20.10.2014 Bölüm 1: Karar Destek Sistemleri-Genel Kavramlar Bölüm 2: CBS Tabanlı Çok Ölçütlü Karar Analizi Bölüm 3: Karmaşık Problemler için Analitik Hiyerarşi Yönteminin Kullanılması Karar Destek Sistemleri Yrd. Doç. Dr. Derya ÖZTÜRK Ondokuz Mayıs Üniv. Harita Müh. Böl. Karar Verme Bölüm 1: Karar Destek Sistemleri-Genel Kavramlar Karar verme, karar vericinin/karar vericilerin mevcut tüm seçenekler arasından amaca/amaçlara en uygun bir veya birkaç seçeneği seçmesi olarak tanımlanır 1 20.10.2014 Karar Verme Süreci Problemin Tanımı Karar Analizi Hedeflerin Belirlenmesi Potansiyel Karar Alternatifleri Karar analizi, karmaşık karar problemlerinin matematiksel modelinin ortaya konularak, sistematik işlemler ve istatistiksel irdelemelerle çözümlenmesi olarak tanımlanabilir Değerlendirme Sonuç Seçim(Karar) Uygulama Karar Destek Sistemleri (KDS) Karar Destek Sistemleri (KDS), kullanıcıya yarıyapısal ve yapısal olmayan karar verme işlemlerinde destek sağlamak amacıyla, karar modellerine ve verilere kolay erişim sağlayan etkileşimli bir sistemdir Yapısal olmayan sorunlar standart modellerle çözülemezler. Böyle sorunlar için bir karar destek sistemi kullanmak gerekir. KDS, daha çok karar verme işinin yapısal olmayan şekliyle ilgilidir KDS’nin Yararları Veri kaynaklarının daha iyi kullanılması Anında analiz yeteneği Beklenmedik durumlarda hızlı cevap Daha iyi kararlar alma Daha etkin takım çalışması Maliyeti düşürme Zaman tasarrufu Yeni anlayışlar ve öğrenme Gelişmiş haberleşme 2 20.10.2014 Mekansal Karar Problemleri Karar verilecek konu ile ilgili bazı ölçütler harita ya da coğrafi veritabanı bileşeni ise problem “mekansal karar problemi”dir CBS ve Karar Verme CBS ile veriler analiz edilebilir ve modellenebilir Fakat İNSAN karar verir CBS bir karar destek sistemi midir ? CBS karar verme sürecinin bir parçası olarak nasıl kullanılabilir ? Mekansal Karar Problemlerin Karakteristik Özellikleri Çok sayıda alternatif söz konusu olabilir Bazı ölçütler kalitatif, bazıları ise kantitatif olabilir Birden daha fazla sayıda karar vericinin sürece katılımı söz konusu olabilir Mekansal Karar Destek Sistemleri (M-KDS) Mekânsal Karar Destek Sistemleri, çok kaynaklı mekânsal veri ve onun analiz sonuçlarına dayalı mekânsal ilişkili problemlerin çözümüne yardımcı sistemlerdir 3 20.10.2014 M-KDS’nin Özellikleri Mekânsal Karar Destek Sistemleri, Coğrafi Bilgi Sistemleri ile Karar Destek Sistemlerinin entegrasyonu olarak değerlendirilebilir M-KDS’nin Bileşenleri Coğrafi Veritabanı Karar vermeye-geleceği planlamaya yöneliktir Yarı-yapısal ya da yapısal olmayan kararlarda kullanılır Karar vericinin yerine geçmekten çok ona karar verme aşamasında yardımcı olacak bilgiyi sunar Karar verme işleminin tüm aşamalarını destekler Kullanıcının kontrolü altındadır, gerektiğinde müdahale edilebilir (Değişen şartlara uyum sağlayabilecek esnekliktedir) Stratejik ve taktiksel kararlar alınırken kullanılabilir M-KDS’nin İşlevleri Karar vericilerin sistemle tam etkileşimli çalışabilmeleri için kullanım kolaylığı olmalıdır Verilere erişim imkanı olmalıdır Farklı türlerde analiz ve modellere olanak vermelidir Model Tabanı Veritabanı Yönetimi Model Yönetimi Diyalog Yönetimi