Annexe 1 au RV (14) 59 = RV/G (14) 92 = JWG (14) 86
Travailler ensemble
pour un monde plus sûr
Système d’alimentation et de
ravitaillement en GNL d’Argos
HAZID
Rapport HAZID
Rapport destiné à:
Lloyd's Register EMEA
Rapport n° 50102448 R01 Rév: 00
Date: 29 April 2014
Résumé
HAZID du système d’alimentation et de ravitaillement en GNL d’Argos
Rapport HAZID
Classification de sécurité de ce rapport:
à ne distribuer qu’après l’approbation du client
Rapport n°:
Révision:
Date du rapport:
50102448 R01
00
29 April 2014
Préparé par:
Afshan Hussain
Consultant
Examiné par:
Chris Swift
Consultant principal
Approuvé par:
Dr. Andrew Franks
Directeur général
__________________________ __________________________ __________________________
Nom et adresse de l’entité:
Nom et adresse du client:
Lloyd's Register Consulting - Energy Limited
Lloyd's Register EMEA
Regus Manchester Business Park
K.P. van der Mandelelaan 41-A
3000 Aviator Way
Rotterdam
Manchester
3062 MB
M22 5TG
Pays-Bas
Royaume-Uni
Notre contact:
Contact client:
Chris Swift
Bas Joorman
T: +44 (0) 7917 088169
T: +31 (0)6 53600397
E: [email protected]
E: [email protected]
Lloyd’s Register Group Limited, ses filiales et organisations affiliées ainsi que leurs représentants, employés ou agents
respectifs sont appelés, individuellement et collectivement, «Lloyd’s Register» dans le cadre de la présente clause. Lloyd’s
Register décline toute responsabilité et ne peut être tenu responsable en cas de perte, dommage ou frais causé par
l’utilisation des renseignements ou des conseils contenus dans le présent document ou fournis par tout autre canal, à moins
que cette personne n’ait signé un contrat avec l’entité pertinente de Lloyd’s Register concernant la fourniture de ces
renseignements ou de ces conseils, auquel cas la responsabilité s’établit exclusivement sur la base des conditions définies
dans ledit contrat.
Sauf dérogations autorisées en vertu de la législation en vigueur, ce travail ne peut être photocopié, stocké dans un système
électronique, publié, présenté en public, adapté, diffusé, transmis, enregistré ou reproduit sous aucune forme ni sous aucun
moyen sans l’autorisation préalable du détenteur du droit d’auteur. Les demandes doivent être adressées à Lloyd’s Register,
71 Fenchurch Street, London, EC3M 4BS.
©Lloyd’s Register 2014.
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page i
©Lloyd’s Register 2014
a_ext_av/rvg14_50en_2
Historique du document
Révision Date
00
Description/changements
Changements
effectués par
29/04/2014 Rapport HAZID
Glossaire/abréviations
BP
Basse pression
CdC
Cahier des charges
ELM
Expert en la matière
EQR
Évaluation quantitative des risques
FSRU
Unité flottante de stockage et de regazéification
GN
Gaz naturel
GNL
Gaz naturel liquéfié
GPL
Gaz de pétrole liquéfié
HAZID
Identification des risques
HAZOP
Risques et opérabilité
HP
Haute pression
IOSH
Institut de la santé et sécurité au travail
LOPA
Analyse des couches de protection
LR
Lloyd’s Register Group
N2
Azote
ISO
Organisation internationale de normalisation
P&ID
Diagramme de tuyauterie et d’appareillage
PBU
Montée en pression
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page ii
©Lloyd’s Register 2014
a_ext_av/rvg14_50en_2
Sommaire
Page
1
Introduction .....................................................................................................................................1
2
Détails de la conception .................................................................................................................1
3
4
2.1
Système d'alimentation au GNL ..........................................................................................2
2.2
Cuve de stockage du GNL et boîte froide ............................................................................2
2.3
Espace réservoir ....................................................................... Erreur ! Signet non défini.
2.4
Vaporisateur .........................................................................................................................2
2.5
PBU (unité de montée en pression) .....................................................................................2
HAZID .............................................................................................................................................3
3.1
Objectifs de l'HAZID .............................................................................................................3
3.2
Équipe chargée de l'étude et présence ...............................................................................3
3.3
Méthodologie de l'étude .......................................................................................................9
3.4
Évaluation des risques .......................................................................................................11
3.5
Résultats de l'étude HAZID ...............................................................................................12
3.5.1
Réunion HAZID .............................................................................................................. 12
3.5.2
Préparation et références de l'étude ............................................................................... 12
3.5.3
Nœuds de l'étude ............................................................................................................ 12
3.5.4
Procès-verbal de l'étude.................................................................................................. 13
3.5.5
Principales questions soulevées par l'HAZID ................................................................. 13
3.5.6
Points à soumettre à examen complémentaire ............................................................... 14
3.5.7
Résultats de l'évaluation des conséquences et de l'évaluation des risques .................... 14
3.5.8
Hypothèse générales de l'HAZID .................................................................................... 15
Conclusions ..................................................................................................................................16
Annexe A – Procès-verbal de l’HAZID
Annexe B – Diagrammes P&I de l’HAZID
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page iii
©Lloyd’s Register 2014
a_ext_av/rvg14_50en_2
1
Introduction
ARGOS propose un bateau de ravitaillement propulsé au GNL et dont le gaz naturel liquéfié
(GNL) serait le combustible principal. Il posséderait un moteur auxiliaire au mazout. La
conception proposée se trouve à une étape préliminaire et possède les caractéristiques
globales suivantes:
réservoir de stockage de GNL unique située sous le pont;
Unité de montée en pression et vaporisateur;
Alimentation en combustible (gaz naturel) des moteurs;
Système de ventilation de la boîte froide; et,
Système de ventilation de la salle des machines.
Une HAZID de la conception proposée a été entreprise afin de contribuer à la gestion des
risques de sécurité. L’objectif principal de cette HAZID consiste à s’assurer que les aspects
de sécurité relatifs à cette conception sont effectivement appropriés. La section 3 porte sur
d’autres objectifs, détaillés dans le Cahier des charges (CdC), le document de Lloyd’s
Register Consulting n° 50102448 TN01 Rev 00.
2
Détails de la conception
Les détails de la conception proposée sont exposés dans les documents de référence dont la
liste est reprise dans le TableauTableau 2.1.
Tableau 2.1 – Documents de référence
Titre du document
Référence et date du document Publié par
Diagramme de tuyauterie et
d’appareillage – Système
d’alimentation en carburant (GNL)
– Page TB01
1406-1100-100, 17-03-2014
Cryonorm
Systems
Diagramme de tuyauterie et
d’appareillage – Système
d’alimentation en carburant (GNL)
– Page TC01
1406-1100-100, 17-03-2014
Cryonorm
Systems
Diagramme de tuyauterie et
d’appareillage – Système
d’alimentation en carburant (GNL)
– Page TD01
1406-1100-100 Rev. 1, 17-03-2014
Cryonorm
Systems
Plan de la zone de danger –
réservers GNL et Diesel – mts
«ARGO GL»
201-18 Dessin n° 10 31.12.2013
Rommerts Ship
Design
Développement du ravitaillement
au LNG en Europe
Argos LNG bunkership project
CCNR – fév. 2014.pdf
Argos
Diagramme de sécurité
Safety Diagram.pdf
-
Calculs sur la ventilation du moteur
au gaz Argos
Argos gas engine ventilation
calculations.pdf
Argos
Ces documents ont été préalablement mis à la disposition des personnes prenant part à
l’étude et des copies leur ont été fournies pendant l’étude.
