Objective To develop addition concepts related to mixed numbers. 1 materials Teaching the Lesson Key Activities Students review fraction addition. They add mixed numbers in which the fractional parts have like or unlike denominators and rename the sums in simplest form. Key Concepts and Skills • Find equivalent fractions in simplest form. Щ— Math Journal 2, pp. 251 and 252 Щ— Study Link 8 1 бњ Щ— Teaching Aid Master (Math Masters, p. 414; optional) Щ— slates Щ— Class Data Pad (optional) [Number and Numeration Goal 5] • Convert between and simplify fractions and mixed numbers. [Number and Numeration Goal 5] • Add fractions and mixed numbers. [Operations and Computation Goal 4] Ongoing Assessment: Informing Instruction See page 626. Ongoing Assessment: Recognizing Student Achievement Use journal page 252. [Operations and Computation Goal 4] 2 Ongoing Learning & Practice Students practice and maintain skills through Math Boxes and Study Link activities. 3 Students explore an alternate method for adding mixed numbers. Щ— Math Journal 2, p. 253 Щ— Study Link Master (Math Masters, p. 223) materials Differentiation Options READINESS materials EXTRA PRACTICE Students play Fraction Capture to practice comparing fractions and finding equivalent fractions. Щ— Math Journal 1, p. 198 Щ— Math Journal 2, p. 252 Щ— Game Master (Math Masters, p. 460) Щ— 2 six-sided dice Technology Assessment Management System Journal page 252 See the iTLG. 624 Unit 8 Fractions and Ratios Getting Started Mental Math and Reflexes Math Message Have students rename each fraction as a whole number or mixed number and each mixed number as an improper fraction. Solve Problems 1–9 at the top of journal page 251. 3 бЋЏбЋЏ 1 3 1 5 2бЋЏ2бЋЏ бЋЏ2бЋЏ 3 1 бЋЏбЋЏ 1бЋЏбЋЏ 2 2 13 5 бЋЏбЋЏ 1бЋЏбЋЏ 8 8 1 33 4бЋЏ8бЋЏ бЋЏ8бЋЏ 17 2 бЋЏбЋЏ 3бЋЏбЋЏ 5 5 37 2 бЋЏбЋЏ 7бЋЏбЋЏ 5 5 62 2 бЋЏбЋЏ 12бЋЏбЋЏ 5 5 1 45 бЋЏ бЋЏ бЋЏ 11 4 4бЋЏ Study Link 8 1 Follow-Up бњ Have partners compare answers and resolve differences. Ask volunteers to share their explanations for Problems 7, 14, and 21. 