Neural population activity 0.4 0.3 0.2 u2 0.1 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0.6 0.4 u1 x3 0.2 0 0.3 0.2 0.1 0 x1 x2 3 fMRI signal change (%) 2 DCM: Advanced Topics 1 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 4 3 A dt dx m uB i i 1 n (i) x j 1 j D ( j) x Cu 2 1 0 -1 3 2 1 0 Rosalyn Moran SPM Course October 20th – 22nd 2011 Outline • Bayesian model selection (BMS) • Families of Models • Nonlinear DCM for fMRI • Stochastic DCM • Post-hoc selection of deterministic DCM • Integrating tractography and DCM Outline • Bayesian model selection (BMS) • Families of Models • Nonlinear DCM for fMRI • Stochastic DCM • Post-hoc selection of deterministic DCM • Integrating tractography and DCM Relative Log Model Evidence Bayesian Model Selection attention M1 stim Posterior Model Probability M1 M2 M3 M4 PPC V1 M3 attention stim V1 M2 M2 better than M1 BF 2966 F = 7.995 V5 PPC PPC attention stim V1 V5 M3 better than M2 BF 12 F = 2.450 V5 M4 attention PPC M4 better than M3 BF 23 F = 3.144 stim V1 V5 Bayes factors For a given dataset, to compare two models, we compare their evidences. positive value, [0;[ B12 p ( y | m1 ) p( y | m2 ) Kass & Raftery classification: B12 p(m1|y) Evidence 1 to 3 50-75% weak 3 to 20 75-95% positive 20 to 150 95-99% strong 150 99% Very strong or their log evidences ln( B12 ) F1 F 2 Kass & Raftery 1995, J. Am. Stat. Assoc. The negative free energy approximation log p(y | m) F log p ( y | m ) KL q , p | y , m KL F balance between fit and complexity = accuracy - complexity F = log p(y | q, m) q - KL éëq (q ), p (q | m)ùû Independent Priors Deviation of posterior mean from prior mean T 1 1 1 KLLaplace = ln Cq - ln Cq |y + (mq |y - mq ) Cq-1 (mq |y - mq ) 2 2 2 Dependent Posteriors Fixed effects BMS at group level Group Bayes factor (GBF) for 1...K subjects: ln GBF ij ln Fi n 1 .. k (n) ln F j (n) n 1 .. k Problems: -blind with regard to group heterogeneity -sensitive to outliers or (n) F (n) GBFij = Õ BFij = Õ i (n) n=1...k n=1...k Fj r mk ~ Mult(m;1, r) Generative Model: Select one of K models from a multinomial distribution and then generate data, under this model, for each of the N subjects y1 ~ p ( y1 | m 1 ) y1 ~ p ( y1 | m 1 ) y2 ~ p ( y2 | m2 ) y1 ~ p ( y1 | m 1 ) Fixed/Random effects BMS for group studies Generative Model: Select one of K models from a multinomial distribution and then generate data, under this model, for each of the N subjects r r ~ Dir ( r ; ) mk ~ Mult(m;1,r) Generative Model: Select a model for each subject by sampling from a multinomial distribution, and then generate data under that subject-specific model: mk ~ p (mk | p ) mk ~ p (mk | p ) m k ~m p~( mMult | p () m ;1, r ) k 1 y1 ~ p ( y1 | m 1 ) y1 ~ p ( y1 | m 1 ) y2 ~ p ( y2 | m2 ) y1 ~ p ( y1 | m 1 ) Stephan et al. 2009, NeuroImage y1 ~ p ( y1 | m 1 ) y1 ~ p ( y1 | m 1 ) y2 ~ p ( y2 | m2 ) y1 ~ p ( y1 | m 1 ) Random effects BMS for group studies Dirichlet