La conception du processus, sur la base des détails indiqués dans les documents de
référence, est résumée ci-dessous.
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 1
©Lloyd’s Register 2014
a_ext_av/rvg14_50en_2
2.1
Système d’alimentation au GNL
Les caractéristiques principales du système d’alimentation au GNL sont:
Une cuve de stockage du GNL unique asujetti à une boîte froide logée de façon
immédiatement adjacente à ladite cuve, les deux éléments étant installés dans une salle
de réservoir séparée;
La boîte froide est une espace clos disposant de son propre système de ventilation qui
extrait l’air de l’espace réservoir, le fait passer dans la boîte froide et l’expulse par une
colonne de ventilation;
Un système de ventilation séparé pour la salle de réservoir;
Un système d’alimentation de trois groupes électrogènes MWM au GNL; et,
Un générateur auxiliaire au diesel installé dans une salle des machines séparée.
2.2
Cuve de stockage du GNL et boîte froide
La cuve de stockage du GNL est une cuve sous pression à vide isolant équipée d’une double
paroi. Une «super isolation» occupe l’espace situé entre les deux parois. La cuve intérieure
est fabriquée en acier inoxydable austénitique. Elle est équipée de déflecteurs internes. La
cuve extérieure est conçue comme un confinement secondaire doté d’une ventilation passant
par un disque de raccordement pénétrant dans la boîte froide.
2.3
Salle de réservoir
La salle de réservoir est adjacente à la section inférieure de la cuve de stockage et contient la
cuve de stockage du GNL, le vaporisateur (y compris le PBU) et toutes les connexions et
valves du GNL. Les fuites de gaz dans cet espace sont contrôlées à l’aide de détecteurs de
gaz. Il est proposé actuellement de doter cete salle d’un système de ventilation mécanique
d’une capacité d’au moins 30 renouvellements d’air par heure.
2.4
Vaporisateur
La fonction du vaporisateur consiste à convertir le GNL en gaz naturel pour qu’il puisse être
utilisé par le moteur. La chaleur est fournie par le système de refroidissement du moteur. Une
boucle fermée du système eau/glycol est utilisée comme moyen de transformation de la
chaleur dans la boucle secondaire. La coque du vaporisateur (glycol/eau) est fabriquée en
acier inoxydable austénitique; les tuyaux du vaporisateur et du PBU sont en acier inoxydable
austénitique 316.
2.5
PBU (unité de montée en pression)
L’unité de montée en pression sert à fournir de la pression dans la cuve de stockage du GNL
afin d’alimenter le vaporisateur en GNL. La PBU et le vaporisateur constituent une unité
unique combinée qui est située dans la salle de réservoir.
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 2
©Lloyd’s Register 2014
a_ext_av/rvg14_50en_2
3
HAZID
3.1
Objectifs de l’HAZID
Les objectifs de l’HAZID étaient d’identifier:
1.
2.
3.
4.
3.2
Les risques et comment ils peuvent se concrétiser (c-à-d les scénarios d’accident –
Qu’est-ce qui peut tourner mal et comment);
Les conséquences qui peuvent en résulter;
Les mesures/garanties en place qui minimisent les fuites, l’ignition et leurs conséquences
potentielles, et qui maximisent le confinement des déversements; et
Des recommandations visant à éliminer ou à minimiser les risques en matière de
sécurité.
Équipe chargée de l’étude et présence
L’étude a été facilitée par M. Chris Swift de Lloyd’s Register Consulting et s’est déroulée au
cours de deux journées, les 15 et 16 avril 2014. L’équipe chargée de l’étude HAZID était
composée de plusieurs experts en la matière (ELM) disposant de connaissances et
d’expérience en ce qui concerne la conception. Les membres de l’équipe, le résumé de leurs
qualifications, leur expérience et leur présence lors de chacun des nœuds de l’étude sont
détaillés aux Tableau 3.1 et Table 3.2 ci-dessous ainsi que dans le procès-verbal de l’HAZID
à l’annexe A.
M. Swift est consultant principal auprès de Lloyd’s Register Consulting. Tant M. Swift que
Lloyd’s Register Consulting sont indépendants et n’ont aucun intérêt direct dans les résultats
de l’HAZID. Disposer d’un facilitateur indépendant est essentiel car c’est la condition pour qu’il
puisse adopter une attitude objective et impartiale.
L’une des responsabilités principales du facilitateur, dans le cadre d’une HAZID, est de veiller
à ce que la méthodologie de l’HAZID soit utilisée de façon efficace et productive. Le
facilitateur doit donc posséder une compréhension approfondie et une expérience
considérable de la technique utilisée ainsi qu’une grande compétence technique.
M. Swift est un ingénieur chimiste agréé disposant d’une maîtrise en sécurité des procédés et
en prévention des pertes ; il est formé et expérimenté en ce qui concerne un large éventail de
techniques relatives aux études de sécurité comme l’HAZID. Les formations pertinentes sont
les suivantes:
Guide Word Approach to HAZOP, IBC, 1993
Formation destinée aux garantts des études de sécurité, Rhodia, 1996
Analyse des couches de protection (LOPA), IChemE, 2009
M. Swift est consultant pour le compte de Lloyd’s Register Consulting depuis cinq ans et a
facilité au cours de ces années un certain nombre d’études HAZID qui lui ont apporté une
expérience en matière de systèmes maritimes fonctionnant au gaz inflammable:
HAZID d’un navire-citerne propulsé au diesel/GPL (2102).
Phase conceptuelle de l’HAZID concernant les options en vue de l’utilisation d’un réacteur
nucléaire modulaire pour la propulsion d’un bateau (2012).
Phase conceptuelle de l’HAZID d’un bateau de démantèlement de forages pétroliers (2012).
HAZID, évaluation de l’ampleur d’un déversement et évaluation de la fréquence en vue
d’un accroissement des opérations d’un navire-citerne/ d’une jetée (2012).
HAZID et évaluation des risques des modifications d’une jetée (2012).
Phase conceptuelle de l’HAZID et de l’ENVID d’une usine de capture de carbone (2012).
HAZID de systèmes de propulsion de bateaux alternés (2011).
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 3
©Lloyd’s Register 2014
a_ext_av/rvg14_50en_2
HAZID sur les options des systèmes de traitement des eaux de ballast (2011).
EQR d’un terminal de regazéification au GNL sur terre (2011)
Évaluation des risques d’une installation de traitement du gaz et d’un gazoduc terrestres
(2011).
EQR de transporteurs FSRU/GNL en mer (2011).
Évaluation des risques d’un terminal FSRU/GNL en mer (2011).
HAZID, évaluation de l’ampleur d’un déversement et évaluation de la fréquence
d’opérations de transfert de navires-citernes (2009).