1 Teaching the Lesson б¤ Math Message Follow-Up WHOLE-CLASS ACTIVITY (Math Journal 2, p. 251) Ask volunteers to share their strategies for renaming the sums in Problems 3–6 to a whole or mixed number. Encourage students to use their understanding of multiplication facts to recognize when the simplest form will be a whole number. If the sum is an improper fraction and the numerator is not a multiple of the denominator, the simplest form will be a mixed number. If the numerator is a multiple of the denominator, the simplest form will be a whole number. Ask volunteers to explain how to recognize an improper fraction. If the numerator is greater than or equal to the denominator, the fraction is an improper fraction. To support English language learners, write and label examples of improper fractions on the board or Class Data Pad. Survey students for what methods they used to find the common denominators for Problems 7–9. Expect a mixture of the methods discussed in Lesson 8-1. Summarize the methods on the board or Class Data Pad for student reference throughout the lesson. Student Page Date Time LESSON 8 2 Math Message Add. Write the sums in simplest form. 3 1 1. бЋЏбЋЏ П© бЋЏбЋЏ П 5 5 3 4. бЋЏбЋЏ 7 б¤ Adding Mixed Numbers with Adding Fractions бњ П© 5 бЋЏбЋЏ П 7 4 бЋЏбЋЏ 5 1бЋЏ17бЋЏ 3 1 2. бЋЏбЋЏ П© бЋЏбЋЏ П 8 8 5 бЋЏбЋЏ 6 2 2 8. бЋЏбЋЏ П© бЋЏбЋЏ П 3 5 1 2 7. бЋЏбЋЏ П© бЋЏбЋЏ П 6 3 WHOLE-CLASS ACTIVITY Fractions Having Like Denominators Explain that one way to find the sum of mixed numbers is to treat the fraction and whole number parts separately. Write the problem on the next page onto the board or a transparency: 7 5. бЋЏбЋЏ 10 П© 1 бЋЏбЋЏ 2 2 2 2 3. бЋЏбЋЏ П© бЋЏбЋЏ П© бЋЏбЋЏ П 3 3 3 1бЋЏ25бЋЏ 7 бЋЏбЋЏ П 10 1бЋЏ11бЋЏ5 2 5 7 6. бЋЏбЋЏ П© бЋЏбЋЏ П 9 9 1бЋЏ13бЋЏ 5 5 9. бЋЏбЋЏ П© бЋЏбЋЏ П 6 8 1бЋЏ12бЋЏ14 Adding Mixed Numbers Add. Write each sum as a whole number or mixed number. 3 5 1бЋЏ бЋЏ 10. 1 2 1бЋЏбЋЏ 11. 12. 1 4 2 бЋЏбЋЏ П© 1бЋЏ бЋЏ 1 5 П© бЋЏбЋЏ 1 2 П© 3 бЋЏбЋЏ 2бЋЏ45бЋЏ 2 6 3 4 Fill in the missing numbers. 12 13. 5 бЋЏбЋЏ П 6 7 5 16. 4 бЋЏбЋЏ П 5 3 5 7 2 3 8 14. 7 бЋЏбЋЏ П 5 8 11 17. 12 бЋЏбЋЏ П 13 6 3 бЋЏбЋЏ 5 5 6 5 15. 2бЋЏбЋЏ П 3 4 13 18. 9 бЋЏбЋЏ П 10 10 1 4 3 10 Add. Write each sum as a mixed number in simplest form. 2 3 3 бЋЏбЋЏ 19. П© 2 5 бЋЏбЋЏ 3 9бЋЏ13бЋЏ 6 7 4 бЋЏбЋЏ 20. 21. 4 9 3 бЋЏбЋЏ 8 9 4 2 бЋЏбЋЏ 7 П© 6 бЋЏбЋЏ 7бЋЏ37бЋЏ 10 бЋЏ13бЋЏ П© 251 Math Journal 2, p. 251 Lesson 8 2 бњ 625 1 3бЋЏ8бЋЏ 3 П© 5бЋЏ8бЋЏ 4 1 8бЋЏ8бЋЏ or 8бЋЏ2бЋЏ Add the whole-number parts. Then add the fraction parts. 