parameters = “occurrences” of models in the population r ~ Dir ( r ; ) Dirichlet distribution of model probabilities mk ~ p (mk | p ) mk ~ p (mk | p ) mk ~ p (mk | p ) m 1 ~ Mult ( m ;1, r ) y1 ~ p ( y1 | m 1 ) y1 ~ p ( y1 | m 1 ) y2 ~ p ( y2 | m2 ) y1 ~ p ( y1 | m 1 ) Multinomial distribution of model labels Measured data y Model inversion by Variational Bayes (VB) estimate the parameters of the posterior Stephan et al. 2009, NeuroImage p (r | y, ) Reporting RXF for group studies r ~ Dir ( r ; ) The occurences in the population 1 ... k The expected likelihood: of obtaining the k-th model for any randomly selected member of the population rk mk ~ p (mk | p ) mk ~ p (mk | p ) mk ~ p (mk | p ) m 1 ~ Mult ( m ;1, r ) y1 ~ p ( y1 | m 1 ) y1 ~ p ( y1 | m 1 ) y2 ~ p ( y2 | m2 ) y1 ~ p ( y1 | m 1 ) q k ( 1 K ) The exceedance probability: belief that a model is more likely than another model (of the K tested) given the group data 1,2 p ( r1 0.5 | y , ) Eg: Task-driven lateralisation Does the word contain the letter A or not? letter decisions > spatial decisions • • • group analysis (random effects), n=16, p<0.05 corrected analysis with SPM2 Is the red letter left or right from the midline of the word? spatial decisions > letter decisions Stephan et al. 2003, Science Theories on inter-hemispheric integration during lateralised tasks Information transfer (for left-lateralised task) T|RVF + T|LVF LVF RVF Predictions: modulation by task conditional on visual field asymmetric connection strengths Ventral stream & letter decisions Stephan et al. 2007, J. Neurosci. Left MOG -38,-90,-4 Left FG -44,-52,-18 Right FG Right MOG 38,-52,-20 -38,-94,0 LD|LVF LD>SD, p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) p<0.01 uncorrected MOG left FG left FG right MOG right LD>SD masked incl. with RVF>LVF LD>SD masked incl. with LVF>RVF Left LG -12,-70,-6 LG left RVF stim. Left LG -14,-68,-2 LG right LVF stim. M1: Inter-hemispheric connections modulated by letter decision (LD) task conditional on visual field of stimulus presentation. Intra-hemispheric connections modulated by letter decision task alone. Ventral stream & letter decisions Stephan et al. 2007, J. Neurosci. Left MOG -38,-90,-4 Right FG Right MOG 38,-52,-20 -38,-94,0 Left FG -44,-52,-18 LD>SD, p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) p<0.01 uncorrected MOG left FG left FG right MOG right LD>SD masked incl. with RVF>LVF LD>SD masked incl. with LVF>RVF Left LG -12,-70,-6 LG left Left LG -14,-68,-2 LG right LD|LVF RVF stim. LVF stim. M2: Inter-hemispheric connections modulated by letter decision (LD) task alone. Intra-hemispheric connections modulated by letter decision task conditional on visual field of stimulus presentation. Winner! Fixed Effects LD m2 MOG FG LD|LVF MOG FG LD|RVF MOG LD|LVF RVF stim. LD Subjects -30 -25 -20 LD LG LVF stim. -15 LG RVF LD|RVF stim. m2 -35 MOG FG LD LG LG FG m1 LVF stim. m1 -10 -5 Log model