Avant de rejoindre Lloyd’s Register Consulting, M. Swift a été ingénieur et ingénieur en
sécurité des procédés au service d’un producteur multinational de substances chimiques. Au
cours de ses 22 années de service pour cette société, M. Swift a acquis de l’expérience tout à
la fois dans la conception et la conduite d’un grand nombre de procédés, notamment des
circuits haute pression inflammables. M. Swift possède une grande expérience des
techniques d’examen des aspects de sécurité, comme l’HAZID. Sa première participation à
une étude de ce type remonte à 1985. En tant qu’ingénieur en sécurité des procédés, Chris a
facilité plus d’une centaine d’études sur une période de 15 ans.
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 4
©Lloyd’s Register 2014
a_ext_av/rvg14_50en_2
Tableau 3.1 – Membres de l’équipe HAZID
Prénom
Chris
Nom
Swift
Société
Fonction
Qualifications
professionnelles
Expérience
Adresse électronique
Lloyd's
Register
Consulting
Consultant
principal en
sécurité,
Président de
l’étude HAZID
B.Sc. (Hons)
Ingénierie
chimique
Conception de procédés et
évaluation de la sécurité sur les
sites opérationnels (22 ans).
Consultant en sécurité (5 ans).
Expérience comme président
d’études de sécurité (18 ans).
[email protected]
M.Sc.
Processus de
sécurité &
prévention des
pertes
MIChemE,
CEng, Gradué
IOSH
Afshan
Hussain
Lloyd's
Register
Consulting
Consultant en
sécurité,
secrétaire de
l’étude HAZID
B.Eng. (Hons)
Ingénierie
chimique
Consultant en sécurité dans
l’industrie gazière et pétrolière.
Secrétaire d’études expérimenté.
[email protected]
Bas
Joormann
Lloyd's
Register
EMEA
Principal
spécialiste IWW
B.Sc.
Architecture
navale
25 ans d’expérience,
principalement sur les questions
statutaires.
[email protected]
Matthijs
Breel
Lloyd's
Register
EMEA
Spécialiste senior
des systèmes
mécanismes
B.eng. (Hons)
Ingénierie
mécanique
25 ans d’expérience dans les
moteurs.
[email protected]
Liviu
Porumb
Lloyd's
Register
EMEA
Spécialiste senior
des systèmes
électrotechniques
M.Sc.
Ingénierie
électrique
6 ans dans l’approbation des plans
et les enquêtes de terrain pour LR. 4
ans dans la conception et la mise en
service de systèmes électriques de
navires.
[email protected]
Flag State
(NSI)
Observateur
B.Eng. (Hons)
Ingénierie
> 15 ans d’expérience dans le
transport maritime.
[email protected]
Leendert Korvink
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 5
©Lloyd’s Register 2014
Prénom
Nom
Société
Fonction
Qualifications
professionnelles
Expérience
Adresse électronique
25 ans d’expérience dans
l’industrie (pétro)chimique et
terrestre. Impliqué dans des études
d’inspection basées sur le risque,
services dans le domaine de la
gestion d’actifs/intégrité
mécanique, préparation de
rapports sur la sécurité, d’EQR et
d’audits sur la gestion des risques
et d’audits sur l’intégrité technique.
[email protected]
mécanique
Peter
Petersen
DNV GL
Observateur
B.Sc.
Ingénierie
civile
Plus de 10 ans d’expérience dans
la réalisation d’études
d’identification des risques
(HAZID/HAZOP/What-If), d’études
SIL/LOPA, à la fois comme
responsable ou secrétaire.
Jim
Kriebel
MWM
Benlux
Responsable des
ventes/Ingénieur
de projet
Ingénierie
enélectricité
Environ 15 ans d’expérience dans
la vente de moteurs au gaz.
[email protected]
Stefan
Kuijs
Cryonorm
Projects
B.V.
Ingénieur de
projet/Responsab
le de projet
B.Sc.
Ingénierie
mécanique
4 ans d’expérience dans
l’ingénierie, la conception, la
construction, l’installation, le
démantèlement et le lancement de
divers systèmes cryogéniques.
[email protected]
Daniel
Tabbers
Windex
Engineering
Ventilation BV
Ingénieur en
construction
10 ans dans les systèmes CVCA.
[email protected]
Ubbo
Rommerts Rommerts
Architecte naval/
Ship Design Responsable
technique
Construction
navale
15 ans d’expérience dans
l’environnement de la construction
navale, y compris conception
[email protected]
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 6
©Lloyd’s Register 2014
Prénom
Nom
Société
Fonction
Qualifications
professionnelles
Expérience
Adresse électronique
technique/financière, construction
et inspections.
Claudia
van
Raster
Batenburg
Chargée de
compte technique
B.Sc.
Ingénierie en
électricité
Plus de 10 ans d’expérience dans
l’ingénierie, la gestion de projets et
la gestion de comptes techniques
dans le domaine de
l’automatisation industrielle dans
des usines (pétro)chimiques, en
mer et terrestre.
[email protected]
Claudia participe à des projets
exécutés en vertu des normes de
sécurité CEI 61508/61511 et à des
projets comportant une
classification et une vérification
SIL. Elle participe régulièrement à
des réunions de sécurité dans le
cadre de son travail.
Jereon
van
Tilborg
D&A
Electric
Directeur général
Concepteur
24 ans d’expérience dans les
circuits électriques des navires.
Piet
van den
Ouden
ARGOS
Responsable de
projet
B.Sc.
Automatisation
des processus
et de la
sécurité
Plus de 25 ans d’expérience dans le piet.van.den.ouden@argosenergi
secteur gazier et pétrolier en mer et es.com
terrestre, y compris dans une usine
chimique, mise en œuvre de
normes de sécurité SIL.
Gestion de
projets et
gestion
d’entreprises
Membre du groupe de travail
néerlandais NEN PGS 33 chargé
d’élaborer des normes de sécurité
pour les stations de remplissage au
GNL.
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 7
©Lloyd’s Register 2014
[email protected]
Table 3.2 – Présence aux nœuds
Présence aux noeuds
Prénom
Nom
1.1 Cuve de stockage du GNL
1.2 PBU et
vaporisateur
1.3 Alimentation en
gaz des moteurs et
moteurs
1.4 Système de
ventilation de la
boîte froide
1.5 Système de
ventilation de la salle des
machines
Chris
Swift
Présent
Présent
Présent
Présent
Présent
Afshan
Hussain
Présent
Présent
Présent
Présent
Présent
Bas
Joormann
Présent
Présent
Présent
Présent
Présent
Matthijs
Breel
Présent
Présent
Présent
Présent
Présent
Liviu
Porumb
Présent
Présent
Présent
Présent
Présent
Leendert
Korvink
Partial
Partial
Absent
Absent
Présent
Peter
Petersen
Présent
Partial
Présent
Présent
Absent
Jim
Kriebel
Présent
Non requise
Présent
Non requise
Non requise
Stefan
Kuijs
Présent
Présent
Présent
Présent
Présent
Daniel
Tabbers
Présent
Présent
Présent
Présent
Présent
Ubbo
Rommerts
Présent
Présent
Présent
Présent
Présent
Claudia
van Batenburg
Présente
Présente
Présente
Présente
Présente
Jereon
van Tilborg
Présent
Présent
Présent
Présent
Présent
Piet
van den Ouden
Présent
Partial
Présent
Absent
Présent
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 8
©Lloyd’s Register 2014
3.3
Méthodologie de l’étude
L’approche adoptée dans le cadre de l’étude s’est appuyée sur l’expérience dont dispose
Lloyd’s Register Consulting ainsi que sur les orientations fournies par les sources suivantes
en matière d’exigences et de bonnes pratiques liées à la conduite des études de ce type:
HAZOP, Guide des bonnes pratiques, 2de Edition. IChemE (2008)
BS ISO 31000: 2009, Gestion du risque – Principes et lignes directrices
BS ISO 31010: 2010, Gestion du risque – Techniques d’évaluation du risque
Les deux normes BS ISO livrent des renseignements utiles sur les techniques généralement
utilisées pour identifier et évaluer les risques. La publication d’IChemE fournit des orientations
spécifiques. Bien qu’elles soient destinées en premier lieu aux études HAZOP (risques et
opérabilité), une forme plus détaillée des études HAZID, les orientations se sont avérées
utiles pour établir la méthodologie de cette HAZID. Par exemple, les deux types d’études sont
effectués par une équipe dotée d’un facilitateur et les approches concernant les arrangements
et les rapports de l’étude sont assez similaires. La publication reconnaît que l’HAZID conduite
pour la présente étude est une approche que l’on entreprend généralement très tôt dans le
processus de conception.
