arbor, MI 48109-1041 | 734-764-1412 | css.snre.umich.edu Page9 4 impactsnormalizedtoFrenchproduc3onvalues 3.5 3 off-seasoninheatedgreenhouse(France) transport,MoroccotoFrance unheatedgreenhouses(Morocco) 2.5 2 1.5 1 0.5 0 climatechange non-renewable energy consump<on marine eutrophica<on freshwater eutrophica<on terrestrial waterdepriva<on acidifica<on Figure4.Comparisonofoff-seasonproductioninheatedgreenhousesinFrancewithprotectedculturein Morocco(andtransportedtoFrance)acrossvariousenvironmentalimpactcategories.Notetherelative impactsofproduction(blue)andtransport(red)fortheMoroccogrowntomatoes.Valueshavebeen normalizedineachimpactcategorysuchthatFrenchproduction=1.AdaptedfromPayenetal.2015. AsisoftentruewithfoodLCAstudies,downstreamstagesofretailandconsumptionhavenotbeen includedinmostoftheexistingliterature.Thesestagescanhavenotablecontributions,buttheyare challengingtomodelassituationsandbehaviorsarehighlyvariable. Alsoabsentisconsiderationofretail-andconsumer-levelfoodwaste.Foodwasterepresentsanotable inefficiencyinourfoodsystemthatmustbeaddressed;theenvironmentalburdenofproducingfood thatiswastedisthesameasfoodthatiseaten.Abetterunderstandingoftheroleoftomatowaste couldbeparticularlyrelevantinmakingchoicesbetweenfreshandprocessedtomatoes:freshtomatoes areexpectedtohavesignificantlymoreretail-levelandconsumer-levelwasteduetospoilage,andthis maybesignificantenoughtobalanceouttheincreasedimpactsofprocessingandpackaging.Likewise, School of Natural Resources and Environment | Center for Sustainable Systems | 440 Church Street, 3012 Dana Building | Ann Arbor, MI 48109-1041 | 734-764-1412 | css.snre.umich.edu Page10 duetothehighcosmeticstandardsforfresh-markettomatoes,cullingratescanbesignificant.Some retailersareaddressingthisbyselling“ugly”produceatslightlydiscountedprices. AmorethoroughinclusionofenvironmentalimpactcategoriesbeyondGHGEwouldofferamore completepictureoftomatoproductionandconsumption.Ofparticularinterestmaybewateruse impactsandhumanandeco-toxicity,especiallystudiesthatfocusontheimpactsandtrade-offsof pesticideuse. Oneinterestingquestionthatisnotcompletelyansweredwiththeexistingliteratureisthe“freshvs. processed”and/or“tomatosaucevs.tomatopaste”questionwhentheend-consumeditemisatomato saucebasedfood.Tofullyanswerthisquestion,at-home(orinindustrialkitchen)cooking,wasteand storagelogistics,andsensitivitytotransportationmodesanddistancesallshouldbeaccounted. Conclusions TomatoesareacommoncomponentoftheU.S.diet,makingconsiderationoftheenvironmentalimpact oftheirproduction,processing,packaging,distributionandconsumptionavaluablecasestudy.Results fromthelifecycleassessmentliteraturesuggestafewgenerallyapplicableconclusions: • Heatinggreenhousesforout-of-seasontomatoproductionaddsasignificantcontributionto greenhousegasemissionsandotherenvironmentalimpacts,andthiscontributiontypically outweighstheimpactsoflongdistancetransportfromwarmerproductionregions. • Agrichemicals–bothfertilizerandpesticideproduction–andfertilizer-relatedfieldemissionsare importantcontributorstothegreenhousegasemissionsofopen-fieldandprotectedtomato production.Insufficientdataareavailabletodeterminewhetherorganicproductionreduces greenhousegasemissionsperkgoftomatoproduced. • Packagingisanimportantcomponentofthelifecycleimpactsofprocessedtomatoproducts, andeffortstoreducepackagingimpacts(lighterglassjars,papercartoncontainers,etc.)can significantlyinfluencetheoveralllifecycleperformance. • Growingfresh-markettomatoesunder(unheated)protectedstructuresappearstooffer considerablebenefitintermsofyieldandqualitywithoutaddinganotableenvironmentalimpact burden. • Trade-offsbetweendifferentenvironmentalburdenscanbeanimportantconsiderationwhen comparingdifferentsystems. School of Natural Resources and Environment | Center for Sustainable Systems | 440 Church Street, 3012 Dana Building | Ann Arbor, MI 48109-1041 | 734-764-1412 | css.snre.umich.edu Page11 TermsandDefinitions (Notethatinthefinalversion,thesetermsanddefinitionswilllikelyresideinan“overview”or “preamble”documentthatwillserveasanintroductiontoLCAandthisprojectforallsummarysheets. Wehaveincludeddefinitionshereforyourreferenceinreview.Ifyou’veencounteredothertermsthat shouldbedefinedhere,pleasecomment!) LifeCycleAssessment(LCA)isaninternationallyacceptedandstandardizedmethodologythatdefinesasystematicsetof proceduresfor“compilationandevaluationoftheinputs,outputsandthepotentialenvironmentalimpactsofaproduct systemthroughoutitslifecycle”.Acradle-to-gravesystemboundaryconsidersthelifecyclestagesofaproductfromraw materialextractionthroughtothedisposalattheendoflifeoftheproduct.Acradle-to-gatesystemboundaryconsidersthe lifecyclefromrawmaterialextractionthroughanintermediatelifecyclestage(e.g.:tomatoproduction). ProductCarbonFootprints(CF)areasubsetofLCAthatfocusonlyontheclimatechangeortheglobalwarmingpotential impactcategory.Aproductcarbonfootprint,reportedinCO2-equivalents,isameasureofgreenhousegas(GHG)emissions (carbondioxide,methane,nitrousoxide,fluorinatedgases)overaproduct’slifecycle.SomeGHGshaveastrongerwarming effectthancarbondioxide,suchasmethanewitha100-yearGlobalWarmingPotentialof28kgCO2-equivalents(30forfossil methane)andnitrousoxideat265kgCO2-equivalents,accordingtotheIntergovernmentalPanelonClimateChange(IPCC) th 5 AssessmentReport(Table8.7). Carbondioxideequivalent(CO2e):Theuniversalunitofmeasurementtoindicatetheglobalwarmingpotential(GWP)of eachgreenhousegas,expressedintermsoftheGWPofoneunitofcarbondioxide.Itisusedtoevaluatereleasing(or avoidingreleasing)differentgreenhousegasesagainstacommonbase. Eutrophicationoriginatesmainlyfromnitrogenandphosphorusinsewageoutlets,manuresandfertilizers.Nutrientsthatrun off,leachorotherwiseenterwaterwaysacceleratethegrowthofalgaeandothervegetationinwater.Degradationofthis excessorganicmaterialconsumesoxygen,resultinginoxygendeficiencyandfishkills(deadzones).Eutrophicationpotential quantifiesnutrientenrichmentbythereleaseofsubstancesinwaterorintothesoil,andiscommonlyexpressedinPO4 equivalents. Acidificationoriginatesfromtheemissionsofsulfurdioxideandoxidesofnitrogen,whichreactwithwatervaporinthe atmosphereandformacidsthatprecipitatetotheearth’ssurface(acidrain).Acidificationpotentialmeasuresthe contributionofanemissionsubstancetoacidification,typicallyexpressedinSO2equivalents. Wateruse:Waterresourcesarealsoessentialforagriculturalproduction,andirrigationwithsurfaceandgroundwater (termed“bluewater”inwaterusejargon)makesagriculturepossibleinmorearidregions.Geographicallocationinfluences theamountofbluewaterrequiredtoproduceagivencrop.Theimpactofthatwateruseonthelocalenvironmentandother potentialusers,however,alsovarieswithlocation:usingwaterinwaterstressedregionsismoreimpactfulthanusingwater inregionswithamplesupply.Generalizationofwaterusefromoneproductionregiontoanotherisdifficultandunadvisable. WateruseinLCAisoftenreportedsimplyasaninventory(liters),butconsensusisbuildingastohowbesttoincorporatethe impactofwateruseinanLCAframework. Humantoxicitypotential,eco-toxicitypotential:Atoxicologicaleffectisanadversechangeinthestructureorfunctionofa speciesasaresultofexposuretoachemical.Characterizationfactorsforvariouschemicalsaredevelopedbasedon multimediachemicalfatemodels,exposurecorrelations,andchemicalriskscreenings.Toxicitypotentialsarecharacterized byhighuncertaintiesduetothecomplexfate,exposureandtoxicologicalmodelingrequired. 95%Confidenceintervalisastatisticalparameterthatactsasagoodestimateoftheuncertaintyofasampleofdata.Inthe caseofestimatingaproduct’scarbonfootprint,wedon’tactuallyknowthe“true”meanvalue.Whenaveragingestimates fromanumberofstudies,thereisobviouslyuncertainty;notonlydoLCAmethodsintroduceuncertainty,butthereis expectedvariabilitydependingonthespecificsofthemodeledsystem(soil,climate,electricitygridmix,etc).A95% confidenceintervalmeansthatif100samplesweretakenandaconfidenceintervalwerecomputedforeachsampling,we wouldexpect95outof100oftheintervalstocontainthe“true”meanvalue. School of Natural Resources and Environment | Center for Sustainable Systems | 440 Church Street, 3012 Dana Building | Ann Arbor, MI 48109-1041 | 734-764-1412 | css.snre.umich.edu
© Copyright 2026 Paperzz