evidence differences 0 5 Stephan et al. 2009, NeuroImage RFX p(r >0.5Analysis | y) = 0.997 1 5 4.5 4 m2 3.5 p ( r1 > 0.5 y) = 99.7% m1 p(r 1|y) 3 2.5 2 1.5 r1 84.3% r2 15.7% 0.5 0 0 1 11.8 2 2.2 1 0.1 0.2 0.3 0.4 0.5 r 0.6 1 0.7 0.8 0.9 1 Outline • Bayesian model selection (BMS) • Families of Models • Nonlinear DCM for fMRI • Stochastic DCM • Post-hoc selection of deterministic DCM • Integrating tractography and DCM Families of Models Dynamics of intelligible speech vs reversed speech, (Leff et al. 2008): “She came out of the house”/ ”esuoh eht fo tuo emac ehS” Posterior Superior Temporal Sulcus (P) Pars Orbitalis of Inferior Frontal Gyrus (F) Anterior Superior Temporal Sulcus (A) Where does the auditory driving input enter? Families of Models Family: f1 Partition Family: f2 Where does the driving input enter? Families of Models f1 f2 RFX: FFX: ln p( fk y) = åF m mÎ fk lnGBFf1 f2 = å ln p( f1 y) - å ln p( f2 y) i=1:N i=1:N r ~ Dir(a1,....a k ) Dir(åai , å ai ) iÎ f1 iÎ f2 p( fk y1... N ) = å mÎ f rm Parameters of a family e.g. Modulatory connections Winning Family: f1 * * BMA: weight posterior parameter densities with model probabilities p(q n Y, m Î fk ) = å q(q mÎ fk n yn , m)p(mn Y ) Penny et al., 2010 Outline • Bayesian model selection (BMS) • Families of Models • Nonlinear DCM for fMRI • Stochastic DCM • Post-hoc selection of deterministic DCM • Integrating tractography and DCM y y BOLD y activity x2(t) hemodynamic model λ activity x3(t) activity x1(t) neuronal states x integration modulatory input u2(t) driving input u1(t) y t Neural state equation x ( A u A intrinsic connectivity t modulation of connectivity direct inputs Stephan & Friston (2007), Handbook of Brain Connectivity B j B ( j) C ( j) ) x Cu x x x u j x x u bilinear DCM non-linear DCM modulation driving input driving input modulation Two-dimensional Taylor series (around x0=0, u0=0): f x f ( x , u ) f ( x 0 ,0 ) x u ux ... 2 ... dt x u xu x 2 dx Bilinear state equation: m (i) A u i B x Cu dt i 1 dx f f A C f 2 2 2 D B Nonlinear state equation: A dt dx m uB i i 1 n (i) x j 1 j D ( j) x Cu Neural population activity 0.4 0.3 0.2 u2 0.1 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0.6 u1 0.4 x3 0.2 0 0.3 0.2 0.1 0 x1 x2 3 fMRI signal change (%) 2 1 0 Nonlinear dynamic causal model (DCM): m n (i) ( j) A u i B x j D x Cu dt i 1 j 1 dx 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 4 3 2 1 0 -1 3 2 1 Stephan et al. 2008, NeuroImage 0 attention modulation of back- M1 PPC ward or forward connection? stim additional driving effect of attention on PPC? M3 stim M2 M2 better than M1 BF = 2966 V1 attention PPC Stephan et al. 2008, NeuroImage V1 V5 BF = 12 M3 better than M2 V1 V5 M4 attention bilinear or nonlinear modulation of forward connection? attention stim V5 PPC PPC BF = 23 M4 better than M3 stim V1 V5 Outline • Bayesian model selection (BMS) • Families of Models • Nonlinear DCM for fMRI • Stochastic