DCM for fMRI: Advanced topics Klaas Enno Stephan Neural population activity 0.4 0.3 0.2 u2 Laboratory for Social & Neural Systems Research (SNS) University of Zurich 0.1 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0.6 0.4 u1 x3 0.2 0 0.3 0.2 0.1 0 x1 x2 Wellcome Trust Centre for Neuroimaging University College London 3 fMRI signal change (%) 2 1 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 4 3 A dt dx m i 1 n ui B (i) j 1 x jD ( j) x Cu 2 1 0 -1 3 2 1 0 SPM Course, London 13 May 2011 Dynamic Causal Modeling (DCM) Hemodynamic forward model: neural activityBOLD Electromagnetic forward model: neural activityEEG MEG LFP Neural state equation: dx F ( x , u, ) dt fMRI simple neuronal model complicated forward model EEG/MEG complicated neuronal model simple forward model inputs Overview • Bayesian model selection (BMS) • Neurocomputational models: Embedding computational models in DCMs • Integrating tractography and DCM definition of model space inference on model structure or inference on model parameters? inference on individual models or model space partition? optimal model structure assumed to be identical across subjects? yes FFX BMS comparison of model families using FFX or RFX BMS inference on parameters of an optimal model or parameters of all models? optimal model structure assumed to be identical across subjects? yes no FFX BMS RFX BMS no RFX BMS Stephan et al. 2010, NeuroImage FFX analysis of parameter estimates (e.g. BPA) RFX analysis of parameter estimates (e.g. t-test, ANOVA) BMA Model comparison and selection Given competing hypotheses on structure & functional mechanisms of a system, which model is the best? Which model represents the best balance between model fit and model complexity? For which model m does p(y|m) become maximal? Pitt & Miyung (2002) TICS Bayesian model selection (BMS) Model evidence: p ( y | , m ) p ( | m ) d log p ( y | , m ) KL q , p | m p(y|m) p( y | m) Gharamani, 2004 y KL q , p | y , m all possible datasets accounts for both accuracy and complexity of the model allows for inference about structure (generalisability) of the model Various approximations, e.g.: - negative free energy, AIC, BIC McKay 1992, Neural Comput. Penny et al. 2004a, NeuroImage Approximations to the model evidence in DCM Maximizing log model evidence = Maximizing model evidence Logarithm is a monotonic function Log model evidence = balance between fit and complexity log p ( y | m ) accuracy ( m ) complexity ( m ) log p ( y | , m ) complexity ( m ) No. of parameters In SPM2 & SPM5, interface offers 2 approximations: Akaike Information Criterion: Bayesian Information Criterion: No. of data points AIC log p ( y | , m ) p BIC log p ( y | , m ) p 2 log N AIC and BIC only take into account the number of parameters, but not the flexibility they provide (prior variance) nor their interdependencies. The (negative) free energy approximation • Under Gaussian assumptions about the posterior (Laplace approximation), the negative free energy F is a lower bound on the log model evidence: log p ( y | m ) log p ( y | , m ) KL q , p | m KL q , p | y , m F KL q , p | y , m • F can also be written as the difference between fit and complexity: F log p ( y | , m ) q K L q , p | m The complexity term in F • In contrast to AIC & BIC, the complexity term of the negative free energy F accounts for parameter interdependencies. KL q ( ), p ( | m ) 1 2 ln C 1 2 ln C | y 1 2 |y T 1 C |y • The complexity term of F is higher – the more independent the prior parameters ( effective DFs) – the more dependent the posterior parameters – the more the posterior mean deviates from the prior mean • NB: Since SPM8, only F for is used for model selection ! Bayes factors To compare two models, we could just