SPETTROFLUORIMETRIA: FLORESCENZA INTRINSECA

SPETTROFLUORIMETRIA:
FLORESCENZA INTRINSECA
Stefania Iametti
DeFENS
Università degli Studi di Milano
La fluorescenza sfrutta la capacità di alcune specie
chimiche di riemettere in un salto quantico discreto e ampio
l’energia assorbita sottoforma di radiazione luminosa
Non tutta l’energia assorbita
viene ri-emessa (resa
quantica), e la lunghezza
d’onda di emissione è per
forza superiore (minor
frequenza) rispetto a quella
di eccitazione
FLUORIMETRO
SPETTROFLUORIMETRIA
Caratteristiche
della
fluorescenza di
alcuni residui
aminoacidici
Fluorescenza intrinseca
Fluorescenza dipende ……. dal SOLVENTE
……..dal pH
… dalla forza ionica
A schematic view of changes in
tryptophan sidechain exposure upon
structural modification of proteins
buried Trp, blue-shifted
fluorescence, low
emission
buried Trp, blue-shifted
fluorescence, high
emission
solvent-exposed Trp,
red-shifted
fluorescence, high
emission
“quenching” residue
NATIVE
PARTIALLY
UNFOLDED
FULLY
UNFOLDED
Posizione deiTRP nella struttura nativa
………posizione TRP nell’organizzazione strutturale:
Distinguere tra diverse organizzazioni strutturali
………posizione TRP nell’organizzazione strutturale:
Distinguere tra diversi stati di “folding” e “unfolding”
………posizione TRP nell’organizzazione strutturale
Distinguere tra diversi stati strutturali:
Associazione tra proteine
………posizione TRP nell’organizzazione strutturale
Sensibilità agli agenti “quenchanti”
Nessun effetto:
Trp “sepolto” e
inaccessibile
Marcato effetto:
Trp vicino alla
superficie
Analizzare gli effetti “quenchanti”:
Il grafico di Stern-Vollmer
CASE 1
Structural modification:
ALA
BLG
Buried Trps
Exposed Trp
Carboxylatecoordinate, structurestabilizing Ca++ ion
OFF-LINE
APPLICATIONS:
Ca++ and temperature
dependent changes in
alpha-lactalbumin Trp
fluorescence
“assenza
Ca++”
“presenza
Ca++”
L.EYNARD, S.IAMETTI, P.RELKIN,
F.BONOMI. Surface hydrophobicity changes
and heat-induced modifications of alphalactalbumin. J. Agric. Food Chem., 40
(1992) 1731-1736
Hydrophobic sites in betalactoglobulin, “telltale”
residues, “silent” residues, patches and quilts
large central
hydrophobic
cavity
hydrophobic
surface groove
Trp 19
Trp 61
hydrophobic
surface regions
involved in dimer
contact
DENATURAZIONE CHIMICA
Urea 0M
Urea 1M
Urea 2M
Urea 3M
Urea 4M
Urea 4.5M
Urea 5M
Urea 5.5M
Urea 6M
Urea 6.5M
Urea 7M
Urea 7.5M
Urea 8M
150
100
Urea 0M
Urea 1M
Urea 2M
Urea 3M
Urea 4M
Urea 4.5M
Urea 5M
Urea 5.5M
Urea 6M
Urea 6.5M
Urea 7M
Urea 7.5M
Urea 8M
200
Fluorescenza, A.U.
Fluorescenza, A.U.
200
150
100
50
50
proteina
proteina + ligando
0
0
300
320
340
360
380
400
420
300
440
320
340
360
380
400
420
440
Lunghezza d'onda, nm
Lunghezza d'onda, nm
220
360
Fluorescenza, A.U.
200
λ al massimo di fluorescenza, nm
proteinaBLG
BLG -palmitato
proteina + ligando
180
160
proteina
BLG
BLG-palmitato
proteina
+ ligando
355
350
345
340
140
335
0
2
4
[urea], M
6
8
0
2
4
[urea], M
6
8
Controlling the polymers formation
polymers of BLG:
- stem from structurally
modified monomers
- may be stabilized
by various kinds of bonds
- may have different
properties (geometric &
physical)
may get really large!
Controlling the polymers formation
chaotrope-dependent features of partially unfolded
intermediates (1): structural signatures
urea
KSCN
denaturazione fisica
progressive heating of
beta-lactoglobulin:
effects of the
aggregation state
D. FESSAS, S. IAMETTI, A. SCHIRALDI, F. BONOMI.
Thermal unfolding of monomeric and dimeric βlactoglobulins. Eur. J. Biochem. (2001) 268, 5439-5448
CASO 2: DENATURAZIONE INTERFACCIALE
DI PROTEINE:
ruolo di interfacce solide e liquide
e la denaturazione di BLG
Emulsione: la
proteina penetra
la fase apolare
Adsorbimento: la
proteina non
penetra la fase
solida
TRP FLUORESCENCE TO ADDRESS
CHANGES IN TERTIARY STRUCTURE
BLG on oil
droplets
BLG on NP
400
160
NP + β-lactoglobulin
β-lactoglobulin
Fluorescence Intensity (A.U.)
Fluorescence Intensity (A.U.)
Fluorescence Intensity (A.U.)