La technique de l’HAZID adoptée pour cette étude est une approche basée sur une liste de
contrôles qui servent à identifier des scénarios susceptibles de conduire à des libérations de
matières ou à des événements dangereux. Cette technique passe par la définition de sections
du processus distinctes, appelées des «nœuds» ainsi que l’application d’une liste de
contrôleà ces nœuds afin d’identifier des déviations pouvant mener à un problème de sécurité
ou à un problème opérationnel (Scénario).
Lors de chaque nœud, une liste de contrôle permet d’identifier d’éventuels scénarios. Une
liste de contrôle propre à cette étude et qui contient une liste de questions a été élaborée
avant d’entreprendre l’HAZID; elle est présentée au Tableau 3.3. Ces questions se sont
inspirées d’expériences antérieures et indiquent le type de risques que l’on a estimé
applicables aux types de systèmes de traitement pris en considération. La liste n’est pas
exhaustive et l’HAZID n’a pas été cantonnée à ces questions.
Pour chaque point repris dans la liste de questions, l’équipe a examiné des scénarios
réalistes susceptibles de causer un accident et a identifié des causes et des résultats
possibles de cet accident. Après avoir évalué les conséquences potentielles des scénarios
d’accidents, l’équipe a élaboré des mesures qu’il faudrait veiller à mettre en place pour la
prévention, le contrôle et l’atténuation. Si ces mesures ont été considérées comme
inadéquates ou si les informations n’étaients pas suffisantes, ces points ont été soumis à un
examen ultérieur.
Le procès-verbal de l’évaluation a été enregistré à l’aide du logiciel PHA-Pro 8 par le
secrétaire de l’étude et est communiqué à l’annexe A. Le procès-verbal a été projeté sur un
écran pendant les réunions. Les membres ont ainsi été en mesure de formuler leurs
observations concernant le procès-verbal.
Tableau 3.3 – Questions / HAZID
1. Équipments
1.1 Équipements défaillances
La défaillence des équipements pourrait-elle présenter des
dangers ? P.ex.: perte de fonction, effondrement,
désintégration, défaillance d’un composant, matériaux de
construction incorrects, surchage, utilisation au-delà des limites
de la conception, libération de matériaux inflammables,
génération de sources d’inflammation, joints Rotatifs ?
1.2 Défaillances du système
de contrôle
Si le système de contrôle subissait une défaillance (partielle
ou totale), que se passerait-il?
1.3 Défaillances du système
électrique
Les équipements utilisés présentent-ils des risques électriques?
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 9
©Lloyd’s Register 2014
Y a-t-il du matériel électrique présent dans la zone?
(dommage possible aux circuits électriques).
1.4 Pannes de courant
Si les approvisionnements étaient interrompues (électricité,
air), est-ce qu’il en découlerait une situation dangereuse?
2. Matériaux
2.1 Matériaux
inflammables/oxydants
Des matériaux inflammables/oxydants sont-ils présents ou
pourraient-ils être libérés par erreur? Vapeur, liquide, solide,
résidus, réaction chimique?
2.2 Matériaux
toxiques/asphyxiants
Des matériaux toxiques/asphyxiants – y compris écotoxiques –
sont-ils présents ou pourraient-ils être libérés par erreur?
Vapeur, liquide, solide, résidus, réaction chimique?
2.3 Matériaux corrosifs
Des matériaux toxiques sont-ils présents ou pourraient-ils être
libérés par erreur? Vapeur, liquide, solide, résidus, réaction
chimique?
2.4 Inertes
Des matériaux inertes (N2, CO2, etc.) sont-ils présents ou
pourraient-ils être libérés par erreur? Risques d’asphyxie?
2.5 Eau
Y a-t-il de l’eau ou de l’eau pourrait-elle être libérée par
erreur? Est-ce que cela doit être considéré comme
dangereux?
3. Paramètres d’exploitation
3.1 Température
Y a-t-il des températures très hautes ou très basses,
supérieures au point d’ébullition, au point d’éclair ou au point
d’inflammation spontanée? Une décomposition peut-elle
survenir? Des brûlures touchant le personnel, des dégâts aux
équipements? Formation de glace? Solidification de
matériaux?
3.2 Pression
Haute pression ou vide – effets de fuites. Interfaces HP/BP
3.3 Débits
Débits élevés, faibles ou inversés?
3.4 Niveau
Niveaux élevés ou faibles – les cuves peuvent déborder ou
s’assécher?
4. Emplacement/Environnement
4.1 Risques liés
l’emplacement
4.2 Autres activités
4.3 Conditions ambiantes
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Y a-t-il des risques associés au lieu de travail? P.ex.:
glissades, chutes, travail en hauteur, accès difficile, espaces
confinés, travail sur l’eau, etc.
D’autres activités pourraient-elles avoir lieu dans la zone?
Pourraient-elles présenter un risque ou cette activité pourraitelle affecter les autres activités?
Est-ce que des situations extrêmes, du point de vue des
conditions ambiantes ou de la météo, pourraient poser
problème?
Page 10
©Lloyd’s Register 2014
5. Modes d’exploitation
5.1 Exploitation sur des voies
de navigation intérieure
L’utilisation de la technologie présente-t-elle des risques
quelconques associés à l’exploitation sur des voies de
navigation intérieure? C-à-d le long d’un quai, dans des
conditions d’urgence ou d’extinction.
5.2 Autres conditions
d’exploitation
Faut-il tenir compte de risques quelconques lorsque le bateau
est à quai ou subit une inspection, un entretien, une mise en
service ou hors service?
Le cahier des charges (document n° 50102448 TN01 Rev 00 de Lloyd’s Register Consulting)
a été distribué aux membres de l’équipe avant l’HAZID afin de leur communiquer davantage
de détails sur l’approche adoptée par l’HAZID.
3.4
Évaluation des risques
Les risques recensés pendant l’HAZID ont été évalués conformément à une matrice de
risques fournie par Lloyd’s Register Consulting, comme le montre la figure ci-dessous. Cette
matrice s’inspire de l’expérience accumulée par Lloyd’s Register Consulting dans l’utilisation
et la conception de matrices pour le compte d’opérateurs actifs dans le secteur pétrolier et
gazier. Une évaluation des risques a été entreprise à la fois avant et après avoir pris les
garanties en considération. Il s’agit là d’une approche qui est souvent prise dans le cadre des
évaluations de risques. Elle est bénéfique car elle permet d’identifier les scénarios qui ont les
conséquences négatives les plus graves et fournit une «mesure» de l’efficacité de garanties
supplémentaires.