compare their log evidences. But: the log evidence is just some number – not very intuitive! A more intuitive interpretation of model comparisons is made possible by Bayes factors: positive value, [0;[ B12 p ( y | m1 ) p( y | m2 ) Kass & Raftery classification: Kass & Raftery 1995, J. Am. Stat. Assoc. B12 p(m1|y) Evidence 1 to 3 50-75% weak 3 to 20 75-95% positive 20 to 150 95-99% strong 150 99% Very strong BMS in SPM8: an example attention M1 stim M1 M2 M3 M4 M3 stim PPC V1 attention V1 V5 PPC M2 M2 better than M1 PPC attention BF 2966 F = 7.995 stim V1 V5 M3 better than M2 BF 12 F = 2.450 V5 M4 attention PPC M4 better than M3 BF 23 F = 3.144 stim V1 V5 Stephan et al. 2008, NeuroImage Fixed effects BMS at group level Group Bayes factor (GBF) for 1...K subjects: GBF ij BF (k ) ij k Average Bayes factor (ABF): A B Fij K BF (k ) ij k Problems: - blind with regard to group heterogeneity - sensitive to outliers Random effects BMS for heterogeneous groups Dirichlet parameters = “occurrences” of models in the population r ~ Dir ( r ; ) Dirichlet distribution of model probabilities r mk ~ p (mk | p ) mk ~ p (mk | p ) mk ~ p (mk | p ) m 1 ~ Mult ( m ;1, r ) y1 ~ p ( y1 | m 1 ) y1 ~ p ( y1 | m 1 ) y2 ~ p ( y2 | m2 ) y1 ~ p ( y1 | m 1 ) Multinomial distribution of model labels m Measured data y Model inversion by Variational Bayes (VB) or MCMC Stephan et al. 2009a, NeuroImage Penny et al. 2010, PLoS Comp. Biol. LD m2 MOG FG LD|LVF MOG FG LD|RVF MOG LD|LVF RVF stim. LD LD LG LVF stim. RVF LD|RVF stim. m2 Subjects MOG FG LD LG LG FG m1 LG LVF stim. m1 Data: Stephan et al. 2003, Science Models: Stephan et al. 2007, J. Neurosci. -35 -30 -25 -20 -15 -10 -5 Log model evidence differences 0 5 p(r >0.5 | y) = 0.997 1 5 4.5 4 p r1 r2 99 . 7 % m2 3.5 m1 p(r 1|y) 3 2.5 2 1.5 r1 84.3% r2 15.7% 0.5 0 0 1 11.8 2 2.2 1 0.1 0.2 0.3 0.4 0.5 r Stephan et al. 2009a, NeuroImage 0.6 1 0.7 0.8 0.9 1 nonlinear Model space partitioning: comparing model families log GBF 80 Summed log evidence (rel. to RBML) FFX linear 60 40 20 p(r >0.5 | y) = 0.986 1 0 5 CBMN CBMN(ε) RBMN RBMN(ε) CBML CBML(ε) RBML RBML(ε) RFX 12 4.5 10 4 m2 m1 alpha 8 3.5 p r1 r2 9 8 .6 % 6 3 p(r 1|y) 4 2 2.5 2 0 CBMN CBMN(ε) RBMN RBMN(ε) CBML CBML(ε) RBML RBML(ε) 1.5 1 16 14 12 m1 m2 4 8 1* k r2 2 6 .5 % r1 7 3 .5 % 0.5 0 0 10 alpha Model space partitioning 0.1 0.2 0.3 0.4 0.5 r k 1 0.6 0.7 0.8 0.9 1 1 6 4 8 2* k 2 k 5 0 nonlinear models linear models Stephan et al. 2009, NeuroImage Comparing model families – a second example • data from Leff et al. 2008, J. Neurosci • one driving input, one modulatory input • 26 = 64 possible modulations • 23 – 1 input patterns • 764 = 448 models • integrate out uncertainty about modulatory patterns and ask where auditory input enters Penny et al. 2010, PLoS Comput. Biol. Bayesian Model Averaging (BMA) • abandons dependence of parameter inference on a single model • computes average of each parameter, weighted by posterior model probabilities • represents a particularly useful alternative – when none of the models (or model subspaces) considered clearly outperforms all others – when comparing groups for which the optimal model differs Penny et al. 2010, PLoS Comput. Biol. p n | y1 .. N p n | y n , m p m | y1 .. N m NB: p(m|y1..N) can be obtained by either FFX or RFX BMS 5 BMS for large model spaces 10 Number of models 4 10 3 10 • for less constrained model spaces, search methods are needed A mi 2 2 10 1 assuming reciprocal connections 10 0 10 2 3 4 5 6 number of nodes • fast model scoring via the Savage-Dickey density ratio: Log-evidence 100 ln p y | m i 0 -100 Free-energy ln q i 0 | m i ln p i 0 | m F -200 -300 -400 -500 Friston et al. 2011, NeuroImage Friston & Penny 2011, NeuroImage n n 1 / 2 -600 -600 -500 -400 -300 -200 