DCM • Post-hoc selection of deterministic DCM • Integrating tractography and DCM Stochastic DCMs Uncertainty was previously assumed at only the point of observation Stochastic DCMs accommodate random fluctuations in hidden states and physiological states i.e. endogenous dynamics not explained by experimental perturbation The DCM now comprises a generative model of random differential equations (cf ω): x ( A u k B (k ) ) x Cv (x) k v u { ~ ~ N ( 0 , V ( ) ( e )) (v) Log-Precision hyperparameter Smoothness hyperparameter Three quantities must now be inferred: Parameters {A,B,C}, Hyperparameters {σ,π},And the states themselves {x,v,h} Inversion: Generalised filtering (under the Laplace assumption) (outperforms DEM which depends on conditional independence between quantities) Li et al. 2011 Stochastic DCMs x ( A u k B (k ) ) x Cv (x) k v u (v) A new dimension: Hidden causes ~an estimate of afferent neuronal activity elicited by experimental input activity x2(t) activity x3(t) activity x1(t) driving neuronal states input u1(t) modulatory t input u2(t) t Li et al. 2011 Outline • Bayesian model selection (BMS) • Families of Models • Nonlinear DCM for fMRI • Stochastic DCM • Post-hoc selection of deterministic DCM • Integrating tractography and DCM Connection Combinatorics 18 possible “A” connections…. >2.6 million models MOG left RVF stim. FG left FG right LG left LG right MOG right LVF stim. Overcoming Connection Combinatorics Post-hoc evidence approach (Friston & Penny, 2001): Post-hoc estimation of model evidence and parameters for any nested model within a larger model is possible through a function of the posterior density of the full model and priors of the reduced model Assumption: existence of full model, mF which shares likelihood with reduced models mi, ∨i: mi Ì mF p(y q, mi ) = p(y q , mF ) Overcoming Connection Combinatorics Post-hoc evidence approach (Friston & Penny, 2001): Post-hoc estimation of model evidence and parameters for any nested model within a larger model is possible through a function of the posterior density of the full model and priors of the reduced model Assumption: existence of full model, mF which shares likelihood with reduced models mi, ∨i: mi Ì mF (identical observation noise) p(y q, mi ) = p(y q , mF ) p( y mi ) p( y mF ) p ( y , m F ) p ( m i ) p ( y , m i ) p ( m F ) Post-hoc Evidence Given the Laplace assumption Log Model Evidence for any reduced model is an analytic function of means and precisions of full & reduced model prior and posteriors Means and precisions of reduced model posteriors available through simple algebra Post-hoc Evidence p( y mi ) p( y mF ) p ( y , m F ) p ( m i ) p ( y , m i ) p ( m F ) Generalization of Savage-Dickey Density Ratio (Dickey, 1971) p ( y , m i ) p( y mi ) d p( y mF ) p( y mi ) p( y mF ) p ( y , m F ) p ( y , m F ) p ( m i ) p ( m F ) p ( m i ) p ( m F ) d d d u c (u)Unique to full (c) Common to both Delta