7 2бЋЏ8бЋЏ Ask students to solve the following problem: 5 П© 3бЋЏ8бЋЏ Discuss students’ solution strategies. Make sure the following strategy is presented: 7 2бЋЏ8бЋЏ 1. Add the whole-number parts. 5 П© 3бЋЏ8бЋЏ 2. Add the fraction parts. 12 5бЋЏ8бЋЏ 12 3. Rename 5бЋЏ8бЋЏ in simplest form. 12 бЋЏбЋЏ 8 8 4 4 4 П бЋЏ8бЋЏ П© бЋЏ8бЋЏ П 1 П© бЋЏ8бЋЏ П 1бЋЏ8бЋЏ 12 4 12 4 4 1 Since бЋЏ8бЋЏ П 1бЋЏ8бЋЏ, then 5бЋЏ8бЋЏ П 5 П© 1 П© бЋЏ8бЋЏ П 6бЋЏ8бЋЏ or 6бЋЏ2бЋЏ. Model renaming the sum with a picture. 12 4 бЋЏбЋЏ П 1бЋЏбЋЏ 8 8 Pose a few more addition problems in which the addends are mixed numbers with like denominators. Suggestions: 4 3 в—Џ 1бЋЏ4бЋЏ П© 2бЋЏ4бЋЏ 4бЋЏ4бЋЏ, or 4бЋЏ2бЋЏ 1 в—Џ 8бЋЏ10бЋЏ П© 5бЋЏ10бЋЏ 14бЋЏ5бЋЏ в—Џ 3бЋЏ7бЋЏ П© 4бЋЏ7бЋЏ 8 в—Џ 6бЋЏ23бЋЏ П© 2бЋЏ3бЋЏ 9 3 7 3 2 9 1 3 Ongoing Assessment: Informing Instruction Watch for students who have difficulty renaming mixed-number sums such as 12 5бЋЏ8бЋЏ. Discuss the meanings of numerator and denominator, and have students rename the fractional parts in the mixed numbers. Suggestions: 4бЋЏ75бЋЏ 8бЋЏ43бЋЏ 2бЋЏ74бЋЏ 626 Unit 8 Fractions and Ratios 7 бЋЏбЋЏ 5 4 бЋЏбЋЏ 3 7 бЋЏбЋЏ 4 П П П 5 бЋЏбЋЏ 5 3 бЋЏбЋЏ 3 4 бЋЏбЋЏ 4 П© П© П© 2 бЋЏбЋЏ 5 1 бЋЏбЋЏ 3 3 бЋЏбЋЏ 4 П1П© П1П© П1П© 2 бЋЏбЋЏ 5 1 бЋЏбЋЏ 3 3 бЋЏбЋЏ 4 б¤ Adding Mixed Numbers with WHOLE-CLASS ACTIVITY Fractions Having Unlike Denominators Write the following problem on the board, and ask students to find the sum: 3 3бЋЏ4бЋЏ 7 П© 2бЋЏ8бЋЏ After a few minutes, ask students to share solution strategies. Make sure the following method is discussed: 3 7 1. Find a common denominator for бЋЏ4бЋЏ and бЋЏ8бЋЏ 8, 16, 24, 32, ... 2. Rename the fraction parts of the mixed numbers so they have the same denominator. In this case, the least common denominator, 8, is the easiest to use. 3бЋЏ4бЋЏ 3 3бЋЏ8бЋЏ 6 7 П© 2бЋЏ8бЋЏ 7 П© 2бЋЏ8бЋЏ 13 5бЋЏ8бЋЏ 3. Add. 13 8 5 5 5 5бЋЏ8бЋЏ П 5 П© бЋЏ8бЋЏ П© бЋЏ8бЋЏ П 5 П© 1 П© бЋЏ8бЋЏ П 6бЋЏ8бЋЏ 4. Rename the sum. Pose a few more problems that involve finding common denominators to add mixed numbers. Suggestions: 1 3 7 2 5 3 4 1 1 5 3 13 7 1 1 в—Џ 2бЋЏ2бЋЏ П© 4бЋЏ8бЋЏ 6бЋЏ8бЋЏ в—Џ 5бЋЏ3бЋЏ П© 1бЋЏ6бЋЏ 7бЋЏ6бЋЏ, or 7бЋЏ2бЋЏ в—Џ 3бЋЏ5бЋЏ П© 2бЋЏ4бЋЏ 