“Utilizzo di piattaforme metaomiche nella descrizione del microbiota intestinale di importanti patologie croniche: il caso della fibrosi cistica e della steatosi epatica MICROBIOTA TECHNOLOGY AND DATA MANAGEMENT LORENZA PUTIGNANI, UNITA' DI METAGENOMICA E DI PARASSITOLOGIA Children’s Hospital and Research Institute, IRCCS, Rome, Italy 2 THE INSIDE STORY, Mullard, Nature 2008…….. DIFFERENTI LIVELLI DI ORGANIZAZZIONE BIOLOGICA Diet DESTRUTTURAZIONE DEI LIVELLI INTESTINE AS BIOREACTOR Microbiota Host TECHNOLOGY AND DATA MANAGEMENT Del Chierico et al., 2014, IJMS 41875R1-2014, Metagenomics in NAFLD: tools and applications 3 “OPBG –OMICS and METAOMICS CONSORTIUM” THE SYSTEMS MEDICINE MODELS: MOUSE AND HUMAN TOWARDS METABOTYPES….. TOWARDS ENTEROTYPES….. DIET Obesity Healthy nutrition Resistance to infection HEALTH HOMEOSTASIS DYSFUNCTION Metabolic syndrome Diabetes Oral tolerance Organ vitality DISEASE INTESTINE AS BIOREACTOR Healthy ageing Infection Cancer IBD From Putignani et al., 2014, In press, “Pediatric Research-Nature 4 From Putignani et al., 2014, In press, “Pediatric Research-Nature 5 -OMICS PHENOTYPES AND CHARTS SYMBIOSIS IN THE GUT DYSBIOSIS IN THE GUT INTESTINAL DISEASES Age scale………..critical to fill 0-24 months for fine programming plan Age scale………..neonates and follow-up, phase and type of the disease DESCRIPTION De Filippo et al., 2010, PNAS; Dominguez-Bello et al., 2010, PNAS; Palmer et al., 2007, PLOS Biology; Koenig et al., 2011, PNAS; Meghan, et al., CMAJ; Jost et al., 2012 Yatsunenko et al., Nature 486, 222–227 (14 June 2012) CATEGORIES Arumugam et al., 2011, Nature 473 (12 May 2012) Schloissnig et al., 2013, Nature 493 (12 January 2013) From Putignani et al., 2014, In press, “Pediatric Research-Nature 6 GUT MICROBIOTA RELATED DISEASES From Putignani et al., 2014, In press, “Pediatric Research-Nature GUT DISEASE “OPBG –OMICS AND METAOMICS ACTIVITIES” E’ COME SE PARLASSIMO DI UNA DEFRAMMENTAZIONE DI UN COMPUTER 1. BARCODED SAMPLES 2. CULTUROMICS 3. GENOMICS 4. METAGENOMICS 5. METABOLOMICS 6. METAPROTEOMICS 4. METAGENOMICS DI UN FC GUT 8 CULTUROMICS Saliva PROTEOMICS Stool Axenic cultures Sample collection Microbiological cultures Del Chierico et al., 2013, IJMS 41875R1-2013 Metagenomics in NAFLD: tools and applications 9 HUMAN INTESTINAL TRACTCHIP (HITChip) DNA extraction optimised for “very earlylife samples” Microbial community profiling HITChip Rajilic-Stojanovic´ et al., 2009 Italian Baby Trial Metagenomics of the human intestinal tract From Petrucca et al., 2014, Manuscript in preparation, “American Journal of Gastroenterology” GENOMICS Microarray platform HITChip Agilent Technologies, 8 arrays, 15,000 probes, with over 4,800 tiling oligonucleotides targeting the V1 or the V6 region of the 16S rRNA gene from 1,140 microbial phylotypes present in the human gut. Optimised procedures for meconium DNA extraction: 95% Pearson correlation index 10 HUMAN MICROBIOME (PYROSEQUENCING) METAGENOMICS Next generation sequencing, NGS DNA EXTRACTION TYPING REAL-TIME PCR PYROSEQUENCING 11 METABOLOMICS: towards biomarker searching Technological platforms GC-MS Data analysis GC-MS chromatogram Statistical approach PCA Heat map 1H-NMR 1H-NMR spectrum Sample collection: blood, plasma, faeces, urine and saliva Scatter plot ANOVA LC-MS LC-MS spectrum Del Chierico et al., 2014, IJMS 41875R1-2014, Metagenomics in NAFLD: tools and applications 12 METAPROTEOMICS METAPROTEOMICS METAPROTEOMICS An original metaproteomic pipeline to identify newborn mouse gut phylotypes BACTERIAL PURIFICATION NEWBORN MOUSE GUT HOMOGENATE METAPROTEOMIC (LC-MS2) EBS Proxeon EASY-nLCTM MUCOSAL AND FECAL BACTERIA PROTEINS NANO-LC chromatogra m PEPTIDES AmaZon Ion Trap MS nanoFlow ESI Sprayer MS and MS2 SPECTRA BIOINFORMATIC WORKFLOW MASCOT DATA Peptides to protein hits Protein hits to OTUs LINK TO FUNCTION OTUs linking to phyla and families F. Del Chierico, A. Petrucca, S. Levi Mortera, P. Vernocchi, M M Rosado; L. Pieroni, R. Carsetti, A. Urbani, L. Putignani. A metaproteomic pipeline to identify newborn mouse gut phylotypes. Journal of Proteomics, 2014 Jan 31;97:17-26. doi: 10.1016/j.jprot.2013.10.025 13 Taxonomic classification of Balb/c and Rag2ko gut microbiota characterized by axenic based MALDITOF MS approach Balb/c 3 7 Rag2ko 14 100 90 Relative abundance (%) 80 70 60 50 40 30 20 10 Del Chierico et al., Journal of Proteomics, 2014 Jan 31;97:17-26 3 7 14 age (days) Taxonomic