Kullanıcı 4 20.10.2014 M-KDS’nin Gelişimi M-KDS’nin Analitik Fonksiyonları M-KDS’nin Analitik Fonksiyonları CBS verilerin analizinde kullanılır Bir CBS tabanlı mekansal karar destek sisteminin temel analitik fonksiyonları Sorgulama (Query) Yakınlık/Tampon Analizi (Proximity/Buffer) Çakıştırma/Bindirme Analizi (Overlay) Komşuluk Analizi (Neighborhood Ağ/Bağlantı Analizi (Network or Connectivity Analysis) Modelleme ve Simülasyon Coğrafi veri analizi sırasında genellikle bu fonksiyonların çeşitli kombinasyonları kullanılır CBS verilerin anlaşılabilir bir formda entegrasyonunu ve görselleştirilmesini sağlayarak karar verme sürecine yardımcı olur Çok Ölçütlü Karar Destek Sistemi Çok ölçütlü karar problemlerinin yapılandırılmasına ve çözümüne yardımcı olmak üzere tasarlanan karar destek sistemlerine Çok Ölçütlü Karar Destek Sistemi (ÇÖKDS) adı verilir ve bu yapı temelde Çok Ölçütlü Karar Analizi (ÇÖKA) ve Karar Destek Sistemlerinin (KDS) entegrasyonundan oluşur 5 20.10.2014 ÇÖKA-MKDS ÇÖKA-MKDS Uzman Sistem Coğrafi Veri Yönetimi ve Analiz Toolbox’ı Bölüm 2: CBS Tabanlı Çok Ölçütlü Karar Analizi ÇÖKA Toolbox Kullanıcı Arayüzü Kullanıcı CBS Tabanlı Çok Ölçütlü Karar Analizinde (C-ÇÖKA) İşlem Adımları Ölçüt katmanlarının normalleştirilmesi Ölçüt ağırlıklarının belirlenmesi ÇÖKA yöntemlerinin uygulanması Ölçüt Katmanlarının Normalleştirilmesi Çok sayıda ölçütle karar verme problemlerinde değerlendirme ölçütleri CBS katmanları şeklinde hazırlanır Mekansal karar analizinde kullanılan ölçütler genelde farklı sayısal aralıklarda ve ölçü birimlerinde (örneğin bir analizde, yükseklik 0–850 m, eğim % 3–45 olabilir) değerler taşımaktadır. Bütün ölçütlerin bir arada işleme konulabilmesi ve karşılaştırılabilmesi için standart bir sayı aralığında normalleştirilmeleri gerekir Bu amaçla en çok kullanılan yöntem Doğrusal Ölçek Dönüşümü’dür 6 20.10.2014 Doğrusal Ölçek Dönüşümü En Büyük Değere Göre Doğrusal Ölçek Dönüşümü Çok sayıda doğrusal ölçek dönüşümü bulunmaktadır ancak en çok kullanılanları: En Büyük Değere Göre Doğrusal Ölçek Dönüşümü En Büyük ve En Küçük Değer Aralığına Göre Doğrusal Ölçek Dönüşümü x'ij: i. seçeneğin j. ölçüt için normalleştirilmiş değeridir. Normalleştirilmiş değerler 0-1 aralığında yer alır. En Büyük ve En Küçük Değere Aralığına Göre Doğrusal Ölçek Dönüşümü x'ij: i. seçeneğin j. ölçüt için normalleştirilmiş değeridir. Normalleştirilmiş değerler 0-1 aralığında yer alır. Ölçüt Ağırlıklarının Belirlenmesi Ölçütler karar vericiler için farklı ağırlıklarda olabilir. Bu nedenle ölçütlerin bağıl önemi hakkında bilgilerin elde edilmesi gerekmektedir Ölçüt ağırlıkları, karar vericilerin tercihlerine göre oluşturulur Ağırlık verme işlemi, genelde her bir ölçüte diğer ölçütlere göre bağıl önemini gösteren bir ağırlığın atanmasıyla gerçekleştirilir Ağırlıklar, toplamı 1 olacak şekilde normalleştirilir 7 20.10.2014 Sıralama Yöntemi Ölçüt ağırlıklarının belirlenmesinde en yaygın kullanılan yöntemler: Sıralama Puanlama İkili Karşılaştırma Puanlama Yöntemi Puanlama yönteminde, karar vericilerin belirli bir sayısal aralıkta ölçütleri puanlandırması gerekir. Örneğin; 0–100 ya da 0–20 aralığında değerler kullanılabilir. Her ölçüte verilmiş olan