point parameters on reduced p ( m i ) u p ( , y , m F ) p ( c u u p ( m i ) y, m F ) u p ( p ( u p ( u y, m F ) p ( m F ) 0 y, m F ) u 0 mF ) u d u p ( m F ) u d d u c Post-hoc Evidence p ( u p ( 0 y, m F ) u 0 mF ) Outline • Bayesian model selection (BMS) • Families of Models • Nonlinear DCM for fMRI • Stochastic DCM • Post-hoc selection of deterministic DCM • Integrating tractography and DCM Diffusion-tensor imaging Sporns, Scholarpedia Parker & Alexander, 2005, Phil. Trans. B Probabilistic tractography: Kaden et al. 2007, NeuroImage • computes local fibre orientation density by deconvolution of the diffusion-weighted signal • estimates the spatial probability distribution of connectivity from given seed regions • anatomical connectivity = proportion of fibre pathways originating in a specific source region that intersect a target region • Asymmetry in metric accounted for by taking average of seed and target regions when interchanged 1.6 Integration of tractography and DCM 1.4 1.2 1 R1 R2 0.8 0.6 0.4 0.2 0 -2 -1 0 1 2 1 2 low probability of anatomical connection small prior variance of effective connectivity parameter 1.6 1.4 1.2 1 R1 R2 0.8 0.6 0.4 0.2 0 Stephan, Tittgemeyer et al. 2009, NeuroImage -2 -1 0 high probability of anatomical connection large prior variance of effective connectivity parameter LD|LVF FG (x3) probabilistic tractography FG (x4) LD LD LG (x1) DCM structure φ34 = 6.5% FG left φ24 = 43.6% φ13 = 15.7% LG LG right left φ12 = 34.2% LG (x2) anatomical connectivity LD|RVF RVF stim. BVF stim. FG right LVF stim. φ34 = 6.5% 6.5% v 0.0384 2 1.8 15.7% 1.6 Hypothesised connection-specific priors for coupling parameters v 0.1070 1.4 1.2 1 0.8 Stephan, Tittgemeyer et al. 2009, NeuroImage 0.6 φ34 = 43.6% 34.2% 43.6% v 0.5268 v 0.7746 0.4 0.2 0 -3 -2 -1 0 1 2 3 Connection-specific prior variance as a function of anatomical connection probability ij 0 1 0 exp( ij ) m1: a=-32,b=-32 m2: a=-16,b=-32 m3: a=-16,b=-28 m4: a=-12,b=-32 m5: a=-12,b=-28 m6: a=-12,b=-24 m7: a=-12,b=-20 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 m10: a=-8,b=-24 0 0.5 1 m11: a=-8,b=-20 0 0.5 1 m12: a=-8,b=-16 0 0.5 1 m13: a=-8,b=-12 0 0.5 1 m14: a=-4,b=-32 0 0.5 1 m15: a=-4,b=-28 0 0.5 1 m16: a=-4,b=-24 0 0.5 1 m17: a=-4,b=-20 0 0.5 1 m18: a=-4,b=-16 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0.5 0 0.5 1 m19: a=-4,b=-12 1 • 64 different mappings by systematic search across hyperparameters and 0.5 0.5 0 0 0 0.5 1 m29: a=0,b=-12 1 0.5 0.5 0 0 0.5 0 0 1 0.5 1 0 0.5 m56: a=8,b=32 1 0 1 0.5 0 0 0 0.5 1 0.5 1 0.5 1 0 m58: a=12,b=24 0 0.5 1 0.5 1 0 0.5 0.5 1 1 0.5 0.5 0.5 0 0 1 0 1 0 0.5 0 0.5 1 0 m62: a=16,b=32 1 1 0.5 0 1 0.5 m63 & m64 1 0.5 1 0 0 0.5 0 0.5 m54: a=8,b=24 1 0.5 1 0 1 1 0 1 0.5 0.5 1 0.5 0 0 0 m53: a=8,b=20 m61: a=16,b=28 0 0.5 1 0.5 1 1 0 0.5 m52: a=8,b=16 0.5 0 0.5 1 m45: a=4,b=12 1 0 0.5 0 0 0.5 1 m44: a=4,b=8 1 m60: a=12,b=32 0 0 1 1 0 1 0.5 m43: a=4,b=4 0.5 1 