classification of Balb/c and Rag2ko gut microbiota characterized by metaproteomic pipeline 14 METAPROTEOMICS Del Chierico et al., Journal of Proteomics, 2014 Jan 31;97:17-26 15 COG functional category distribution associated to Firmicutes and Proteobacteria phyla: towards biomarker searching METAPROTEOMICS Del Chierico et al., Journal of Proteomics, 2014 Jan 31;97:17-26 ORIGINAL BIOINFORMATIC PIPELINE 16S rRNA barcoded amplicons Statistical analysis Emulsion -PCR Database searching Principal component analysis Pyrosequencing RANKING OTUs identification Raw sequences 1 CCCCAAGCGATACCATGCAATCGAACGGT CAGGAAGCCCGACTCGATCCAATTCCGGG 2 GGTCCAGACTCTACGAAAGGCAGCAGTGG GAATATTGCGGTTAAACTAGTAGCCATGCA OTUs grouping OTU phylogeny 3 CTGGGAACTGATCTGATACTGGCAAGCTT GAGTCTCGTATTAAAACCCGTAGTCACTG SC Denoising procedures Relative abundance of OTUs Del Chierico et al., 2013, IJMS 41875R1-2013 Metagenomics in NAFLD: tools and applications Canonical Correlation analysis Metadata analysis 16 OPBG microbiome Projects Physiological status/disease1 Healthy subjects (reference cohort for all sub-projects, 1-18 years) (consortium OBG, RC) Early life vaginally-delivered neonates (0-1 years) (RF-2011-02346886) Juvenile Idiopathic Arthritis (MD Paedigree Project) Obeses (consortium OBG) Obeses (MD Paedigree Project) Patient (n°) Sample (n°) Years of project 17 samples/year Project Priority 200 200 2 100 1 30 210 3 105 1 GUT DISEASE 200 400 4 45 1 150 180 150 540 2 4 75 135 1 1 Cystic fibrosis (consortium OBG/Milan, Regione Lazio CF Grant, RC) 70 703 2 35 1 Obeses (consortium OBG, RC) NASH/NAFLD (consortium OBG, RC) 40 30 40 30 1 1 40 30 2 1 Williams Syndrome (consortium OBG, RC) 30 30 1 30 3 TBD TBD 3 10 2 300 96 300 96 3 3 100 32 1 2 Autism spectrum disorder (ASD) TBD TBD 3 - 2 GRANDI OBESI TBD TBD 3 - - ORAL COMMUNITIES TBD TBD 3 - - Idiopathic nephrotic syndrome (RC) IBD/IBS (HORIZON 2020) Metabolic diseases Total sample number (minimum) 20 TBD TBD 1346 TBD TBD TBD 2066 1 4 300 1 1 - - - NEC/bowel syndromes/congenital gut malformations (RC) Mediterrean diet (HORIZON 2020) Mice Model (RC 2014) GUT PROGRAMMING Gut microbiota in cystic fibrosis (CF) patients: a combined -omic translational workflow P. Vernocchi1,2,3, M. Valerio4, F. Del Chierico1,2, L. Casadei4, A. La Storia5, F. De Filippis5, G. Salerno5, A. Petrucca1,2,6, F. Majo7, C. Rizzo8, E. Fiscarelli8, C. Manetti4, M. Muraca8, V. Lucidi7, D. Ercolini5, B. Dallapiccola9 and L. Putignani1,2 1. Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 2. Units of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 3. Interdipartimental Centre for Industrial Research-CIRI AGRIFOOD-Almat Mater, Bologna, Italy 4. Department of Chemistry, Sapienza, Università di Roma 5. Department of Agriculture, Università Federico II, Naples, Italy 6. Department of Diagnostic Science, Sant’Andrea Hospital, Rome, Italy 7. Unit of Cystic Fibrosis, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 8. Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 9. Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy ‘CFTR-opathies’: phenomics ID Sweat test Age Gender (Cl, (years) mmol/l) Genotype CFTR Pancreatic status W/L Meconium or BMI ileus (Z-score) PHENOMICS 19 Lung colonization Antibiotics Use of probiotics Disease severity severe P-06-2 6 M 77 F508del/dele2,3 insufficient yes -1,5 Staphylococcus aureus no P-06-6 6 F 81 F508del/L1065P Insufficient no 2,1 yes P-06-7 6 F 95 F508del/F508del insufficient no -1 Serratia marcescens Stenotrophomonas maltophilia no no no no severe P-06-8 6 F 125 F508del/F508del insufficient 0,1 S. aureus no no severe P-07-1 5 M 91 F508del/F508del insufficient no yes -1 S. aureus no severe P-07-4 5 F 80 621+1G>T/R553X insufficient yes -0,8 S. maltophilia no yes no insufficient F508del/G1244E 621+1G>T/1898+G> insufficient A insufficient F508del/N1303K no 0,6 negative yes no severe no 2,5 Pseudomonas aeruginosa no no severe no 0 P. aeruginosa yes no severe severe severe P-07-5 5 M 98 P-07-6 5 F 121 P-07-7 5 F 94 P-07-9 5 F 95 F508del/M1V insufficient no 0,3 S. maltophilia yes no severe P-07-10 5 F 89 F508del/P5L sufficient no 1 negative no no mild P-08-2 4 M 98 F508del/R1162X no 0,4 P. aeruginosa yes no severe F508del/Unknown sufficient insufficient no 2,1 negative no -0,1 P. aeruginosa yes yes no mild no severe P-08-3 4 M 140 P-08-4 4 F 99 F508del/712-1G>T insufficient P-08-6 4 M 100 F508del/F508del insufficient no -1 S. aureus