puan, bütün ölçütlerin puan toplamına bölünür İkili Karşılaştırma Yöntemi İkili Karşılaştırma yöntemi, Saaty tarafından 1980 yılında geliştirilmiştir ve ÇÖKA yöntemlerinden biri olan Analitik Hiyerarşi işleminde kullanılmaktadır 8 20.10.2014 İkili Karşılaştırma-Tercih Ölçeği İkili karşılaştırma terimi iki faktörün birbiriyle karşılaştırılması anlamına gelir ve karşılaştırmalar matrisler şeklinde düzenlenir Yöntem n adet ölçüt için n(n-1)/2 adet karşılaştırmadan oluşur İkili Karşılaştırmaların Tutarlılığı İkili karşılaştırma yargılarının tutarlılığını ölçmek için Saaty tarafından önerilen bir tutarlılık oranı kullanılmaktadır Bu oran için Saaty tarafından önerilen üst limit 0.10’dur İkili karşılaştırma yargılarının oluşturulmasında, başka bir ifade ile karar verici tarafından bir ölçütün bir diğer ölçüte göre ne kadar önemli olduğuna karar verilmesi için Saaty tarafından önerilen (1-9) puanlı tercih ölçeğinden yararlanılmaktadır Yargılar için hesaplanan tutarlılık oranı 0.10’un altında ise yargıların yeterli bir tutarlılık sergilediği ve değerlendirmenin devam edebileceği kabul edilmektedir Eğer tutarlılık oranı 0.10’un üstünde ise yargılar tutarsız kabul edilmektedir ve bu durumda yargıların kalitesinin iyileştirilmesi gerekir Tutarlılık oranı yargıların yeniden gözden geçirilmesiyle düşürülebilir. Ancak bu işlemde de başarısız olunursa, problemin daha doğru bir biçimde tekrar kurulması ve sürecin en baştan ele alınması gerekir 9 20.10.2014 Tutarlılık oranının belirlenmesi için, ağırlıklı toplam vektör belirlenir ve buna göre tutarlılık vektörü hesaplanır Tutarlılık vektörü hesaplandıktan sonra λ ve tutarlılık indeksi (CI) hesaplanır λ, tutarlılık vektörünün ortalama değeridir Tutarlılık indeksinin karşılaştırılan ölçüt sayısına bağlı olarak değişen tesadüfilik göstergesine (RI) bölünmesiyle tutarlılık oranı (CR) hesaplanır ÇÖKA Yöntemlerinin Uygulanması Basit Ağırlıklı Toplam Yöntemi Basit Ağırlıklı Toplam Yöntemi Ağırlıklı Çarpım Yöntemi TOPSIS Yöntemi Analitik Hiyerarşi Yöntemi 10 20.10.2014 Ağırlıklı Çarpım Yöntemi TOPSIS Yöntemi Seçenekler bir ideal noktadan ayrılışlarına göre sıralanır nokta; en çok istenen, ağırlıklı, varsayımsal seçenek olarak tanımlanır İdeal İdeal noktaya en yakın seçenek, en iyi seçenektir. Bu ayrım metrik uzaklık ile ölçülür Pozitif ideal nokta, ağırlıklandırılmış değerlerin en büyüğü; negatif ideal nokta, ağırlıklandırılmış değerlerin en küçüğüdür Analitik Hiyerarşi Yöntemi 11 20.10.2014 OWA Yöntemi (Sıralı Ağırlıklı Ortalama) Alıştırma Problemin incelendiği alanın küçük bir kesitine ait ölçüt katmanlarının aşağıdaki gibi olduğunu düşünelim (Ölçüt katmanların tümü aynı piksel boyutunda raster veri olmalıdır) Bir (x amaçlı) yer seçimi problemei için eğim, yükseklik, arazi kullanım kabiliyeti ve jeolojik durumun dikkate alınacağını düşünelim Ölçüt Katmanlarının Normalleştirilmesi “En Büyük Değere Göre Doğrusal Ölçek Dönüşümü” veya “En Büyük ve En Küçük Değer Aralığına Göre Doğrusal Ölçek Dönüşümü” kullanılabilir En yüksek değer yine en yüksek olacak şekilde normalleştirmek için ve en düşük değer en yüksek olacak şekilde normalleştirmek için bağıntıların farklı formlarının kullanılması gerektiği