Figure 1: Matrice de risque
Il convient de préciser que l’évaluation des risques ne se base que sur l’évaluation des
risques pour le personnel et que les conséquences ayant une sévérité faible, pouvant résulter
d’une blessure légère, ont été exclues de l’évaluation. Ce choix permet à l’équipe en charge
de l’étude de se concentrer uniquement sur les risques significatifs, une approche considérée
comme appropriée pour une HAZID à ce stade de la conception.
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 11
©Lloyd’s Register 2014
3.5
Résultats de l’étude HAZID
3.5.1 Réunion HAZID
La réunion de l’étude HAZID s’est déroulée les 15 et 16 avril 2014 dans la salle 5.5 du
Business Centre Netherlands (BCN), avenue Barbizon 25, 2908 MB Capelle a/d Ijssel,
Rotterdam, Pays-Bas.
La salle de réunion avait la taille requise pour accueillir l’ensemble des membres de l’équipe
et disposait des équipements adéquats pour entreprendre une HAZID. Des rafraîchissements
et des repas ont été fournis pendant les pauses.
3.5.2 Préparation et références de l’étude
Avant d’entamer l’étude proprement dite, le cahier des charges (CdC), le document
n° 50102448 TN01 Rev 00 de Lloyd’s Register Consulting, a été montré et distribué à tous les
membres de l’équipe. Le CdC fournissait les détails sur l’approche de l’HAZID, le calendrier
de l’étude, les membres de l’équipe, les propriétés du GNL et certains incidents qui ont
impliqué une libération de GNL.
Les membres de l’équipe ont également reçu, avant l’étude, les documents de référence dont
la liste est produite au Tableau 2.1 – Documents de référence.
Au début de la réunion, les responsables du projet d’Argos Energies et de Lloyd’s Register
Consulting ont chacun présenté à l’équipe une vue d’ensemble du projet et de la technique
utilisée dans le cadre de l’HAZID.
3.5.3 Nœuds de l’étude
Le système de carburant, dans le cadre de l’étude, a été scindé en nœuds, qui sont repris au
Tableau 3.4. Un bref aperçu des équipements et des conditions d’exploitation a été donné
avant de prendre chaque nœud en considération.
Tableau 3.4 – Nœuds
Détails de l’étude
Heure fin
Durée
(procèsverbal)
15/04/2014 9h10
14h30
275
4
16/04/2014 11h00
14h30
165
1.3.
Alimentation
en gaz des
moteurs et
moteurs
2
15/04/2014 14h45pm
17h10
145
1.4.
Système de
ventilation de
la boîte froide
3
16/04/2014 9h05
11h00
115
1.5.
Système de
ventilation de
la salle des
machines
5
16/04/2014 14h35pm
15h35
60
Nœuds
Description
1.1.
Session
Date
Cuve de
stockage du
GNL
1
1.2.
PBU et
vaporisateur
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Heure
début
Page 12
©Lloyd’s Register 2014
Le nœud 1.5 a également détaillé le système de ventilation de la salle des machines. Il
convient de noter que très peu d’informations étaient disponibles concernant la conception de
ce système.
La durée approximative de l’examen de chacun des nœuds est indiquée au tableau 3.4 et
dans le procès-verbal de l’HAZID, et ces durées sont reprises à l’annexe A. Les durées
incluent les pauses avec rafraîchissements mais pas les pauses de midi. Le nœud 1.1 (cuve
de stockage du GNL) était le nœud le plus compliqué et a été le plus long à examiner.
Le détail des présences des membres de l’équipe lors de chacune des journées de l’étude est
repris dans le procès-verbal de l’HAZID, à l’annexe A et dans le tableau 3.1. Les absences
notables pendant l’étude et les nœuds étudiés pendant ces absences ont été les suivantes:
15 avril 2014
Leendert Korvink (ILT) a été absent de la session de l’après-midi (une partie du nœud 1.1
et la totalité du nœud 1.3).
16 avril 2014
Piet van den Ouden (Argos) a été absent pendant environ 1h30 (une partie du nœud 1.4).
Leendert Korvink (ILT) a été absent de la session de la matinée (une partie du nœud 1.2
et la totalité du nœud 1.4).
Jim Kriebel (MWM Benelux) n’a pas été disponible de la journée (nœuds 1.4, 1.2 et 1.5).
Peter Petersen (DNV GL) a été absent pendant la session de l’après-midi (une partie du
nœud 1.2 et la totalité du nœud 1.5).
Aucune de ces absences n’est considérée comme ayant réduit la compétence globale de
l’équipe.
Veuillez noter que l’ordre dans lequel les nœuds ont été abordés lors de chacune des
journées de l’étude tenait compte de la disponibilité du personnel. Par exemple, le nœud
détaillant l’alimentation en gaz des moteurs a été examiné le jour où Jim Kriebel (MWM
Benelux) était disponible.
3.5.4 Procès-verbal de l’étude
Une fois l’HAZID achevée, le procès-verbal a fait l’objet d’une correction orthographique et
d’une relecture. Aucune correction orthographique ou grammaticale n’a été jugée nécessaire.
Le procès-verbal se trouve dans l’annexe A. Il convient noter qu’il est important de ne pas
modifier le contexte du procès-verbal pendant le contrôle et une copie du procès-verbal de
l’étude a été conservée dans un format non contrôlé. Elle peut être mise à disposition sur
demande.
3.5.5 Principales questions soulevées par l’HAZID
Les questions principales recensées pendant l’HAZID sont les suivantes:
Défaillance de la valve de contrôle de la pression 5150NG – Pourrait mener à
l’approvisionnement en gaz des moteurs, ce qui peut entraîner des jets de gaz ou une
pression légèrement élevée dans le système en aval, susceptible d’atteindre jusqu’à 10
bar à PCV5182NG. Cette situation pourrait causer des dommages en amont, peut-être
jusqu’à l’entrée du moteur car il n’est pas adapté à 10 bars. Par ailleurs, la défaille de
cette PCV peut causer la libération de gaz naturel sur le moteur.
Défaillance du système de contrôle de l’approvisionnement en gaz – la défaillance du
système de contrôle peut entraîner une trop grande ouverture des valves qui contrôlent la
pression. Cela peut entraîner une surpression des systèmes d’alimentation en gaz situés
en amont et subséquemment une libération de gaz naturel
Préoccupations moins graves identifiées pendant l’HAZID, susceptibles d’améliorations:
Débordement de la cuve de GNL – un débordement de la cuve causé par une erreur
humaine, une défaillance des instruments mesurant l’avitaillement ou le niveau peut
entraîner une éventuelle surpression de la cuve qui pourrait entraîner une défaillance si la
pression lors de l’avitaillement est élevée.
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 13
©Lloyd’s Register 2014
Perte du vide de la cuve – la défaillance de la cuve extérieure/de l’isolation peut entraîner
une perte d’isolation pouvant causer un transfert de chaleur vers la cuve intérieure,
entraînant une vaporisation dans la cuve, une augmentation de la pression et une
éventuelle surpression dans la cuve, pouvant conduire à une rupture.