no no severe P-08-8 4 F 95 F508del/R553X insufficient no -0,2 S. aureus yes N1303K/2694 T>G no 0,44 negative no yes no severe sufficient yes -1,27 P. aeruginosa mild yes -0,48 Escherichia coli yes yes no yes severe no severe severe P-09-2 4 F 77 P-09-4 3 M 93 N1303K/2184m5A insufficient P-09-6 3 M 96 F508del/F508del insufficient F508del/R1070Q insufficient no 3,2 P. aeruginosa yes -0,4 S. maltophilia no -0,1 P. aeruginosa yes yes no P-09-7 3 M 90 mild P-10-2 3 F 78 F508del/S1253R insufficient P-10-4 2 F 85 F508del/G542X insufficient yes no P-10-7 2 M 63 1717-1G>A/D1152H sufficient no -0,7 P. aeruginosa no no severe P-10-13 P-11-3 2 2 M F 81 61 1717-1G>A/S1455X G542X/N187K sufficient no no mild P-11-4 1 M 114 1,3 Haemophilus influentiae yes no no no mild mild P-11-7 1 F 100 F508del/W1282X 17171G>A/Unknown no no negative negative yes sufficient insufficient 0,6 0,54 insufficient no -1,2 S. aureus no no severe P-11-8 1 F 84 insufficient yes -3,1 S. aureus no no severe F508del/3659delC mild RANKING IN FC GUT: PHYLUM 20 FUNCTIONAL METAGENOMICS RANKING IN FC GUT: CLASS 21 RANKING IN FC GUT: FAMILY 22 RANKING IN FC GUT: GENUS 23 RANKING IN FC GUT: SPECIES 24 UNIFRAC: β-diversity analysis, UNWEIGHTED and WEIGHTED 25 26 UNIFRAC: β-diversity analysis, UNWEIGHTED and WEIGHTED 27 Statistics at Phylum, Family, Genera and Species level (ANOVA) Tenericutes were more abundant in negative samples (avg. 14% in N vs 1.8% in P) (p<0.001) Erysipelotrichaceae (avg. 14% in N vs 1.8% in P), Ruminococcaceae (avg. 13% in N vs 3.8% in P) and Lachnospiraceae (avg. 22% in N vs 12% in P) families had a significantly lower occurrence in P, while Clostridiaceae (avg. 3% in N vs 21% in P) was significantly higher (p<0.05). In P individuals it was found a lower occurrence of: Eggerthella spp. (avg. 2% in N vs 0.19 in P) (p<0.001) Eggerthella lenta (avg. 1.1% in N vs 0.05 in P) (p<0.05) Ruminococcus spp. (avg. 4% in N vs. 0.2 in P) (p<0.01) Faecalibacterium praumitzii (avg. 2.5% in N vs. 0.04% in P) (p<0.01) And an higher occurrence of: FUNCTIONAL METAGENOMICS Escherichia spp. (avg. 0.2% in N vs. 7.3% in P) (p<0.01) Clostridium spp. (avg. 2% in N vs. 11% in P) (p<0.01) In particular, Clostridium difficile (avg. 0.01% in N vs. 2.5% in P) (p<0.05) From Vernocchi et al., Manuscript in preparation, 2014 28 GC-MS/SPME (solid phase microextraction) : VOLATILOME 700 500 HC 400 300 CF benzyl alcohol 600 2 ethyl 1 hexanol 1 octen 3 ol 2-dodecanol 500 •ethanol •1-propanol •1-pentanol 1 hexanol ppm equivalent HC 600 ppm equivalent •1-butanol •2-ethyl1hexanol •Phenyl ethyl alcohol 700 benzyl alcohol 2 ethyl 1 hexanol 1 octen 3 ol 2-dodecanol 1 hexanol 1-butanol 1-propanol ethanol 1-butanol 400 1-propanol ethanol 300 200 200 100 100 0 0 CF P -4 07 N-6 07 N-5 07 N-6 10 N-9 11 N-9 09 N-5 08 N-6 06 N-6 11 N-3 11 N-2 10 N-4 09 N-3 07 N-6 09 N-8 09 N-1 10 N-5 10 N-8 11 N-4 11 N-7 11 N-1 08 N-5 11 N-2 11 N-1 11 N-5 06 N-4 06 N-3 06 N-2 06 N-3 10 N-4 08 N-7 09 N-3 08 N-1 06 N4 -0 10 N- -1 18 P P P P P P P P P P P P P P P P P P P P P P P P P P P P P -1 -0 -1 -0 -0 -0 -0 -0 -0 -0 -1 -0 -1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -1 -1 -1 -1 -1 -0 1709986787161677778889900011610 10 13 7 6 3 7 4 8 9 9 6 3 2 1 5 6 7 2 4 6 2 4 2 4 7 4 7 8 CF samples HC samples Median value and total amount (ppm) of Alcohols were higher in HC children but….. 1200 1000 HC 4 methyl pentanoate 1000 ethyl decanoate ethyl decanoate ethyl octanoate butyl hexanoate 800 butyl hexanoate 800 butyl butyrate propyl butyrate 600 2-methyl butanoate butyl acetate ethyl butyrate 400 ethyl acetate ppm equivalent propyl hexanoate iso amyl butyrate propyl hexanoate iso amyl butyrate butyl butyrate 600 propyl butyrate 2-methyl butanoate ethyl butyrate ethyl acetate methyl acetate 200 200 CF 0 0 •ethyl acetate •butyl butyrate •4-methyl pentanoate butyl acetate 400 methyl acetate HC CF propyl decanoate propyl decanoate ethyl octanoate ppm equivalent •methyl acetate •butyl acetate 1200 4 methyl pentanoate -4 07 N-6 07 N-5 07 N-6 10 N-9 11 N-9 09 N-5 08 N-6 06 N-6 11 N-3 11 N-2 10 N-4 09 N-3 07 N-6 09 N-8 09 N-1 10 N-5 10 N-8 11 N-4 11 N-7 11 N-1 08 N-5 11 N-2 11 N-1 11 N-5 06 N-4 06 N-3 06 N-2 06 N-3 10 N-4 08 N-7 09 N-3 08 N-1 06 N4 -0 10 N- PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP11 11 09 09 0 06 07 08 0 07 10 1 06 11 06 0 07 07 07 0 08 08 09 0 10 10 1 11 11 06 -8 -1 -7 -6 8 -3 -7 -4 -8 7 -9 -1 -1 1 -9 -6 -3 -2 7 -1 -5 -6 -7 8 -2 -4 -6 -2 9 -4 -2 -4 0 -7 -4 -7 -8 0 0 3 CF samples HC samples Median value and total amount (ppm) of Esters were higher in CF children From Vernocchi et al., Manuscript in preparation, 2014 ppm equivalent 2000 1000 1000 -8 06 P-7 11 P-4 11 P-7 10 P-4 10 P-2 10 P-4 09 P-2 09 P-6 08 P-4 08 P-2 08 P-7 07 P-6 07 P-5 07 P-1 07 P-2 06 P-3 11 P-6 06 P-9 11 P3 -1 10 P0 -1 07 P-9 07 P-8 08 P-4 07 P-7 06 P-3 08 P-6 09 P-7 09 P0 -1 11 P-8 11 P- 4000 3500 3000 2500 0 -4 07 N-6 07 N- 5 07 N-6 10 N- 9 11 N- 9 09 N-5 08 N- 6 06 N-6 11 N- 3 11 N-2 10 N- 4 09 N-3 07 N- 6 09 N- 8 09 N-1 10 N- 5 10 N-8 11 N- 4 11 N-7 11 N- 1 08 N- 5 11 N-2 11 N- 1 11 N- 5 06 N- 4 06 N-3 06 N-2 06 N-3 10 N- 4 08 N- 7 09 N-3 08 N- 1 06 N- 04 10 N- 6000 5000 0 0 CF samples HC samples -8 06 P-7 11 P-4 11 P-7 10 P-4 10 P-2 10 P-4 09 P-2 09 P-6 08 P-4 08 P-2 08 P-7 07 P-6 07 P-5 07 P-1 07 P-2 06 P-3 11 P-6 06 P-9 11 P3 -1 10 P0 -1 07 P-9 07 P-8 08 P-4 07 P-7 06 P-3 08 P-6 09 P-7 09 P0 -1 11 P-8 11 P- -4 07 N-6 07 N-5 07 N-6 10 N-9 11 N-9 09 N-5 08 N-6 06 N-6 11 N-3 11 N-2 10 N-4 09 N-3 07 N-6 09 N-8 09 N-1 10 N-5 10 N-8 11 N-4 11 N-7 11 N-1 08 N-5 11 N-2 11 N-1 11 N-5 06 N-4 06 N-3 06 N-2 06 N-3 10 N-4 08 N-7 09 N-3 08 N-1 06 N4 -0 10 N- From Vernocchi et al., Manuscript in preparation, 2014 CF samples HC samples ppm equivalent propionic acid ppm equivalent 1500 •2,6 phenol 4000 2000 acetic acid 2000 3 methyl butanoic acid 3000 CF p-cresol phenol 2,6 bis phenol HC 4500 acetic acid propionic acid 2500 butyric acid 2500 butyric acid Total amount (ppm) of Phenols was similar between HC and CF Median value (ppm) of Phenols was higher in HC children •Acetic acid •Propionic acid •3 methyl butanoic acid 3 methyl butanoic acid CF valeric acid 3000 5000 p-cresol phenol 2,6 bis phenol •Phenol •4 methyl pehnol CF 1500 2000 HC 1000 CF 500 1000 HC 4000 4000 2-methyl butyric acid 3500 2-methyl butyric acid HC 3500 valeric acid •Butyric acid •Valeric acid 3000 ppm equivalent 29 GC-MS/SPME results 1500 0 500 Median value and total amount (ppm) of SCFAs were higher CF children 500 30 GC-MS/SPME results Median values and ranges of the concentration (ppm) of volatile organic compounds (VOCs) (grouped in chemical class) of faecal samples from CF and HC determined by GC-MS/SPME Chemical class Healthy children (HC) median IQR(25%-75%) Cystic fibrosis patients (CF) median IQR(25%-75%) acids 101.8 10.8-951.9 357.4 0.0-1340 0.36 alcohols 19.61 5.1-112.0 9.5 0.0-38.7 0.08 alcanes 8.35 0.0-13.1 35.0 4.0-158.1 0.03 alkenes 1.8 0.0-12.8 5.8 2.0-27.3 0.49 aldehydes 32.8 1.4-140.5 95.3 0.0-247.8 0.77 ketones 58.2 5.7-366.1 63.2 6.4-485.8 0.55 sulphur compounds 251.9 151.2-352.6 118.9 94.1-143.7 1.00 esters 1.6 0.0-15.9 36.5 7.6-159.4 <0.0001 eterocycles 18.0 10.5-37.6 0.0 0.0-7.6 0.12 phenols 1614.0 26.4-11771.0 564.1 160.8-12558.0 1.00 furan 0.0 0.0-0.0 0.0 0.0-0.0 - furanones 57.9 0.0-116.0 8.7 7.9-9.5 0.67 indoles 382.2 22.8-2290.0 312.1 0.0-58.6 0.56 piperidine 0.0 0.0-0.0 0.0 0.0-0.0 - pirazine 0.0 0.0-0.0 0.0 0.0-0.0 - pyridine 71.7 12.5-130.8 253.1 0.0-506.2 1.00 pyrimidine 0.0 0.0-0.0 0.0 0.0-0.0 - terpenes 17.8 4.4-46.7 21.6 0.0-68.5 0.23 *Data are the means of three independent experiments (n = 3) for each children From Vernocchi et al., Manuscript in preparation, 2014 p-value 31 GC-MS/SPME results CF children 0.8 0.6 0.4 PC2 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -0.6 -0.4 -0.2 Healthy children 0.0 0.2 0.4 0.6 0.8 PC1 GC-MS/SPME data by using Principal Component Analysis (PCA) carried out on samples from CF and HC children. The score plot shows a clear separation between the CF and healthy children on the PC1 (p= 0.011266) and PC2 (p= 1.91653E-05). From Vernocchi et al., Manuscript in preparation, 2014 32 GC-MS/SPME results CF children 0.8 HC CF gamma curcumene 0.6 Overview of the PCA model built on the VOCs dataset of CF and HC faecal samples. The score and loading plots of the first two components (PC1 versus PC2) are shown superimposed. propyl butyrate acetic acid ethyl butyrate 2,3 octanedione propyl acetate amyl acetate ethyl octanoate butyl butyrate 2 pentyl furan gamma terpinene dodecane heptanal 0.4 AR curcumene octanoic acid octenal 0.2 propionic acid 2-nonanone 2-heptanone octanal tetradecane Hexanal ethyl acetato nonanal 2 heptanol butyl acetato Indole alpha pinene 1-propanol 2,4 octanedione ethanol heptane 2-propanone 0.0 2,3 butanedione PC2 pyridine 3 methyl indole 2-pentanone -0.2 2-octanol 2-dodecanol 2 ethyl hexanal 2-nonanol methyl pirazine 2,6 octadiene -0.4 3-heptanol 2,3 butanediol linalool 3-hexanone The score plot shows the differentiation between the CF and HC , while the loading plot highlights which metabolites are responsible in separating the samples. Acetone 2-hexanol benzaldehyde decanol octyl acetate phenol heptanoic acid 2-butanol -0.6 -0.8 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 PC1 Healthy children From Vernocchi et al., Manuscript in preparation, 2014 0.6 0.8 33 METABOLOMICS GC-MS/SPME results campioni FC tutti completo 28 GIUGNO.M4 (OPLS/O2PLS-DA) 1 2 t[Comp. 1]/to[XSide Comp. 1] Colored according to classes in M4 7 P-06-6 P-10-4 6 5 N-09-8 4 3 N-10-2 N-08-1 N-09-7 N-10-1 2 P-11-9 N-10-6 P-11-10 N-11-5 N-08-3 N-09-9 N-07-4 N-11-4 N-10-04 N-08-5 N-11-3 N-09-4 N-09-6 N-06-6 N-06-2(2) N-06-3 N-11-6 N-06-1 N-07-3 N-11-2 N-08-4 N-07-6 N-10-3 N-11-9 to[1] 1 Healthy children 0 -1 P-08-6 CF children P-09-2P-11-7 P-08-3 P-07-7P-07-4 P-10-2 P-08-1 P-07-5 N-10-5 P-10-7 N-11-1 -3 P-09-7 P-10-13 P-07-9 P-07-10 -2 P-11-3 P-06-7 P-08-2 P-07-6 N-06-4 N-11-7 P-07-1 -4 N-06-5 N-07-5 -5 -6 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 t[1] R2X[1] = 0.0356105 Ellipse: Hotelling T2 (0.95) R2X[XSide Comp. 1] = 0.037364 SIMCA-P+ 12 - 2013-06-28 15:54:51 (UTC+1) To eliminate these metabolic effects not due to CF disease, we analyzed the GC-MS/SPME data by using the orthogonal projections to latent structures-discriminant analysis (OPLS-DA). This analysis revealed a net separation between CF young patients and healthy children on first latent variable (p < 0.0001). From Vernocchi et al., Manuscript in preparation, 2014 34 1H-NMR results PCA - Data set: 31 FC patients and 37 healthy children 15 PC4 (5%) 10 5 0 P_09_2 P_7_10 -5 FC Controls -10 -20 -15 -10 -5 0 5 10 15 PC1 (12%) NMR data were investigated by using PCA carried out on samples from CF and healthy children. Five components are sufficient to explain 40% of total variability of the system. The score plot shows a clear separation between the CF and healthy children on the PC1 (p= 0.001) and PC4 (p< 0.0001). From Vernocchi et al., Manuscript in preparation, 2014 35 Comparison of clinical characteristics of patient’s cohort and their corresponding metabolic profiles FACTORS PATIENTS PRINCIPAL COMPONENTS PC1 PC2 PC3 PC4 PC5 Relationship between Age or Sweat test values and the metabolic profiles of FC patients and healthy children. The table reports the Spearman's rank correlations between Age or Sweat test values with their corresponding metabolic profiles. Age All -0.232 -0.231 -0.252 0.365 0.110 FC -0.209 -0.132 -0.317 0.236 0.312 -0.442 (0.04) -0.367 -0.160 0.448 (0.02-0.03) -0.157 0.283 -0.159 -0.305 0.070 -0.101 Healthy Sweat test FC Sources of variability in metabolomic data of FC patients and healthy children as measured by analysis of variance (ANOVA). The table reports the F-values for each factor (Gender, IP, Antibiotics and Probiotics) and, in parenthesis, the corresponding p-values. Significant values (p<0.05) are in bold. Gender All 0.017 (0.898) 0.540 (0.465) 0.032 (0.859) 0.396 (0.531) 1.150 (0.288) IP All 12.738 (0.001) 0.318 (0.575) 0.027 (0.871) 37.148 (<0.0001) 4.858 (0.031) Antibiotics All 2.310 (0.133) 1.312 (0.256) 18.757 (<0.0001) 8.828 (0.004) 0.753 (0.389) From Vernocchi et al., Manuscript in preparation, 2014 36 Comparison of clinical characteristics of FC patient and their corresponding metabolic profiles Sources of variability in metabolomic data of FC patients as measured by two-way analysis of variance. The table reports the F-values for each factor (Genotype, Lung and Age) and combination of factors (Genotype*Lung, Genotype*Age and Lung*Age) and, in parenthesis, the corresponding p-values. Significant values (p<0.05). PCs Factor Genotype Lung Age Genotype*Lung Genotype*Age Lung*Age PC1 1.013 (0.376) 0.381 (0.768) 0.340 (0.883) 0.934 (0.481) 1.086 (0.412) 1.605 (0.216) PC2 1.26 (0.30) 0.559 (0.647) 0.711 (0.621) 1.287 (0.307) 0.402 (0.903) 0.711 (0.701) PC3 0.72 (0.496) 1.034 (0.395) 1.169 (0.353) 0.703 (0.60) 1.146 (0.387) 1.693 (0.198) PC4 1.595 (0.222) 0.472 (0.705) 0.945 (0.470) 0.024 (0.995) 1.486 (0.238) 0.513 (0.825) PC5 0.987 (0.386) 0.674 (0.577) 1.153 (0.361) 0.039 (0.997) 1.782 (0.150) 0.633 (0.762) From Vernocchi et al., Manuscript in preparation, 2014 37 1H-NMR results OPLS-DA: FC patients without IP vs. FC with IP vs. Healthy children 14 12 10 8 LV2 6 4 P_09_2 2 0 MILD -2 P_7_10 -4 -6 -6 -4 -2 0 2 FC grading? 