unutulmamalıdır 12 20.10.2014 Bir problemin çözümünde ölçütlerin tamamı için “en yüksek değer yine en yüksek olacak şekilde” veya yine tamamı için “en düşük değer en yüksek olacak şekilde” normalleştirme gerekebileceği gibi ölçütlerin bir kısmının “en yüksek değer yine en yüksek olacak şekilde”, diğer kısmının ise “en düşük değer en yüksek olacak şekilde” normalleştirilmesi gerekebilir ! Bu tamamen probleme bağlıdır En Büyük Değere Göre Doğrusal Ölçek Dönüşümü En Büyük Değere Göre Doğrusal Ölçek Dönüşümü En Büyük ve En Küçük Değere Göre Doğrusal Ölçek Dönüşümü 13 20.10.2014 En Büyük ve En Küçük Değere Göre Doğrusal Ölçek Dönüşümü Ölçüt Ağırlıklarının Belirlenmesi Örneğimizdeki ölçütler: 1. Ölçüt: Eğim 2. Ölçüt: Yükseklik 3. Ölçüt: Arazi Kullanım Kabiliyeti 4. Ölçüt: Jeolojik Durum a. Sıralama Yöntemi Sıralama yönteminde ölçütler önemine göre sıralanarak işlem yapılır b. Puanlama Yöntemi Bu problemde en önemli ölçütün jeolojik durum, 2. sırada önemli ölçütün eğim, 3. sırada önemli ölçütün yükseklik ve 4. sırada ve en az öneme sahip ölçütün arazi kullanım kabiliyeti olduğunu varsayarsak; 14 20.10.2014 c. İkili Karşılaştırma Yöntemi 15 20.10.2014 Basit Ağırlıklı Toplam Yöntemi ÇÖKA Yöntemlerinin Uygulanması Ağırlıklı Çarpım Yöntemi 16 20.10.2014 TOPSIS Yöntemi Her bir normalleştirilmiş katman ağırlıklarıyla çarpılır Ağırlıkla çarpılmış normalleştirilmiş katmanda minimum ve maksimum değere göre matrisler oluşturulur (örneğin ağırlıkla çarpılmış normalleştirilmiş eğim katmanında en küçük değer = 0.03, en büyük değer = 0.31’dir.) Ağırlıkla çarpılmış normalleştirilmiş katmandan minimum ve maksimum değerler çıkarılır ve bunların kareleri alınır 17 20.10.2014 Daha sonra minimumdan ve maksimumdan gelen sonuç değerler kendi aralarında toplanır. 18 20.10.2014 Karekökler alınır ve bu değerler toplanır. Son olarak, minimumlardan gelen katman (sarı işaretli), bu toplam değere bölünür (Örneğin: 0.4899/0.5099=0.96) Analitik Hiyerarşi Yöntemi 19 20.10.2014 OWA Yöntemi (Sıralı Ağırlıklı Ortalama) Her bir piksel için bütün katmanlardaki değerler büyükten küçüğe sıralandıktan sonra sıralı ağırlıklar ve normal ağırlıklar ile çarpılır ve sonuçlar toplanır. 20 20.10.2014 Bölüm 3: Karmaşık Problemler için Analitik Hiyerarşi Yönteminin Kullanılması 21 20.10.2014 Analitik Hiyerarşi Yönteminde, hiyerarşinin en üstünde problemin genel amacı, amacın altında sırasıyla ölçütler ve seçenekler yer almaktadır Mekansal veriler için seçenekler vektör veri yapısında nokta, çizgi ve poligonlarla; raster veri yapısında piksellerle ifade edilir Karşılaştırılacak öğelerin sayısı çok fazla olduğunda ikili karşılaştırmaların gerçekleştirilmesi zorlaşmaktadır. Bu nedenle çok sayıda öğe söz konusu olduğunda hiyerarşik model, ölçüt ve alt ölçütler biçiminde yapılandırılmalıdır Ölçüt-alt ölçütler yapısında bir alt ölçütün sonuç ağırlığı (W), bu alt ölçüt ve bağlı olduğu ölçütlerin hiyerarşide hemen bir üst düzeyde yer alan ölçüt açısından ikili karşılaştırmalar ile değerlendirilmeleri sonucunda elde edilen ağırlıkların (w) çarpımıdır 22 20.10.2014 Bir önceki slaytta yer alan hiyerarşik model ele alındığında ölçütler A, B ve C; alt ölçütler A ölçütü için A1, A2 ve A3, B