WORKING FOR EXAM QUESTIONS FOR ALGEBRA 2 VI·SA 2 1. Let f (x) = x4 + 3x3 + 2x2 + 2 and g(x) = 1 + 2x + x2 2 Z5 [x] : a. Find ( f + g) (x) b. Find( f g) (x) polynomial. c. Find the roots of f (x) d. Find the roots of g (x) e. Find q (x) ; r (x) 2 Z5 [x] such that f (x) = q (x) g(x)+r (x) ; where either r (x) = 0 or 0 deg (r (x)) < deg (g(x)) 2. In Z8 [x] ; prove the followings. a. Find the all units of Z8 [x] : b.Show that 1 + 2x is a unit in the ring Z8 [x] : c.Show that 4x2 + 2x2 + 4 is a zero divisor d.Show that 2x is nilpotent 3. For the following statements, write the proof if the statement is true; otherwise, give a counterexample. i: If a polynomial ring R [x] has zero divisor, so does R: ii: If R is a …eld, then R [x] is a …eld. 7 iii:In Z7 [x] ; x + 1 = x7 + 1: iv: Z is a Euclidean Domain v: Q is a Euclidean Domain v{: Z [x] is a Euclidean Domain v{{: Q [x] is a Euclidean Domain v{{{: Every Euclidean Domain is Principal ideal domain x{: In integral domain, irreducible element is prime element x: Z is a principal ideal domain x{: Z [i] is a Euclidean domain x{{: 13 is an irreducible element in Z [i] x{{{:In Z12 ; every prime element is an irreducible element p 4. Find all units of the integral domain Z i 3 1 5. In Z7 [x] ; prove the followings. i: Find the all units of Z7 [x] : ii:Find all the associates of 2 + x2 in Z7 [x] : 6. Find all the associates of followings i: Find all the associates of 3 2ipin Z [i] p ii: Find all the associates of 1 + i 5 in Z i 5 iii.Find all the associates of 6 in Z10 iv.Find all the associates of 2 + xpin Z3 [x] p v: Find all the associates of 7 + 2 3 in Z 3 : v{: Find all the associates of 2 + x 3x2 Z [x] : 7. Show that 4 and 6 are associates in Z10 8. Let n be a a square free integer(an integer di¤erent from 0 and 1,which is not divisible by the square of any integer.) Let p p Z n = a + b n; a; b 2 Z p We know that Z [ n] is an integral domain. De…ne a function by p N : Z n n f0g ! Z+ [ f0g p p p a + b n 7! a + b n a b n = a2 nb2 p i: Let x 2 Z [ n] :Prove that N (x) = 0 () x = 0 p ii:Prove that Np(xy) = N (x) N (y) for all x; y 2 Z [ n] p iii: Let x 2 Z [ n] :Prove that N (x) = 1 () x is a unit in Z [ n] p Uygulamada benzer soruyu N (x) = p,(primeinteger) () xis an irreducible in Z [ n] ¸seklinde yapm¬¸st¬k. 2 9. Show that 2 i; 1 + i and 11 are irreducible elements inpZ [i] : Hint : N (x) = p,(primeinteger)() xis an irreducible in Z [ n] 10. In the domain Z [i] ; prove the following i) Find the gcd (2 7i; 2 + 11i) ii) Find x and y in Z [i] such that gcd (2 7i; 2 + 11i) = x (2 7i)+y (2 + 11i) : p p 11.Show that in the integral domain Z i 5 ; 2 + i 5 is an irreducible element, but not a prime element. 12. In Z12 ; a. Is 3 a prime element? b. Is 3 an irreducible element? p 13.Show that 3 is not prime element in Z i 5 : 14. .a.Is the polynomial x3 + x2 + 1 irreducible in Z2 [x]? b:Is the polynomial x2 + 1 irreducible in Z2 [x]? c:Is the polynomial x3 + x2 + 1 irreducible in Z3 [x]? d:.Is the polynomial x2 + 1 irreducible in Z3 [x]? 15. In Z [i], show that 3 is a prime element, but 5 is not a prime element. 1 BAZI TAVS· IYELER Ders notuna çok iyi çal¬¸ s¬p öncelikle dersle ilgili tan¬m ve kavramlar¬ iyice ö¼ grenin. Baz¬önemli teoremlerin ispat¬n¬bilin. Hem tan¬mlarda hem teoremlerdeki Ayk¬r¬ örnekleri muhakkak bilin. Uygulamada ve derste yap¬lan örnekleri çözüp iyi anlay¬n. Verilen ödevleri çözün iyi kavray¬n En son olarakta çal¬¸ sma sorular¬n¬yap¬n. Lütfen son gece çal¬¸ smay¬n, yeti¸ stiremezsiniz en az¬ndan 2 veya 3 gün öncesinden ba¸ slay¬n. S¬navda BA¸ SARILAR... 3 4
© Copyright 2024 Paperzz