Fuite de tuyauterie associée à la cuve de GNL – de petites libérations de GN ou de GNL
dans l’espace réservoir, pourraient entraîner un incendie ou une explosion, s’il y a
inflammation. Rupture fragile du pont également possible si exposition au GNL.
Le gaz naturel présent dans l’espace réservoir – Asphyxie possible du personnel si
concentration de GN trop élevée.
Impact sur le bateau – Un contenant tombant sur le bateau pendant le ravitaillement pourrait
causer des dommages éventuels à la cuve de LNG, causant un incendie ou une explosion.
Surchauffe due à un incendie extérieur – Peut causer une agravation de la perte de
confinement du système GNL.
Fuite d’un tube dans l’échangeur de chaleur E-5150 – entraîne une libération de GNL sur
la coque de l’échangeur de chaleur. Une vaporisation rapide cause de la pression dans le
système eau/glycol si le système se trouve en surpression.
Défaillance de la pompe avec pour conséquence une perte de circulation dans le système
en circuit fermé – Pas de flux eau/glycol dans le système en circuit fermé, réduction de la
capacité de vaporisation pouvant causer un déplacement du GNL vers le système
d’alimentation en GN. Cela peut causer une éventuelle défaillance de la ligne
d’approvisionnement en gaz du moteur à cause de températures trop faibles.
Défaillance du système de contrôle cause un flux élevé vers le PBU par la valve 5130 –
Une augmentation de la pression dans la cuve de stockage peut éventuellement causer
une rupture, une fuite dela cuve ou une pressurisation dans l’espace réservoir.
Défaillance du système de contrôle dans la ligne de gaz après PCV5150NG – Flux élevé
de GNL à travers le vaporisateur puisque le système en amont est dépressurisé, cela
peut causer des passages de GNL si cela dépasse la capacité du vaporisateur et même
des libérations de GNL à partir du système de tuyauterie.
Fuite de GNL à partir du système de tuyauterie dans la boîte froide – à cause de l’usure
ou d’un bris de soudure, du GNL peut être libéré dans la boîte froide qui se concentrera à
la base de la boîte et prendra une forme liquide. Le GNL se vaporisera également et
formera du GN qui sera ventilé par la colonne de ventilation. Si le système d’extraction
s’avère insuffisant pour la taille de la fuite, du gaz sera libéré dans l’espace réservoir, ce
qui créeara la possibilité d’une surpression de l’espace réservoir et d’un incendie/d’une
explosion en cas d’inflammation.
Libération de GN dans la salle des machines à partir de l’approvisionnement en GN –
Libération de GN dans la salle des machines qui n’est pas conçue pour les atmosphères
explosives. Explosion possible si le gaz s’accumule et s’allume.
3.5.6 Points à soumettre à une évaluation complémentaire
Le cas échéant, des points à soumettre à une évaluation complémentaire ont été identifiés.
Au total, 27 points à prendre en considération ont été soulevés; ils sont listés dans le procèsverbal de l’HAZID, à l’annexe A.
Aucune date spécifique n’a été fixée pour achever ces points et ces points ont été assignés
aux sociétés plutôt qu’à des personnes. Cette approche a été adoptée car au vu du calendrier
du projet tous les points doivent être pris en considération immédiatement.
3.5.7 Résultats de l’évaluation des conséquences et de l’évaluation des risques
Tout au long de l’étude, certaines conséquences qui pourraient avoir des effets significatifs
sur les personnes ont été évaluées en fonction de la matrice montrée à la Figure 1. Les
scénarios qui ne produisaient pas d’effets notables pour le personnel n’ont pas été évalués,
pas plus que les scénarios où les risques étaient fonction des opérations existantes. En
d’autres termes, les évaluations concernent exclusivement des risques significatifs relatifs à la
conception.
Le classement des risques a été entrepris avant la prise en considération d’améliorations
éventuelles. Les résultats du classement, montrant les nombres de
conséquences/probabilités dans chacune des catégories, sont montré dans la Figure 2.
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 14
©Lloyd’s Register 2014
Consequence (Severity)
Figure 2: Classement du risque – Avant d’éventuelles améliorations
Multiple fatalities
C
6
Single fatality or
multiple major
injuries
B
3
Major injury
A
5
3
L1
10-5/y
Ext. Unlikely
1 in 40,000
2
HIGH
3
1
MEDIUM
1
L2
10-6/y
Remote
3
1 in 4,000
L3
LOW
10-4/y
L4
1 in 400
L5
10-3/y
Unlikely
V. Unlikely
Likely
1 in 40
Likelihood (Chance per year / Chance in Vessel Lifetime)
Avant d’envisager des améliorations possibles, deux scénarios étaient évalués comme
présentant des risques «élevés». Cela reflète un degré de préoccupation relatif à la
conception et ces préoccupations ont été résumées et détaillées sous le point «principales
questions soulevées par l’HAZID». La majorité des évaluations (18) font partie de la catégorie
de risques «moyen» et sept présentent un risque «faible». Cela reflète le fait qu’une HAZID
menée à cette étape de la conception et dont la durée est relativement courte s’attachera
surtout à identifier les risques les plus significatifs.
Il convient de noter que dans la mesure où le projet se trouve à un stade précoce, le
classement du risque est difficile, en particulier lorsque la conception présente des
incertitudes.
3.5.8 Hypothèses générales de l’HAZID
Un certain nombre d’hypothèses générales sont habituellement soumises sur la base d’une
HAZID de ce type:
Le personnel concerné par le fonctionnement et l’entretien du système de carburant au
GNL sera compétent. C’est pourquoi il est important que le personnel ait été formé à
l’utilisation et à l’entretien de tout équipement nouveau.
Les systèmes de sécurité seront conçus pour garantir le niveau de fiabilité approprié.
Cela inclut tout système de fermeture ou procédures d’alarme.
Le personnel réagira aux alarmes en temps utile et prendra les mesures nécessaires.
Il a été supposé tout au long de l’étude que toute libération de GNL pourrait entrer en
contact avec une source d’inflammation ou être allumée. Les conséquences de
l’inflammation pourraient se traduire par un certain nombre de résultats, comme un feu en
nappe, un incendie ou une explosion. Ces résultats sont décrits dans le CdC. Dans la
mesure où le résultat dépendra d’un certain nombre de facteurs comme la taille de la
libération, la localisation, la ventilation et la durée écoulée avant l’inflammation, il n’est
pas possible dans une étude de cette nature d’évaluer tous les résultats possibles.
L’hypothèse générale émise est que des libérations pourraient causer un incendie ou une
explosion, la catégorie de gravité de la libération a été laissée à l’appréciation de l’équipe.
Les règles, normes, codes et législations relatifs aux systèmes en mer seront
d’application, le cas échéant. Même si la présente étude ne passe pas en revue les
règles, normes, codes et législations applicables, il est précisé que ces éléments sont
pertinents. Dans les cas où ils sont pertinents, référence a été faites aux normes et aux
codes en question pendant la réunion.