ölçütü için B1 ve B2, C ölçütü için C1, C2, C3 ve C4; bir alt düzeyde ise A1 alt ölçütü için A1-1, A1-2, A1-3 ve A1-4, C1 alt ölçütü için C1-1, C1-2 ve C1-3, C3 alt ölçütü için C3-1, C3-2 ve C3-3’tür Ağırlıkların hesabı için toplam 7 adet ikili karşılaştırma matrisi (1. düzey ölçütler için 1, 2. düzey alt ölçütler için 3 ve 3. düzey alt ölçütler için 3 adet) oluşturulur Analizde gereken ağırlıklar (WA1-1, WA1-2, WA1-3, WA14, WA2, WA3, WB1, WB2, WC1-1, WC1-2, WC1-3, WC2, WC3-1 WC3-2, WC3-3, WC4) ikili karşılaştırmalar sonucunda hesaplanan ağırlıklara (w) göre belirlenir Öğelerin ikili karşılaştırmaları yapılırken belirli bir derecede tutarsızlık oluşabilir. Bunun için ikili karşılaştırmaların mantıksal tutarlılığı Bölüm 2’de ele alındığı şekilde kontrol edilmelidir 23 20.10.2014 Analitik hiyerarşi sürecinde ikili karşılaştırmalar, ölçüt ağırlıklarının belirlenmesinde olduğu gibi aynı zamanda bir ölçüte göre seçeneklerin ağırlıklarının belirlenmesinde de kullanılır Ancak özellikle raster verilere dayalı konumsal karar analizlerinde çok fazla sayıda seçenek söz konusu olduğundan birçok konumsal karar analizinde bu durum gerçekleştirilemez Örneğin 3 farklı parsel (seçenek) yola yakınlık, eğim ve maliyet ölçütleri yönünden karşılaştırılabilir ancak bir bölgede yerleşim açısından en uygun alanların eğim ve jeolojik durum ölçütlerine göre belirlenmesi probleminde konumsal seçenekler piksellerle temsil edilir ve bu seçeneklerin ağırlıklarının ikili karşılaştırma yöntemiyle belirlenmesi mümkün değildir Ölçüt katmanları, tanımsal (örneğin arazi kullanımı/örtüsü [orman, yerleşim, kumluk vb.]), sıralı (örneğin deprem riski [1. derece, 2. derece, …], nüfus yoğunluğu [yüksek, orta, düşük]) ya da aralık tanımlı (sıcaklık [20–30°C, 30–50°C, 50–75°C ] ise bu ifadelerin sayısal değerlere dönüştürülmesinde ikili karşılaştırma yöntemi kullanılabilir Ancak çok fazla sayıda öğe söz konusu olduğunda ölçüt-alt ölçüt yapılandırmasına benzer bir hiyerarşinin kurulması ve böylece karşılaştırılacak öğelerin sayısının azaltılması genellikle sağlanamaz Dolayısıyla böyle durumlarda sıralama ve puanlama yöntemleriyle ağırlık belirleme daha uygun olmaktadır Sayısal değerler taşıyan ölçüt katmanları ise bazı karar problemlerinde belirli sayı aralıklarına gruplandırılarak temsil edilmek istenebilir (örneğin 5.7 ile 85.3 aralığında değerler alan bir ölçüt katmanı için <10, 10–20, 20–40, 40–70, >70). Bu durumda oluşturulan sınıflar ikili karşılaştırma yöntemiyle ağırlıklandırılabilir Analitik hiyerarşi sürecinde eğer tüm ölçüt katmanlarında öğeler ikili karşılaştırma ile ağırlıklandırılmışsa her katmanda öğeler 0–1 aralığında yer alır. Katmanların öğe sayısı eşit ise normalleştirme işlemiyle öğeler arasındaki oran değişmeyeceğinden, bu değerler doğrudan normalleştirilmiş değerler olarak kullanılabilir 24 20.10.2014 Birden Çok Sayıda Karar Verici Bulunması Durumunda Analitik Hiyerarşi Süreci Gruptaki karar vericilerin değerlendirmelerinin birleştirilerek tek bir yargı elde edilmesi karar analizinin önemli konulardan biridir Analitik hiyerarşi yönteminde karar vericilerin yargılarının birleştirilmesinde, ikili karşılaştırma matrisinde köşegene göre simetrik olan