6бЋЏ20бЋЏ в—Џ 6бЋЏ6бЋЏ П© 3бЋЏ5бЋЏ 10бЋЏ3бЋЏ0 в—Џ 1бЋЏ8бЋЏ П© 8бЋЏ6бЋЏ 10бЋЏ2бЋЏ4 1 Student Page б¤ Adding Mixed Numbers Date PARTNER ACTIVITY (Math Journal 2, pp. 251 and 252) Time LESSON Adding Mixed Numbers 8 2 бњ continued To add mixed numbers in which the fractions do not have the same denominator, you must first rename one or both fractions so that both fractions have a common denominator. Have students complete journal pages 251 and 252. Circulate and assist. 3 5 2 3 Example: 2 бЋЏбЋЏ П© 4 бЋЏбЋЏ П ? 3 5 бњ Write the problem in vertical form, and rename the fractions. 3 5 9 15 2 бЋЏбЋЏ 2 бЋЏбЋЏ П© Ongoing Assessment: Recognizing Student Achievement ଙ Journal Page 252 Problem 4 [Operations and Computation Goal 4] 2 4 бЋЏбЋЏ 3 ∑ П© 4 бЋЏ10бЋЏ 15 6 бЋЏ19бЋЏ бњ Add. бњ Rename the sum. 19 6 бЋЏбЋЏ 15 П6П© 15 бЋЏбЋЏ 15 15 4 15 4 15 4 15 П© бЋЏбЋЏ П 6 П© 1 П© бЋЏбЋЏ П 7бЋЏбЋЏ Add. Write each sum as a mixed number in simplest form. Show your work. 7бЋЏ190бЋЏ 5бЋЏ17бЋЏ2 1 1 1 2 1. 2бЋЏбЋЏ П© 3 бЋЏбЋЏ П 2. 5 бЋЏбЋЏ П© 2бЋЏбЋЏ П 3 Use journal page 252, Problem 4 to assess students’ facility with adding mixed numbers. Have students complete an Exit Slip (Math Masters, 414) for the following: Explain how you found the answer to Problem 4 on journal page 252. Students are making adequate progress if their responses demonstrate an understanding of renaming fractions to have common denominators and to be in simplest form. 2 3 бњ Find a common denominator. The QCD of бЋЏбЋЏ and бЋЏбЋЏ is 5 ‫ ء‬3 П 15. 4 1 4 3. 6 бЋЏбЋЏ П© 2бЋЏбЋЏ П 3 9 1 5 5. 7бЋЏбЋЏ П© 2 бЋЏбЋЏ П 4 6 2 8бЋЏ79бЋЏ 10бЋЏ112бЋЏ 5 ଙ 1 3 4. 1бЋЏбЋЏ П© 4бЋЏбЋЏ П 2 4 5 3 6. 3 бЋЏбЋЏ П© 3 бЋЏбЋЏ П 6 4 6бЋЏ14бЋЏ 7бЋЏ172бЋЏ 252 Math Journal 2, p. 252 Lesson 8 2 бњ 627 Student Page Date Time LESSON 2 Ongoing Learning & Practice Math Boxes 8 2 бњ 1. Add. 2. Use the patterns to fill in the missing 1 2 a. бЋЏбЋЏ П© бЋЏбЋЏ П 4 4 3 1 b. бЋЏбЋЏ П© бЋЏбЋЏ П 8 4 1 c. бЋЏбЋЏ 2 П© 1 бЋЏбЋЏ 8 numbers. 