4 6 8 LV1 FC patients without IP FC patients with IP Healthy children The metabolic FC effects is partially overwhelmed by IP and antibiotic consumption factors (ANOVA: PC1 (12.738 (p = 0.001)), PC4 (37.148 (p <0.0001)) for IP and PC4 (8.828 (0.004)) for Antibiotic consumption). To eliminate these metabolic effects not due to CF disease, we analyzed the NMR data by using the orthogonal projections to latent structures-discriminant analysis (OPLS-DA). This analysis revealed a net separation between CF patients and healthy children on first latent variable (p < 0.0001). From Vernocchi et al., Manuscript in preparation, 2014 1H-NMR results 38 Relative levels of the main metabolites which explain the differences across CF and healthy children according to O-PLS-DA analysis Spectral region (ppm)a 0.82, 0.94 0.88, 1.54, 2.14 0.89 0.92, 0.99 0.95 0.97, 1.03 1.04, 2.17 1.46 1.73 1.90 2.12, 2.63 2.28, 3.01 2.34 2.74 3.19 3.39, 3.42, 3.45, 3.47, 4.63, 5.21 3.54 5.78, 7.52 6.89, 7.19 7.30, 7.36 2.66, 2.79 7.43 Metabolitesb,c 2-Hydroxyisovalerate Butyrate Isovalerate Ile Leu Val Propionate Ala Arg Acetate Methionine 4Aminobutyrate Glu Sarcosine Choline Glucose Average Fold change over control 0.597 p value 0.039 0.610 0.624 0.602 0.680 0.751 0.625 0.672 0.916 0.672 0.653 1.968 0.008 0.064 0.002 0.018 0.086 0.002 0.006 0.819 0.001 0.004 0.010 0.377 0.475 3.179 0.531 <0.0001 <0.0001 0.017 0.003 Glycine Uracyl Tyr 3-Phenyllactate 0.883 0.323 0.571 0.694 0.383 <0.0001 0.006 0.076 Asp Phe 0.688 1.024 0.046 0.907 From the analysis of O-PLS-DA loadings, the CF patients showed lower levels of: 1. SCFA (acetate, propionate, and butyrate), 2. amino alanine, (isoleucine, arginine, aspartate, leucine, methionine, glycine, valine, glutamate, tyrosine and phenylalanine) 3. isovalerates (2-hydroxy-isovalerate and isovalerate) 4. sarcosine, 5. glucose, 6. 3-phenyllactate, 7. uracyl than healthy children. On the other hand, the CF patients showed higher levels of: 1. 4-aminobutyrate, 2. choline. Mid spectral integral region, i.e., 3.26 represents ppm 3.23 to 3.27; only spectral regions containing only one metabolite are reported. a acids 39 1H-NMR results 1) The role of gender and age as potential confounding factors was investigated. No correlation between gender and metabolic profiles were found. For FC patients, no correlation between age and metabolic profiles were found. For healthy children, a negative correlation with PC1 (ρ = -0.442 t-test 2006 vs. 2011 p = 0.03; 2007 vs. 2011 p = 0.04) as well as a positive correlation with PC4 were found (ρ = 0.448; t-test 2006 vs. 2009 p = 0.02; 2006 vs. 2010 p = 0.03; 2006 vs. 2011 p = 0.003; 2007 vs. 2011 p = 0.02) 2) No relationship of Sweat test values with metabolic profiles was found. 3) The metabolic variations due to IP is mainly accounted for by PC1 (12.738, p = 0.001), PC4 (37.148, p <0.0001) and PC5 (4.858, p = 0.031) 4) The metabolic variations due to antibiotic consumption is mainly accounted for by PC3 and PC4 components 5) No relationship between Genotype, Lung and age factors of FC patients and their metabolic profiles were found From Vernocchi et al., Manuscript in preparation, 2014 40 1H-NMR results Graphical representation: comparison of clinical characteristics of the children cohort and their corresponding metabolic profiles I From Vernocchi et al., Manuscript in preparation, 2014 41 1H-NMR results Graphical representation: comparison of clinical characteristics of the patient cohort and their corresponding metabolic profiles II Significant values (p<0.05) are in bold. From Vernocchi et al., Manuscript in preparation, 2014 Gut microbiota in NAFLD-NASH patients: a combined -omic translational workflow F. Del Chierico1,2, P. Vernocchi1,2,3, Alisi, A.4, V. Giorgio5, A. Petrucca1,2,6, C. Rizzo7, B. Dallapiccola8, V. Nobili4,5 and L. Putignani1,2 1. Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 2. Units of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 3. Interdipartimental Centre for Industrial Research-CIRI AGRIFOOD-Almat Mater, Bologna, Italy 4. Liver Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy 5. Hepato-Metabolic Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy 6. Department of Diagnostic Science, Sant’Andrea Hospital, Rome, Italy 7. Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 8. Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 2005 N 2005 N 2000 FL 2002 N 2002 N 2000 FL 1999 N 2005 N 1999 N 2002 FL 2004 FL 1998 FL 2002 FL 1999 N 2005 N 1999 N 2002 FL 2004 FL 1998 FL 2002 FL RANKING IN NASH GUT: CLASS 43 2002 FL 1998 FL 2004 FL 2002 FL 1999 N 2005 N 1999 N 2002 N 2000 FL 2005 N 2002 FL 1998 FL 2004 FL 2002 FL 1999 N 2005 N 1999 N 2002 N 2000 FL 2005 N RANKING IN NASH GUT: ORDER 44 2002 FL 1998 FL 2004 FL 2002 FL 1999 N 2005 N 1999 N 2002 N 2000 FL 2005 N 2002 FL 1998 FL 2004 FL 2002 FL 1999 N 2005 N 1999 N 2002 N 2000 FL 2005 N RANKING IN NASH GUT: FAMILY 45 2004 FL 2002 FL 1999 N 2005 N 1999 N 2002 N 2004 FL 2002 FL 1999 N 2005 N 1999 N 2002 N 2005 N 2005 N 2000 FL 1998 FL 1998 FL 2000 FL 2002 FL 2002 FL RANKING IN NASH GUT: GENUS 46 2005 N 2000 FL 2002 N 1999 N 2005 N 1999 N 2002 FL 2004 FL 1998 FL 2002 FL 2005 N 2000 FL 2002 N 1999 N 2005 N 2002 FL 2004 FL 1998 FL 2002 FL RANKING IN NASH GUT: SPECIES 48 GC-MS/SPME results // 2500 1-heptanol 1 octen 3 ol 2000 ppm 1500 1 hexanol 1-pentanol iso amyl alcohol Alcohols in particular: •1-heptanol •1-octen 3 ol •1-hexanol •1-pentanol •Iso amyl alcohol •1-propanol •ethanol 1-butanol 1-propanol ethanol 1000 500 N N A S H 3 A /9 S 8 H N 26 A /9 S 8 H 3 N 0/ A 98 S H N 4 A /9 S 9 H N 11 A /9 S 9 H 2 N 0/9 A 9 S H N 2 A /0 S 0 H N 17/ A 0 S 0 H N 28 A /0 S 0 H N 16 A /0 S 1 H N 27 A /0 S 1 H 1 N 9/0 A 2 S H N 9 A /0 S 2 H 1 N 0/0 A 2 S H N 7 A /0 S 2 H N 15 A /0 S 3 H 1 N 4/0 A 3 S H N 5 A /0 S 3 H N 25 A /0 S 4 H 1 N 2/0 A 4 S H N 8/0 A 5 S H N 6 A /0 S 5 H N 29 A /0 S 5 H N 24 A /0 S 6 H 23 /0 6 0 samples 2006 1998 // 300 250 hexyl acetate iso amyl butyrate butyl 2-methylbutyrate ethyl hexanoate butyl propanoato propyl butyrate 200 butyl acetato 150 100 50 8 30 N /98 A S H 4/ 9 N 9 A S H 11 /9 N 9 A S H 20 /9 N A 9 S H 2/ 00 N A S H 17 /0 N 0 A S H 28 /0 N 0 A S H 16 /0 N 1 A S H 27 /0 N 1 A S H 19 /0 N 2 A S H 9/ 02 N A S H 10 / N 02 A S H 7/ N 02 A S H 15 /0 N 3 A S H 14 / N 03 A S H 5/ 03 N A S H 25 /0 N 4 A S H 12 /0 N 4 A S H 8/ N 05 A S H 6/ 05 N A S H 29 /0 N 5 A S H 24 /0 N 6 A S H 23 /0 6 26 /9 S H A N N A S H S H 3/ 98 0 A ppm methyl acetato N Esters in particular: •methyl acetate •butyl acetate •propyl butyrate •butyl propanoate •ethyl hexanoate •butyl 2methylbutyrate •iso amyl butyrate •hexyl acetate samples 1998 2006 49 GC-MS/SPME results // // 10000 octanoic acid heptanoic acid 9000 pentanoic acid/valeric acid 2-m ethyl butyric acid butanoic/butyric acid 8000 propionic acid acetic acid 7000 ppm 6000 5000 4000 3000 2000 1000 /0 6 /0 6 H 23 N A S H 24 N A S H 29 /0 5 H 6/ 05 S S A A N S A N N /0 4 H 8/ 05 /0 4 H 12 H 25 S A S A N N /0 3 H 5/ 03 N A S H 14 H 15 S A N S A N N /0 3 H 7/ 02 /0 2 S H 10 A A S S A N N /0 2 H 9/ 02 /0 1 N A S H 19 /0 1 N A S H 27 /0 0 N A S H 16 /0 0 H 28 H 17 S A S A A S N N /9 9 H 2/ 00 /9 9 H 20 H 11 S A N N A S S H A N N /9 8 4/ 99 /9 8 H 30 N A S H 26 S A N N A S H 3/ 98 0 Acids and SCFAs in particular: •acetic acid •propionic acid •butyric acid •2-methyl butyric acid •valeric acid •heptanoic acid •octanoic acid samples 2006 1998 // // 8000 4-m ethyl benzaldehyde Benzeneacetaldehyde benzaldehyde 6000 nonanal octanal 5000 Hexanal/caproaldehyde 4000 3000 2000 1000 N A S H 3 A /9 S 8 H 2 N 6 A /9 S H 8 3 N 0/ A 98 S H N 4 A /9 S H 9 N 11 A /9 S H 9 2 N 0/9 A S 9 H N 2 A /0 S 0 H N 17 A /0 S H 0 N 28 A /0 S H 0 N 16 A /0 S H 1 N 27 A /0 S H 1 1 N 9/0 A S 2 H N 9 A /0 S 2 H 1 N 0/0 A S 2 H N 7 A /0 S 2 H N 15 / A S 03 H 1 N 4/0 A S 3 H N 5 A /0 S 3 H N 25/ A 0 S 4 H 1 N 2/0 A S 4 H N 8/0 A S 5 H N 6 A /0 S 5 H N 29 A /0 S H 5 N 24 A /0 S H 6 23 /0 6 0 N ppm Aldehydes in particular: •hexanal •octanal •nonanal •benzaldehyde •benzeneacetaldeh yde •4-methyl benzaldehyde 7000 samples 1998 From Del Chierico et al., manuscript in preparation,. 