Savage-Dickey -100 0 100 BMS for large model spaces 0.8 0.7 0.6 probability -100 -200 0.5 0.4 0.3 0.2 -300 0.1 -400 0 0.5 1 1.5 2 2.5 3 3.5 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 5 10 15 20 1 25 30 35 1.5 2 2.5 3 -0.6 3.5 4 x 10 MAP connections (sparse) 0.8 0.6 0 0.5 model 0.6 -0.6 0 x 10 MAP connections (full) 0.8 0 4 model Friston et al. 2011, NeuroImage Model posterior 0.9 0 log-probability • empirical example: comparing all 32,768 variants of a 6-region model (under the constraint of reciprocal connections) Log-posterior 100 0 5 10 15 20 25 30 35 Overview • Bayesian model selection (BMS) • Neurocomputational models: Embedding computational models in DCMs • Integrating tractography and DCM Learning of dynamic audio-visual associations 1 Conditioning Stimulus CS1 Target Stimulus CS2 0.8 or p(face) or CS 0 Response TS 200 400 600 Time (ms) 800 0.6 0.4 0.2 2000 ± 650 0 0 200 400 600 trial den Ouden et al. 2010, J. Neurosci. 800 1000 Explaining RTs by different learning models Reaction times 1 True Bayes Vol HMM fixed HMM learn RW 450 0.8 430 p(F) RT (ms) 440 420 0.6 0.4 410 400 390 0.2 0.1 0.3 0.5 0.7 0.9 p(outcome) 0 400 0.7 • Rescorla-Wagner • Hidden Markov models (2 variants) 520 560 600 Bayesian model selection: 0.6 Exceedance prob. • hierarchical Bayesian learner 480 Trial 5 alternative learning models: • categorical probabilities 440 hierarchical Bayesian model performs best 0.5 0.4 0.3 0.2 0.1 0 Categorical model den Ouden et al. 2010, J. Neurosci. Bayesian learner HMM (fixed) HMM (learn) RescorlaWagner Hierarchical Bayesian learning model p k 1 k volatility vt-1 p v t 1 | v t , k ~ N v t , exp( k ) vt probabilistic association rt rt+1 observed events ut ut+1 p rt 1 | rt , v t ~ Dir rt , exp( v t ) 1 p red ictio n : p rt , v t , K u 1:t 1 rt 1 , v t 1 p v t v t 1 , K t p r t 1 u p d ate: p rt , v t , K u 1:t t t u 1:t 1 p u t rt d rt d v t d K Behrens et al. 2007, Nat. Neurosci. 0.6 0.4 p rt , v t , K u 1:t 1 p u t rt p r , v , K , v t 1 , K u 1:t 1 d rt 1 d v t 1 p(F) p r 0.8 0.2 0 400 440 480 520 Trial 560 600 Stimulus-independent prediction error Putamen Premotor cortex p < 0.05 (cluster-level wholebrain corrected) 0 -0.5 0 -0.5 -1 -1.5 -2 BOLD resp. (a.u.) BOLD resp. (a.u.) p < 0.05 (SVC) -1 -1.5 p(F) p(H) den Ouden et al. 2010, J. Neurosci . -2 p(F) p(H) Prediction error (PE) activity in the putamen PE during reinforcement learning O'Doherty et al. 2004, Science PE during incidental sensory learning den Ouden et al. 2009, Cerebral Cortex According to current learning theories (e.g., free energy principle): synaptic plasticity during learning = PE dependent changes in connectivity Plasticity of visuo-motor connections • Modulation of visuomotor connections by striatal prediction error activity Hierarchical Bayesian learning model PUT PMd • Influence of visual areas on premotor cortex: – stronger for surprising stimuli – weaker for expected stimuli den Ouden et al. 2010, J. Neurosci . p = 0.017 p = 0.010 PPA FFA Prediction error in PMd: cause or effect? Model 1 minus Model 2 5 4 Model 1 Model 2 log model evidence 3 2 1 0 -1 -2 -3 -4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 subject p(r >0.5 | y) = 0.991 1 5 model 2 model 1 p(r 1|y) 4 3 2 1 0 0 den Ouden et al. 2010, J. Neurosci . 