değerlerin birbirinin tersi olma koşulunu sağladığından geometrik ortalama yöntemi kullanılır Sonuç değer karar vericilerin değerlendirmelerinin önem derecelerine göre kuvveti alınarak elde edilir Sonuç matris incelendiğinde köşegene göre simetrik olan değerlerin birbirinin tersi olma koşulunu sağladığı görülmektedir. Örneğin; Ağırlıklı aritmetik ortalama yöntemi ise bu koşulu sağlamadığından karar vericileri ikili karşılaştırma değerlendirmelerinin birleştirilmesinde kullanılmamalıdır Uygulama 25 20.10.2014 Analitik hiyerarşi yönteminin konumsal karar analizlerinde kullanımını incelemek amacıyla örnek bir inceleme alanında kentin su gereksinimini karşılayacak bir su deposu yerinin seçimi ele alınmıştır Örnek problem için 3 karar verici jeolojik durum, arazi kullanım kabiliyeti sınıfları,yükseklik ve eğim ölçütlerini değerlendirmiştir Karar vericilerin değerlendirmelerinin ağırlıkları (wK1=0.40, wK2=0.30 ve wK3=0.30) dikkate alınarak ikili karşılaştırmaların geometrik ortalamaları alınmış ve ölçüt ağırlıkları bu değerlere göre hesaplanmıştır İkili karşılaştırmaların tutarlılık oranı 0.10 sınır değerini aşmamıştır 26 20.10.2014 İnceleme alanındaki 10-m piksel boyutlu yükseklik ve eğim katmanları ile vektör yapıdaki jeolojik durum ve arazi kullanım kabiliyeti sınıfları katmanlarını bir arada işleme koyabilmek için vektör veriler 10-m piksel boyutlu raster verilere dönüştürülmüştür Jeolojik durumu heyelanlı alan olan bölgeler bütün katmanlarda inceleme alanından çıkarılmıştır 27 20.10.2014 İnceleme alanında jeolojik durum katmanında bulunan uygun alan, sondaj şartlı alan ve önlemli alanlar için karar vericilerin ikili karşılaştırma değerlendirmeleri ve karar vericilerin ağırlıklarına göre hesaplanan geometrik ortalama değerleri: 28 20.10.2014 29 20.10.2014 Normalleştirilmiş katmanlar ve ölçüt ağırlıkları AAHP eşitliği ile işleme konularak sonuç analiz katmanı elde edilmiştir Analitik hiyerarşi yöntemine göre elde edilen analiz katmanı 0.93–0.34 aralığında değerler almıştır Yüksek değerlerler o alanın karar amacına daha uygun olduğu anlamındadır. Analiz katmanının daha anlaşılır olması için sayısal değerler 5 sınıfa ayrılmıştır Bu sınıflandırmada karar amacı için ilk sırada değerlendirilecek olan alanlar (>0.90) olarak belirlenmiştir Kaynaklar Oğuzay, E. Sistem Analizi ve Tasarımı, Ders sunum materyali, Maltepe Üniversitesi Öztürk, D. 2009. CBS Tabanlı Çok Ölçütlü Karar Analizi Yöntemleri İle Sel ve Taşkın Duyarlılığının Belirlenmesi: Güney Marmara Havzası Örneği, YTÜ Fen Bilimleri Enstitüsü, Doktora Tezi. Sugumaran, R., Degroote, J., 2011. Spatial Decision Support Systems: Principles and Practices. Yang, A. 1997. A Multi-criteria Decision Support System For Selecting Cell Phone Services, MSc Thesis, Bachelor of Engineering, Tong Ji University. http://www.spatial.redlands.edu/sds/ontology/?n=SDSSMethodsAndTechniques:Fu ndamentalSpatialOperation http://www.mis.boun.edu.tr/tanrikulu/YBS4.ppt#282,23,Kişisel Karar Destek Sistemi-KKDS http://www.redlands.edu/docs/URSB/Transps-Chp3-Spatial_Decision_Systems210.ppt#286,25,Model Base for the Typhoon SDSS http://www.ces.iisc.ernet.in/energy/paper/SPA_DEC/intro.htm 30
© Copyright 2024 Paperzz