140
120
100
80
60
40
native
20
300
200
native
100
0
-20
300
0
310
320
330
340
350
360
Wavelength (nm)
370
380
390
400
300
325
350
375
400
425
450
475
500
Wavelength (nm)
When BLG is adsorbed on the surface of the oil droplets, the
Trp19 red shift is slightly higher compared to NP-adsorbed
BLG.
Moreover, Trp in NP-adsorbed BLG shows a ≈2 folds higher
quantum yield.
Spiegare le variazioni in intensità:
Cys66-Cys160
Trp61
Trp19
Changes in quantum yield could
be explained by the moving of
Trp
residues
away
from
quenchers:
Trp61 away from the disulphide
bond Cys66-Cys160, and/or Trp19
away from Arg124.
Arg124
BLG interactions 1: solids in foods
Trp fluorescence
NP-bound
free
Cys 121 reactivity
Unfolding of BLG may be
monitored by measuring
exposure of individual
sidechains,such as Trp19
or Cys121…
2 – Conditional functionality
The large structural changes in NP-bound BLG do not
prevent binding of hydrophobes, an issue of practical
relevance in drug and nutrient delivery
L’approccio funziona anche con altre proteine:
Il caso della soia
emulsion
Urea
denatured
native
Le proteine strutturalmente modificate in emulsioni
modello sono solo quelle legate alla fase lipidica
Gli spettri di
emissione
sono stati
registrati
sull’emulsione
e sulle fasi
separate per
centrifugazione
mixture
aqueous
phase
Lipidbound
Insoluble proteins are generated in many
food processes...
Cheese making
CLOT
RAW
MILK
heat
PASTEURIZED
MILK
enzymes
CHEESE
enzymes
WHEY
heat
RICOTTA
SEMOLINA
kneading
DOUGH
drying
RAW PASTA
Pasta making
(& cooking)
boiling
COOKED
PASTA
...or may be
present since the
very beginning (the
more, the better)
The general problem:
Addressing structural changes in waterinsoluble proteins
Found in many food systems
Vegetable “storage” proteins
Soluble in
acids or bases
glutelins
alchools (EtOH, PrOH)
prolamines
little structure is retained after their solubilization
in non aqueous solvents, acids/bases or denaturing
buffers!
Some particular problems:
1 - understand structural differences among very similar
proteins: performance related?
These proteins are the main contributor to the structure of
the product
2 - monitor conformational changes ensuing from treatments
(solvation & mechanical treatment)
Treatment-induced modification establish the nature of the
product
3 - follow phase transfer phenomena
Water transfer:
protein to starch
⇒ bread cooking
starch to protein
⇒ bread staling
SOLID STATE SPECTROSCOPIES
What are they?
spectroscopic tools for the investigation of solids/gels
without resorting to the extraction/solubilization of
individual components (with concomitant loss of structure!)
IR & NIR
NMR
Fluorescence
What for?
Analytical purposes
Structural studies
on individual components
on their interaction
A possible solution:
Solid-state spectroscopy: fluorescence
Fluorescence provides evidence on the chemical
environment around “fluorescent probes”, either
embedded in the protein structure (e.g., Trp
residues) or capable to bind to specific protein
regions.
Thus, properties of the protein structure, and
their changes during processes may be monitored
under “non-destructive” conditions.
FRONT-FACE FLUORESCENCE
FOR PROTEIN STRUCTURAL
STUDIES ON SOLID SAMPLES
excitation beam
emitted fluorescence,
to emission monochromator
reflected light,
discarded
solid
sample
quartz window
mechanical support
standard cell
TRYPTOPHAN FRONT-FACE FLUORESCENCE
DETECTS DIFFERENT SOLVATION OF PROTEINS
IN DOUGH
380
emission maximum, nm
fluorescence intensity, a. u.
150
100
50
370
360
350
10
20
30
40
50
water content, %
0
350
400
wavelength, nm
450
BONOMI F., MORA G., PAGANI M. A., IAMETTI S.
Probing the structural features and the solvation
behaviour of wheat proteins by front-face fluorescence.
Anal. Biochem. (2004) 329, 10411
Solid-state fluorometry
Solvation of wheat
proteins
Protein solvation is the
earliest, necessary step
in all processes that
involve flour (of all kinds)
Addition of water
transforms the higly
dehydrated, compact
protein structures in the
original dry kernel into
fluffier and more open
structures
Solid-state fluorometry
Not all proteins were created equal
Solvation behavior differs in soft and hard wheat, and within varieties
Intrinsic
fluorescence
(tryptophan) allows
to discriminate
between various
wheat-based
starting materials
and to detect their
different solvation
behaviour
emission maximum, nm
380
370
360
flour
350
semolina
10
20
30
40
water content, %
50
5 - … O ADATTARE QUEL CHE C’E’
Spectroscopic approaches
have been modified to suite
the physical nature of the
samples:
-solid-state fluorescence
of spaghetti
A BIG “THANK YOU”
Rest of the world
The DeFENS Team
BLG unfolding
Pasquale Ferranti (Naples)
Ivano Eberini (UniMi)
Stefania Iametti
Alberto Barbiroli
Mauro Marengo
Matteo Miriani
Emulsions & doughs
Milena Corredig (UGuelph)
Koushik Seetharaman†
Ambogina Pagani
Alessandra Marti
Patrizia Rasmussen
(& many students)