3 бЋЏбЋЏ 4 5 бЋЏбЋЏ 8 П 2 1 d. бЋЏбЋЏ П© бЋЏбЋЏ П 3 6 8 a. 1, 2, 4, 5 бЋЏбЋЏ 8 5 бЋЏбЋЏ 6 4 2 2 e. бЋЏбЋЏ П© бЋЏбЋЏ П бЋЏ6бЋЏ 6 6 , or 32 , 41 c. 4, 34, 64, 94 , 124 62 d. 20, 34, 48, 2 бЋЏбЋЏ 3 68 e. 100, 152, 204, 3 3. The school band practiced 2бЋЏбЋЏ hours on 4 2 Saturday and 3 бЋЏбЋЏ hours on Sunday. Was 3 16 , b. 5, 14, 23, , б¤ Math Boxes 8 2 (Math Journal 2, p. 253) 76 256 , 308 Mixed Practice Math Boxes in this lesson are paired with Math Boxes in Lesson 8-4. The skill in Problem 6 previews Unit 9 content. parentheses. a. 18 ПЄ 11 П© 3 П 10 More than 6 hours b. 18 ПЄ 11 П© 3 П 4 Sample answer: Explain. 2бЋЏ34бЋЏ П© 3бЋЏ23бЋЏ П 5П© бЋЏ19бЋЏ2 П© бЋЏ18бЋЏ2 П 5П© бЋЏ11бЋЏ72 П 5П© бЋЏ11бЋЏ22 П© бЋЏ152бЋЏ П 5П© 1П© бЋЏ15бЋЏ2 П 6П© бЋЏ152бЋЏ c. 14 ПЄ 7 П© 5 П© 1 П 13 ( ) ( ) ) ( ( ( Writing/Reasoning Have students write a response to the following: Explain your strategy for finding the values of the variables in Problem 5. Sample answer: I looked for the common factor of the numerators or denominators that were complete. Then I used the multiplication rule or the division rule to multiply or divide to find the values for the variables. ) d. 14 ПЄ 7 П© 5 П© 1 П 1 ) e. 14 ПЄ 7 П© 5 П© 1 П 3 71 5. Solve. 230 4. Make each sentence true by inserting the band’s total practice time more or less than 6 hours? 222 Solution 6. Circle the congruent line segments. x 5 a. бЋЏбЋЏ П бЋЏбЋЏ 18 9 x П 10 a. 40 8 b. бЋЏбЋЏ П бЋЏбЋЏ y 25 y П 125 b. 6 w c. бЋЏбЋЏ П бЋЏбЋЏ 14 49 w П 21 c. 28 7 d. бЋЏбЋЏ П бЋЏбЋЏ z 9 z П 36 d. 44 4 e. бЋЏбЋЏ П бЋЏбЋЏ 77 v vП7 INDEPENDENT ACTIVITY бњ 155 108 109 253 Math Journal 2, p. 253 NOTE Alternately, students may use a table or chart to find an equivalent fraction with the given denominator or numerator. б¤ Study Link 8 2 INDEPENDENT ACTIVITY бњ (Math Masters, p. 223) Home Connection Students practice adding mixed numbers and renaming improper fractions as mixed numbers in simplest form. 3 Differentiation Options Study Link Master Name Date STUDY LINK Time 82 Rename each mixed number in simplest form. 1 4бЋЏ5бЋЏ 6 5 1. 3 бЋЏбЋЏ П 3. 9 бЋЏбЋЏ П 5. 4 бЋЏбЋЏ П 16 2. бЋЏбЋЏ 8 2 2бЋЏ5бЋЏ 7 5 4. 1 бЋЏбЋЏ П 6. 5 бЋЏбЋЏ П 6бЋЏ3бЋЏ 10 6 Add. Write each sum as a whole number or mixed number in simplest form. 1 4 3 4 1 3 2 3 7. 3 бЋЏбЋЏ П© 2 бЋЏ бЋЏ П 9. 9 бЋЏбЋЏ П© 4 бЋЏ бЋЏ П 6 1 5 4 5 5 7 6 7 2 9 5 9 8. 4 бЋЏбЋЏ П© 3 бЋЏбЋЏ П 10. 3 бЋЏбЋЏ П© 8 бЋЏбЋЏ П 3 8 П© 3 бЋЏбЋЏ П 12. 