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 15
©Lloyd’s Register 2014
4
Conclusions
L’HAZID du système de carburant au GNL proposé par Argos a permis de recenser un certain
nombre de scénarios possibles qui pourraient causer des dommages au personnel. Le
nombre de risques évalués comme «élevés» est de deux, avant la prise en considération de
garanties supplémentaires. Les questions principales recensées portaient sur les points
suivants:
Défaillance de la valve de contrôle de la pression 5150NG – Pourrait mener
l’approvisionnement en gaz des moteurs, ce qui peut entraîner des jets de gaz ou une
pression légèrement élevée dans le système en aval, susceptible d’atteindre jusqu’à 10
bar à PCV5182NG. Cette situation pourrait causer des dommages en amont, peut-être
jusqu’à l’entrée du moteur car il n’est pas adapté à 10 bars. Par ailleurs, la défaille de
cette PCV peut causer la libération de gaz naturel sur le moteur.
Défaillance du système de contrôle de l’approvisionnement en gaz – la défaillance du
système de contrôle peut entraîner une trop grande ouverture des valves qui contrôlent la
pression. Cela peut entraîner une surpression des systèmes d’alimentation en gaz situés
en amont et subséquemment une libération de gaz naturel.
Vingt-sept points à soumettre à une évaluation complémentaire ont été recensés. Les
réponses approtées à ces points, ainsi que les détails de scénarios de défaillances
potentielles et de garanties identifiées dans l’étude permettront de poursuivre l’amélioration
de la conception en matière de risques et de sécurité.
Document n° 50102448 R01 Rev: 00
Date: 29 April 2014
Page 16
©Lloyd’s Register 2014
Appendix A
HAZID Study Minutes
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
General
Administration:
Facility Information:
Company: Lloyd's Register EMEA
Location: 71 Fenchurch Street, London, UK
Unit: Project Name: ARGOS LNG BUNKERING FUEL SYSTEM HAZID
Project ID: 50102448
Revision: 00
Study Duration:
Start: 15/04/2014
End: 16/04/2014
Issue Date: 15/04/2014
Comments:
Methodology
Methodology:
Scope: To identify hazards associated with the design, operation and bunkering of the Argos LNG fuel system
Study: Early Stage HAZID based on a checklist of possible causes of failure (Equipment, Location/Environment, Materials, Operating Conditions, Operating Modes).
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Team Members
Node Attendance
First
Name
Chris
Last
Name
Swift
Company
Lloyd's
Register
Consulting
Position
HAZID Study
Chair
Principal
Safety
Consultant
Professional
Qualifications
Experience
E-Mail Address
1.1.
LNG
Storag
e Tank
1.2. PBU
and
Vaporis
er
1.3.
Gas
Supply
to
Engine
s and
the
Engine
s
1.4. Cold
Box
Ventilatio
n System
1.5. Engine
Room
Ventilation
System
BSc (Hons)
Chemical
Engineering.
MSc. Process
Safety & Loss
Prevention
MIChemE,
CEng, Grad
IOSH
Process design and assessment
of safety on operational sites (22
years). Safety Consultant (5
years).
Safety Study Chair experience (18
years).
[email protected]
Present
Present
Present
Present
Present
Afshan
Hussain
Lloyd's
Register
Consulting
Safety
Consultant,
HAZID Study
Scribe
BEng (Hons)
Chemical
Engineering
Safety consultant in the Oil and
Gas industry. Experienced study
scribe.
[email protected]
Present
Present
Present
Present
Present
Bas
Joormann
Lloyd's
Register
EMEA
Principal
Specialist
IWW
BSc Naval
Architecture
25 years’ experience, mainly on
Statutory Issues
[email protected]
Present
Present
Present
Present
Present
Matthijs
Breel
Lloyd's
Register
EMEA
Senior
Specialist
Machinery
Systems
BEng (Hons)
Mechanical
Engineering
25 years’ experience in Engines.
[email protected]
Present
Present
Present
Present
Present
Liviu
Porumb
Lloyd's
Register
EMEA
Senior
Specialist
Electro
technical
Systems
MSc Electrical
Engineering
6 years plan approval and field
surveys for LR. 4 year design and
commissioning electrical systems
for ships.
[email protected]
Present
Present
Present
Present
Present
Leendert
Korvink
Flag State
(NSI)
Observer
BEng (Hons)
Mechanical
Engineering
> 15 years’ experience in shipping
[email protected]
Partial
Partial
Absent
Absent
Present
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Node Attendance
First
Name
Peter
Last
Name
Petersen
Company
DNV GL
Position
Observer
Professional
Qualifications
BSc Civil
Engineering
Experience
E-Mail Address
1.1.
LNG
Storag
e Tank
1.2. PBU
and
Vaporis
er
1.3.
Gas
Supply
to
Engine
s and
the
Engine
s
25 years’ experience in (petro)
chemical and offshore industry.
Involved in Risk Based Inspection
studies, services in the area of
Asset Operations/Mechanical
Integrity, preparation of Safety
Reports, QRA's and risk
management audits and technical
integrity audits.
[email protected]
Present
Partial
Present
Present
Absent
1.4. Cold
Box
Ventilatio
n System
1.5. Engine
Room
Ventilation
System
More than 10 years’ experience
with performance of risk
identification studies
(HAZID/HAZOP/What-If),
SIL/LOPA-studies, both as leader
and as scribe.
Jim
Kriebel
MWM
Benlux
Sales/Project
Engineer
Electrical
Engineering
+15 years’ experience in Gas
Engine Sales
[email protected]
Present
Not
Required
Present
Not
Required
Not Required
Stefan
Kuijs
Cryonorm
Projects
B.V.
Project
Engineer/Proj
ect Manager
BSc
Mechanical
Engineering.
4 years’ experience - Engineering,
design, construction, installation,
commissioning and start-up of
several Cryogenic systems.
[email protected]
m
Present
Present
Present
Present
Present
Daniel
Tabbers
Windex
Engineering
BV Ventilation
Construction
Engineer
2 years in HVAC Systems
[email protected]
Present
Present
Present
Present
Present
Ubbo
Rommerts
Rommerts
Ship
Design
Technical
Manager
Naval Architect
15 years’ experience working in
Ship building environment which
includes technical/financial
design, building and inspections.
[email protected]
Present
Present
Present
Present
Present
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Node Attendance
First
Name
Last
Name
Claudia
van
Batenburg
Company
Raster
Position
Technical
Account
Manager
Professional
Qualifications
BSc Electrical
Engineering
Experience
E-Mail Address
1.1.
LNG
Storag
e Tank
1.2. PBU
and
Vaporis
er
1.3.
Gas
Supply
to
Engine
s and
the
Engine
s
More than 10 years’ experience in
engineering, project management
and technical account
management in the field of
industrial automation in the
(Petro) chemical plants, both on
and offshore.
claudia.van.batenburg@rast
er.com
Present
Present
Present
Present
Present
1.4. Cold
Box
Ventilatio
n System
1.5. Engine
Room
Ventilation
System
Claudia is involved in projects
executed according Safety
standards IEC 61508/61511 and
projects containing SIL
Classification and Verification. In
her work she is regularly engaged
in several safety meetings.