0.5 0 0 0.5 0 0 0 m59: a=12,b=28 0.5 0.5 1 0.5 1 0.5 1 0 m57: a=12,b=20 0.5 0 0.5 0 0 0.5 1 m36: a=0,b=16 0.5 m51: a=8,b=12 0.5 0 0.5 0 0 0.5 1 m35: a=0,b=12 1 0 1 1 1 1 0.5 0.5 1 m42: a=4,b=0 0.5 0 0.5 0 0 1 0.5 1 1 m50: a=4,b=32 1 0 0.5 0.5 m34: a=0,b=8 0 0 1 0 1 m41: a=4,b=-32 m49: a=4,b=28 1 0 0.5 1 0.5 1 1 0 m33: a=0,b=4 0 0 0.5 0 0.5 1 m27: a=0,b=-20 1 0 0 1 1 0.5 0 0.5 1 m55: a=8,b=28 1 0.5 1 0.5 m48: a=4,b=24 0 0.5 0 0 0.5 0 1 1 0.5 0.5 0 m9: a=-8,b=-28 0 0.5 1 m26: a=0,b=-24 1 0 0.5 0 0 0.5 1 m25: a=0,b=-28 0.5 m32: a=0,b=0 0.5 m47: a=4,b=20 1 1 m40: a=0,b=32 0 0 0.5 1 1 1 1 1 0.5 0.5 0 0.5 0.5 m31: a=0,b=-4 m39: a=0,b=28 0 m24: a=0,b=-32 0 1 0.5 1 0.5 0 0.5 0.5 1 0.5 0 0 0 m23: a=-4,b=4 1 1 1 0 0.5 0 m38: a=0,b=24 1 1 0 0.5 0.5 0.5 1 1 0 0 0 m22: a=-4,b=0 m30: a=0,b=-8 0 0 0.5 1 m37: a=0,b=20 1 0.5 0 1 0.5 1 0.5 0 0.5 1 m28: a=0,b=-16 0 0 m21: a=-4,b=-4 1 m46: a=4,b=16 • yields anatomically informed (intuitive and counterintuitive) and uninformed priors 0 0 0.5 1 m20: a=-4,b=-8 m8: a=-8,b=-32 0 0 0.5 1 0 0.5 1 log group Bayes factor 600 400 200 log group Bayes factor 0 0 10 20 30 model 40 50 60 0 10 20 30 model 40 50 60 10 20 30 model 40 50 60 700 695 690 685 680 post. model prob. 0.6 0.5 0.4 0.3 0.2 0.1 0 0 m1: a=-32,b=-32m2: a=-16,b=-32m3: a=-16,b=-28m4: a=-12,b=-32m5: a=-12,b=-28m6: a=-12,b=-24m7: a=-12,b=-20 m8: a=-8,b=-32 m9: a=-8,b=-28 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m10: a=-8,b=-24m11: a=-8,b=-20m12: a=-8,b=-16m13: a=-8,b=-12m14: a=-4,b=-32m15: a=-4,b=-28m16: a=-4,b=-24m17: a=-4,b=-20m18: a=-4,b=-16 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m19: a=-4,b=-12 m20: a=-4,b=-8 m21: a=-4,b=-4 m22: a=-4,b=0 1 1 1 1 0.5 0.5 0.5 0.5 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 m28: a=0,b=-16 m29: a=0,b=-12 m30: a=0,b=-8 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m23: a=-4,b=4 m24: a=0,b=-32 m25: a=0,b=-28 m26: a=0,b=-24 m27: a=0,b=-20 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m31: a=0,b=-4 m32: a=0,b=0 m33: a=0,b=4 m34: a=0,b=8 m35: a=0,b=12 m36: a=0,b=16 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m37: a=0,b=20 m38: a=0,b=24 m39: a=0,b=28 m40: a=0,b=32 m41: a=4,b=-32 m42: a=4,b=0 m43: a=4,b=4 m44: a=4,b=8 m45: a=4,b=12 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m46: a=4,b=16 m47: a=4,b=20 m48: a=4,b=24 m49: a=4,b=28 m50: a=4,b=32 m51: a=8,b=12 m52: a=8,b=16 m53: a=8,b=20 m54: a=8,b=24 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m55: a=8,b=28 m56: a=8,b=32 m57: a=12,b=20 m58: a=12,b=24m59: a=12,b=28 m60: a=12,b=32 m61: a=16,b=28m62: a=16,b=32 m63 & m64 1 1 1 1 1 1 1 1 1 0.5 0.5 0 0.5 0 0 0.5 1 0.5 0 0 0.5 1 0.5 0 0 0.5 Stephan, Tittgemeyer et al. 2009, NeuroImage 1 0.5 0 0 0.5 1 0.5 0 0 0.5 1 0.5 0 0 0.5 1 0.5 0 0 0.5 1 0 0 0.5 1 0 0.5 1 Thank You With thanks to the FIL Methods Group for slides and images In particular Klaas Stephan, Maria Joao and Will Penny
© Copyright 2025 Paperzz