0.2 0.4 0.6 r 1 0.8 1 Overview • Bayesian model selection (BMS) • Neurocomputational models: Embedding computational models in DCMs • Integrating tractography and DCM Diffusion-weighted imaging Parker & Alexander, 2005, Phil. Trans. B Probabilistic tractography: Kaden et al. 2007, NeuroImage • computes local fibre orientation density by spherical deconvolution of the diffusion-weighted signal • estimates the spatial probability distribution of connectivity from given seed regions • anatomical connectivity = proportion of fibre pathways originating in a specific source region that intersect a target region • If the area or volume of the source region approaches a point, this measure reduces to method by Behrens et al. (2003) 1.6 Integration of tractography and DCM 1.4 1.2 1 R1 R2 0.8 0.6 0.4 0.2 0 -2 -1 0 1 2 low probability of anatomical connection small prior variance of effective connectivity parameter 1.6 1.4 1.2 1 R1 R2 0.8 0.6 0.4 0.2 0 Stephan, Tittgemeyer et al. 2009, NeuroImage -2 -1 0 1 high probability of anatomical connection large prior variance of effective connectivity parameter 2 Proof of concept study probabilistic tractography FG 34 6.5% FG left FG FG right 24 43.6% 13 15.7% LG left LG LG 12 34.2% LG right anatomical connectivity DCM connectionspecific priors for coupling parameters 6.5% v 0.0384 2 1.8 1 5 .7 % 1.6 v 0 .1 0 7 0 1.4 1.2 1 0.8 0.6 34.2% 43.6% v 0.5268 v 0.7746 0.4 Stephan, Tittgemeyer et al. 2009, NeuroImage 0.2 0 -3 -2 -1 0 1 2 3 Connection-specific prior variance as a function of anatomical connection probability ij 0 m 1: a=-32,b=-32 m 2: a=-16,b=-32 m 3: a=-16,b=-28 m 4: a=-12,b=-32 m 5: a=-12,b=-28 m 6: a=-12,b=-24 m 7: a=-12,b=-20 m 8: a=-8,b=-32 m 9: a=-8,b=-28 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 10: a=-8,b=-24 m 11: a=-8,b=-20 m 12: a=-8,b=-16 m 13: a=-8,b=-12 m 14: a=-4,b=-32 m 15: a=-4,b=-28 m 16: a=-4,b=-24 m 17: a=-4,b=-20 m 18: a=-4,b=-16 1 1 1 1 1 1 1 1 1 1 0 exp( ij ) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 19: a=-4,b=-12 m 20: a=-4,b=-8 m 21: a=-4,b=-4 m 22: a=-4,b=0 m 23: a=-4,b=4 m 24: a=0,b=-32 m 25: a=0,b=-28 m 26: a=0,b=-24 m 27: a=0,b=-20 1 1 1 1 1 1 1 1 1 • 64 different mappings by systematic search across hyperparameters and 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 28: a=0,b=-16 m 29: a=0,b=-12 m 30: a=0,b=-8 m 31: a=0,b=-4 m 32: a=0,b=0 m 33: a=0,b=4 m 34: a=0,b=8 m 35: a=0,b=12 m 36: a=0,b=16 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 37: a=0,b=20 m 38: a=0,b=24 m 39: a=0,b=28 m 40: a=0,b=32 m 41: a=4,b=-32 m 42: a=4,b=0 m 43: a=4,b=4 m 44: a=4,b=8 m 45: a=4,b=12 1 1 1 1 1 1 1 1 1 0.5 • yields anatomically informed (intuitive and counterintuitive) and uninformed priors 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 46: a=4,b=16 m 47: a=4,b=20 m 48: a=4,b=24 m 49: a=4,b=28 m 50: a=4,b=32 m 51: a=8,b=12 m 52: a=8,b=16 m 53: a=8,b=20 m 54: a=8,b=24 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 55: a=8,b=28 m 56: a=8,b=32 m 57: a=12,b=20 m 58: a=12,b=24 m 59: a=12,b=28 m 60: a=12,b=32 m 61: a=16,b=28 m 62: a=16,b=32 m 63 & m 64 1 1 1 1 1 1 1 1 1 0 0 0.5 1 0 0 0.5 1 0 0 0.5 1 0 0 0.5 1 0 0 0.5 1 0 0 0.5 1 0 0 0.5 1 0 0.5 0 0.5 1 0 0 0.5 1 log group Bayes factor 600 400 200 log group Bayes factor 0 0 10 20 30 model 40 50 60 0 10 20 30 model 40 50 60 40 50 60 700 695 690 685 680 post. model prob. 0.6 0.5 0.4 0.3 Models with anatomically informed priors (of an intuitive form) 0.2 0.1 0 0 10 20 30 model m 1: a=-32,b=-32 m 2: a=-16,b=-32 m 3: a=-16,b=-28 m 4: a=-12,b=-32 m 5: a=-12,b=-28 m 6: a=-12,b=-24 m 7: a=-12,b=-20 m 8: a=-8,b=-32 m 9: a=-8,b=-28 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 10: a=-8,b=-24 m 11: a=-8,b=-20 m 12: a=-8,b=-16 m 13: a=-8,b=-12 m 14: a=-4,b=-32 m 15: a=-4,b=-28 m 16: a=-4,b=-24 m 17: a=-4,b=-20 m 18: a=-4,b=-16 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 19: a=-4,b=-12 m 20: a=-4,b=-8 m 21: a=-4,b=-4 m 22: a=-4,b=0 m 23: a=-4,b=4 m 24: a=0,b=-32 m 25: a=0,b=-28 m 26: a=0,b=-24 m 27: a=0,b=-20 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 28: a=0,b=-16 m 29: a=0,b=-12 m 30: a=0,b=-8 m 31: a=0,b=-4 m 32: a=0,b=0 m 33: a=0,b=4 m 34: a=0,b=8 m 35: a=0,b=12 m 36: a=0,b=16 