4 бЋЏбЋЏ П© 5 бЋЏбЋЏ П 8 4 14 1 15 11. бЋЏбЋЏ 8 15–30 Min 2 1 5бЋЏ2бЋЏ 6 4 б¤ Adding Mixed Numbers (Math Journal 2, p. 252) 2 10бЋЏ3бЋЏ 5 3 61 63 70 2 П SMALL-GROUP ACTIVITY READINESS Adding Mixed Numbers бњ 12бЋЏ7бЋЏ To explore mixed-number addition, have students use an oppositechange algorithm. Have students change one of the addends to a whole number. Pose the following problem: 2 5 1бЋЏ3бЋЏ П© 7бЋЏ6бЋЏ 7 5бЋЏ4бЋЏ 9бЋЏ9бЋЏ 2 1 2 1 1. Change 1 and бЋЏ3бЋЏ to a whole number by adding бЋЏ3бЋЏ: 1бЋЏ3бЋЏ П© бЋЏ3бЋЏ П 2 Add. 13. 5 8 3 4 2 бЋЏбЋЏ 14. 1 2 2 3 7 бЋЏбЋЏ 6 9 7 12 4 бЋЏбЋЏ 15. П© 6 бЋЏбЋЏ П© 3 бЋЏбЋЏ П© 3 бЋЏбЋЏ 3 11бЋЏ6бЋЏ 1 8бЋЏ4бЋЏ 9бЋЏ8бЋЏ 16. 3 4 4 5 5 бЋЏбЋЏ П© 2 бЋЏбЋЏ 1 11 8бЋЏ2бЋЏ0 Practice 17. 3,540 П¬ 6 П 590 18. 1,770 П¬ 3 П 590 19. 7,080 / 12 П 590 20. (590 ‫ ء‬5) П¬ 2 П 1,475 Math Masters, p. 223 628 Unit 8 Fractions and Ratios 1 5 1 2 5 2 3 2. Subtract бЋЏ3бЋЏ from 7бЋЏ6бЋЏ: бЋЏ3бЋЏ П бЋЏ6бЋЏ; 7бЋЏ6бЋЏ – бЋЏ6бЋЏ П 7бЋЏ6бЋЏ. 3 3 1 3. Add the new addends: 2 П© 7бЋЏ6бЋЏ П 9бЋЏ6бЋЏ, or 9бЋЏ2бЋЏ. This strategy is most efficient when the sum of the fraction parts is greater than 1. Have students use this method to solve the following problems. Discuss how to recognize that the fraction parts are greater than 1: Game Master в—Џ 8 1 3 Name 3бЋЏ2бЋЏ П© 7бЋЏ10бЋЏ 11бЋЏ1бЋЏ0 3 в—Џ 2бЋЏбЋЏ 4 8 П© 9 6бЋЏ12бЋЏ 1 6 9бЋЏ1бЋЏ2 , 5бЋЏ9бЋЏ П© 7бЋЏ3бЋЏ 13бЋЏ9бЋЏ в—Џ 4бЋЏ10бЋЏ П© 3бЋЏ6бЋЏ 8бЋЏ3бЋЏ0 5 Time 1 2 4 3 Fraction Capture Gameboard 1 9бЋЏ2бЋЏ 1 2 2 в—Џ 8 or Date 1 2 1 2 1 2 1 2 1 2 1 2 1 2 19 1 3 1 3 1 3 Before students begin journal page 252, have them identify problems for which this algorithm might apply. Problems 4–6 1 3 1 4 15–30 Min 1 4 1 4 1 4 1 5 1 5 1 5 1 5 1 4 (Math Journal 1, p. 198; Math Masters, p. 460) Students practice comparing fractions and finding equivalent fractions by playing Fraction Capture. Players roll dice, form fractions, and claim corresponding sections of squares. The rules are on Math Journal 1, page 198, and the gameboard is on Math Masters, page 460. 1 6 1 6 1 6 1 6 1 6 1 6 1 5 1 5 1 6 1 6 1 6 1 5 1 6 1 4 1 5 1 5 1 5 1 5 1 6 1 4 1 4 1 5 1 6 1 6 1 4 1 4 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 3 1 4 1 4 1 4 PARTNER ACTIVITY 1 3 1 3 1 3 1 3 1 4 б¤ Playing Fraction Capture 1 3 1 3 1 4 EXTRA PRACTICE 1 3 1 6 1 5 1 5 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 Math Masters, p. 460 Lesson 8 2 бњ 629
© Copyright 2025 Paperzz