2014 2006 50 GC-MS/SPME results // // 80000 3 methyl phenol 2-methyl phenol 70000 4 methyl phenol/p-cresol phenol Phenols in particular: •phenol •p-cresol •2-methyl phenol •3 methyl phenol 60000 ppm 50000 40000 30000 20000 10000 S N A N A S H 3/ 98 H 26 /9 N 8 A S H 30 /9 N 8 A S H 4/ 9 N 9 A S H 11 / 9 N 9 A S H 20 /9 N 9 A S H 2/ 00 N A S H 17 /0 N 0 A S H 28 / N 0 0 A S H 16 /0 N 1 A S H 27 /0 N 1 A S H 19 /0 2 N A S H 9/ N 02 A S H 10 /0 2 N A S H 7/ 02 N A S H 15 /0 N 3 A S H 14 /0 3 N A S H 5/ 03 N A S H 25 /0 N 4 A S H 12 /0 4 N A S H 8/ 05 N A S H 6/ N 05 A S H 29 /0 N 5 A S H 24 /0 N 6 A S H 23 /0 6 0 samples 2006 1998 // 12000 11000 2-nonanone 6 m ethyl 5 hepten 2 one 10000 2-octanone 2,6-dim ethyl 4 heptanone 2-hexanone 9000 4 m ethyl 2 pentanone 2-pentanone 8000 2,3 butanedione 2-butanone 2-propanone/acetone 6000 5000 4000 3000 2000 1000 /0 6 /0 6 H 23 N A S H 24 N A S H 29 /0 5 H 6/ 05 S S A N A S A N N /0 4 H 8/ 05 /0 4 H 12 S H 25 S A N A S A N N /0 3 H 5/ 03 /0 3 H 14 S H 15 A S A N N /0 2 H 7/ 02 A S H 10 N A S S A N N /0 2 H 9/ 02 /0 1 N A S H 19 /0 1 N A S H 27 /0 0 N A S H 16 /0 0 H 28 S H 17 A S A N N /9 9 H 2/ 00 S A N N A S H 20 /9 9 4/ 99 S A N N A S H H 11 /9 8 /9 8 H 30 H 26 S A N S A A S H 3/ 98 0 N ppm 7000 N Ketons in particular: •2-propanone •2-butanone •2,3 butanedione •2-pentanone •4 methyl 2 pentanone •2-hexanone •2,6-dimethyl 4 heptanone •2-octanone •6 methyl 5 hepten 2 one •2-nonanone samples 1998 From Del Chierico et al., manuscript in preparation,. 2014 2006 51 GC-MS/SPME results // // 3500 // 3000 beta caryophyllene trans alpha bergamotene alpha terpinolene 2500 para cimene gamma terpinene delta 3-carene beta pinene ppm 2000 1500 1000 500 9 /9 N A S H 2/ 00 N A S H 17 /0 N 0 A S H 28 / 0 N 0 A S H 16 /0 N 1 A S H 27 / 0 N 1 A S H 19 /0 2 N A S H 9/ 02 N A S H 10 /0 2 N A S H 7/ 02 N A S H 15 /0 N 3 A S H 14 /0 3 N A S H 5/ 0 N 3 A S H 25 / 0 N 4 A S H 12 /0 4 N A S H 8/ 05 N A S H 6/ 05 N A S H 29 /0 N 5 A S H 24 /0 N 6 A S H 23 /0 6 9 /9 H 20 H 11 S S N A N A 8 /9 4/ 99 H S N A /9 H 30 S S H 26 N A N A N A S H 3/ 98 8 0 Terpenes in particular: •beta pinene •delta 3-carene •gamma terpinene •para cimene •alpha terpinolene •trans alpha bergamotene •beta caryophyllene samples 2006 1998 3 methyl indole 2 methyl 1H indole 4000 3 methyl 1H indole 7-methyl indole Indole ppm 3000 1H-indole 5-methyl-2phenyl-1H-Indole 2000 1000 N AS H AS 3/9 H 8 N 26 AS /9 H 8 N 30/ AS 98 N H4 AS /9 H 9 N 11 AS /9 H 9 2 N 0/9 AS 9 N H2 AS /0 H 0 N 17 AS /0 H 0 N 28 AS /0 H 0 N 16 AS /0 H 1 N 27 AS /0 H 1 1 N 9/0 AS 2 N H9 AS /0 H 2 1 N 0/0 AS 2 N H7 AS /0 H 2 N 15 AS /0 H 3 1 N 4/0 AS 3 N H5 AS /0 H 3 N 25 AS /0 H 4 1 N 2/0 AS 4 H N 8/0 AS 5 N H6 AS /0 H 5 N 29 AS /0 H 5 N 24 AS /0 H 6 23 /0 6 0 N Indoles in particular: •5-methyl2phenyl-1H-Indole •1H-indole •Indole •7-methyl indole •3 methyl 1H indole •2 methyl 1H indole •3 methyl indole // 5000 sam ples 1998 From Del Chierico et al., manuscript in preparation,. 2014 2006 52 CONCLUSIONS BIOMARKER SEARCHING WITHIN MICROBIOME OF HARMFUL AND HARMELESS BACTERIA BIOMARKER SEARCHING OF PROTEINS AND COGS BIOMARKERS SEARCHING OF METABOLITES SYMBIOSIS IN THE GUT DYSBIOSIS IN THE GUT •LABORATORY MEDICINE •AP TECHNOLOGY •PUBLIC HEALTH INTESTINAL DISEASES LOCAL AND PUBLIC DATA REPOSITORY 53 ACKNOWLEDGEMENTS 54 1. Grant 201103X002675 "La proteomica in microbiologia: dallo studio dei singoli patogeni alla biologia dei sistemi complessi“ to L. Putignani/OPBG 2. Ricerca Corrente (201402G003251) Bambino Gesù Hospital and Research Institute (OBG) to L. Putignani/OPBG 3. Ricerca Corrente (RC 201302P002991) Bambino Gesù Hospital and Research Institute (OBG) to L. Putignani/OPBG 4. Ricerca Corrente (RC 201302G003050) Bambino Gesù Hospital and Research Institute (OBG) to L. Putignani/OPBG 5. Italian Proteomics Association, ItPA, Mobility fellowship, 2011, “Studio proteomico dell'effetto modulante dell’allattamento materno sul gut microbiota del neonato“ to P. Vernocchi, UNIBO/OPBG 6. OPBG-DICOFARM: “The protein high mobility group box1, HMGB1, as new intestinal marker in neonates affected by NEC” 7. CONTO CAPITALE 2012 Studio integrato del metagenoma e del metaproteoma in patologie pediatriche associate ad alterazioni del microbiota intestinale “ to Dallapiccola/Putignani OPBG 8. SEVENTH FRAMEWORK PROGRAMME, Dallapiccola/Putignani 2013 9. FONDAZIONE LUCA BARBARESCHI ICT-2011.5.2, MD-PEDIGREE, GRANT NUMBER 600932, to THE OPBG SCIENTIFIC AND CLINICAL CONSORTIUM META-OMICS COLLABORATIONS ANDREA URBANI “GENOMICS GROUP” AXEL KARGER “PROTEOMICS GROUP” WILLEM DE VOS DANILO ERCOLINI STEFANO LEVI MORTERA CAROLIN KOLMEDER “METABOLOMICS GROUP” ME GUERZONI CESARE MANETTI ROSALBA LANCIOTTI ALFREDO MICCHELI CRISTINA VALERIO LUCA CASADEI 57 ROME CONSORTIUM MICROBIOTA SALVATORE CUCCHIARA MICHELE CICALA ANTONIO GASBARINI LAURA STRONATI MARINA LOI ANNAMARIA ALTOMARE MICHELE GUARINO 58 OUR META-OMICS OPBG GROUP LORENZA PUTIGNANI FEDERICA DEL CHIERICO STEFANO GARRONE ANDREA PETRUCCA PAMELA VERNOCCHI
© Copyright 2024 Paperzz