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 37: a=0,b=20 m 38: a=0,b=24 m 39: a=0,b=28 m 40: a=0,b=32 m 41: a=4,b=-32 m 42: a=4,b=0 m 43: a=4,b=4 m 44: a=4,b=8 m 45: a=4,b=12 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 46: a=4,b=16 m 47: a=4,b=20 m 48: a=4,b=24 m 49: a=4,b=28 m 50: a=4,b=32 m 51: a=8,b=12 m 52: a=8,b=16 m 53: a=8,b=20 m 54: a=8,b=24 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 55: a=8,b=28 m 56: a=8,b=32 m 57: a=12,b=20 m 58: a=12,b=24 m 59: a=12,b=28 m 60: a=12,b=32 m 61: a=16,b=28 m 62: a=16,b=32 m 63 & m 64 1 1 1 1 1 1 1 1 1 0.5 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0 0.5 1 Models with anatomically informed priors (of an intuitive form) were clearly superior than anatomically uninformed ones: Bayes Factor >109 Methods papers: DCM for fMRI and BMS – part 1 • Chumbley JR, Friston KJ, Fearn T, Kiebel SJ (2007) A Metropolis-Hastings algorithm for dynamic causal models. Neuroimage 38:478-487. • Daunizeau J, Friston KJ, Kiebel SJ (2009) Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica, D 238, 2089–2118. • Daunizeau J, David, O, Stephan KE (2011) Dynamic Causal Modelling: A critical review of the biophysical and statistical foundations. NeuroImage, in press. • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273-1302. • Friston KJ, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W (2007) Variational free energy and the Laplace approximation. NeuroImage 34: 220-234. • Friston KJ, Stephan KE, Li B, Daunizeau J (2010) Generalised filtering. Mathematical Problems in Engineering 2010: 621670. • Friston KJ, Li B, Daunizeau J, Stephan KE (2011) Network discovery with DCM. NeuroImage 56: 1202-1221. • Friston KJ, Penny WD (2011) Post hoc model selection. NeuroImage, in press. • Kasess CH, Stephan KE, Weissenbacher A, Pezawas L, Moser E, Windischberger C (2010) Multi-Subject Analyses with Dynamic Causal Modeling. NeuroImage 49: 3065-3074. • Kiebel SJ, Kloppel S, Weiskopf N, Friston KJ (2007) Dynamic causal modeling: a generative model of slice timing in fMRI. NeuroImage 34:1487-1496. • Li B, Daunizeau J, Stephan KE, Penny WD, Friston KJ (2011). Stochastic DCM and generalised filtering. NeuroImage, in press. • Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: a two-state model. NeuroImage 39:269-278. Methods papers: DCM for fMRI and BMS – part 2 • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004a) Comparing dynamic causal models. NeuroImage 22:1157-1172. • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004b) Modelling functional integration: a comparison of structural equation and dynamic causal models. NeuroImage 23 Suppl 1:S264-274. • Penny WD, Stephan KE, Daunizeau J, Joao M, Friston K, Schofield T, Leff AP (2010) Comparing Families of Dynamic Causal Models. PLoS Computational Biology 6: e1000709. • Stephan KE, Harrison LM, Penny WD, Friston KJ (2004) Biophysical models of fMRI responses. Curr Opin Neurobiol 14:629-635. • Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38:387-401. • Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics: current state and future extensions. J Biosci 32:129-144. • Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38:387-401. • Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HE, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. NeuroImage 42:649-662. • Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009a) Bayesian model selection for group studies. NeuroImage 46:1004-1017. • Stephan KE, Tittgemeyer M, Knösche TR, Moran RJ, Friston KJ (2009b) Tractography-based priors for dynamic causal models. NeuroImage 47: 1628-1638. • Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten simple rules for Dynamic Causal Modelling. NeuroImage 49: 3099-3109. Thank you
© Copyright 2024 Paperzz