Jereon
van
Tilborg
D&A
Electric
Managing
Director
Designer
24 years’ experience in ship
electrics
[email protected]
Present
Present
Present
Present
Present
Piet
van den
Ouden
ARGOS
Project
Manager
BSc Process
and Safety
Automation
Over 25 years in offshore and
onshore oil and gas industry,
including work on a chemical
plant, implementing SIL safety
Standards.
piet.van.den.ouden@argose
nergies.com
Present
Partial
Present
Absent
Present
Project
Management
and Business
Economics
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Member of the Dutch NEN PGS
33 workgroup to making safety
standards for LNG filling stations
©Lloyd’s Register 2014
Sessions
Date
am/pm
Leader
Scribe
1. 15/04/2014
am
Chris Swift
Afshan Hussain
2. 15/04/2014
pm
Chris Swift
Afshan Hussain
3. 16/04/2014
am
Chris Swift
Afshan Hussain
4. 16/04/2014
pm
Chris Swift
Afshan Hussain
Daily Attendance
Team Members
1. 15/04/2014
2. 15/04/2014
3. 16/04/2014
Attendance
Attendance
Attendance
4. 16/04/2014
Attendance
Afshan Hussain
Present
Present
Present
Present
Bas Joormann
Present
Present
Present
Present
Chris Swift
Present
Present
Present
Present
Claudia van Batenburg
Present
Present
Present
Present
Daniel Tabbers
Present
Present
Present
Present
Jereon van Tilborg
Present
Present
Present
Present
Jim Kriebel
Present
Present
Not Required
Not Required
Leendert Korvink
Present
Absent
Absent
Present
Liviu Porumb
Present
Present
Present
Present
Matthijs Breel
Present
Present
Present
Present
Peter Petersen
Present
Present
Present
Absent
Piet van den Ouden
Present
Present
Partial
Present
Stefan Kuijs
Present
Present
Present
Present
Ubbo Rommerts
Present
Present
Present
Present
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Nodes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Study Details
Nodes
Design/Operating Details
Session
Date
Start Time
Finish
Time
Duration
(Minutes)
1.1. LNG Storage Tank
As detailed in project reference 1
documents and ToR
2
15/04/2014
9.10am
12.30pm
140
15/04/2014
1.15pm
2.30pm
75
1.2. PBU and Vaporiser
As detailed in project reference 5
documents and ToR
16/04/2014
11.00am
2.30pm
1.3. Gas Supply to Engines and As detailed in project reference 3
the Engines
documents and ToR
15/04/2014
2.45pm
5.10pm
1.4. Cold Box Ventilation
System
As detailed in project reference 4
documents and ToR
16/04/2014
9.05am
11.00am
1.5. Engine Room Ventilation
System
Description provided at the study 6
16/04/2014
2.35pm
3.35pm
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Notes
©Lloyd’s Register 2014
Study Minutes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.1. LNG Storage Tank
Item/Activity
1.1.1. Equipment
HAZID Prompt
Causes
Consequences
Safeguards
1.1.1.1 Equipment - Overfilling of the tank Possible over
1.
failures
due to human error pressurization of the tank
due to bunkering or leading to failure if the
level instrumentation bunkering pressure is high. 2.
failure.
Possible fire/explosion if
ignited
Multiple relief valves on the
tank (4 x 50%, 3-way valve
isolation).
S L R
Remarks/Consideratio
Responsibility
ns
C L1
High pressure trip on the
bunkering feed line (PT5105)
closes isolation valves on
bunkering line.
3. High pressure trip on the
bunkering feed line (PT5102)
closes isolation valves on
bunkering line.
4. High level trip on the
bunkering feed line (LT5102)
closes isolation valves on
bunkering line.
5. Electrical equipment rated for
Zone 1 (ATEX).
6. Secondary containment
around the storage tank
contains leaks from the
storage tank itself not pipe
works around the tank.
7. Control interface with the
bunkering system if there is a
fault (level pressure, manual
operation).
8. Pre alarm through the control
system, shuts down to an
independent safety system.
9. Training and procedure in
bunkering operation.
10. Fire extinguishing system in
the cold box and separate
system in the LNG
propulsion room.
11. Stainless steel drip tray
beneath the Cold Box, for
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.1. LNG Storage Tank
Item/Activity
HAZID Prompt
Causes
Consequences
Leak into the
containment around
the LNG tank.
Possibly caused by
material/weld failure
of the inner tank.
Release of LNG into the
annulus, this will vaporise
leading to pressure
increase in the annulus.
Pressure rise in the
annulus leading to
operation of the drop-off
disk. NG release into the
tank room, if the extraction
system capacity is
exceeded. Possible
Fire/explosion in the room
in an ignition source is
present. Possible over
pressurization if large
quantity of NG is entered.
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
small releases.
Loss of vacuum
caused by failure of
the outer
tank/insulation
degradation.
1. Electrical equipment rated for C L2
Zone 1 (ATEX).
2. Tank design constructed,
tested in accordance with LR
requirements.
3. The ventilation system is
sized for 30 hch.
4. Drop of disk alarm.
5. Gas detection and alarm
within the tank room.
1. Review the ventilation Cryonorm
system sizing with
regards to the
maximum credible
release rate from the
drop off disk. What
size hole in the LNG
tank will lead to the
ventilation system
being exceeded.
1. If the drop off disk fails
to operate there could
be over pressurisation
of the outer shell.
6. Two independent ventilation
systems in the room
(connected to the UPS) with
redundant fans.
Loss of insulation leading 1. Perlite insulation is not used C L2
to heat transfer into the
as it has been found to settle
inner tank, leading to
- super insulation used
vaporisation in the tank,
instead.
pressure increase and
2. Periodic checks of vacuum
possible overpressure of
using portable instrument.
the tank leading to rupture.
Vacuum can be restored by
portable instrumentation.
2. Include procedures Argos/Cryonorm
for venting the tank in
event of loss of
vacuum in the O&M.
3. Drop off disk will provide
alarm on loss of vacuum.
4. Multiple relief valves on the
tank (4 x 50%, 3-way valve
isolation).
5. Monitoring of process
conditions indicates loss of
vacuum, frosting may be
visible on the exterior of the
tank.
Leakage from liquid Small releases of NG or
or vapour piping
LNG into the tank room,
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
1. Stainless steel drip tray with C L2
low temperature (TT5180)
3. Ensure that the
stainless steel drip
Rommerts/Cryon
orm
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.1. LNG Storage Tank
Item/Activity
HAZID Prompt
Causes
associated with the
LNG tank.
Consequences
possible fire/explosion if
ignited. Possible brittle
fracture of the deck if
exposed to LNG.
Safeguards
shut down of the LNG
system.
2. Electrical equipment rated for
Zone 1 (ATEX).
3. Piping system tested in
accordance with LR
requirements.
4. All welded construction, no
flanges.
S L R
Remarks/Consideratio
Responsibility
ns
tray is designed to
contain the
contents/releases of
the bunkering line.
Notes
4. Ensure that measures Rommerts/Cryon
are in place to
orm
prevent spraying of
releases onto
surfaces that are not
stainless steel.
5. Gas detection alarm and trip.
1oo3 for alarm and 2oo3 for
trip.
1.1.1.2 Control
system
failures
Mal operation of the
PBU (control failure
or operator error).
Refer to Node 2.
Bunkering control
system failure.
Possible overfilling of the
storage tank as described
above. Leading to lead
loss of bunkering which is
a delay.
Control system failure
1. Independent shut down of
leads to filling through the
the bunkering system, if the
lower inlet pipe, this leads
pressure in the tank is high.
to pressure build up.
2. Supervision and monitoring
Ultimately the tank
of the bunkering system.
pressure will reach the
bunkering supply pressure
and bunkering will stop which is an operational
delay.
5. Consider
requirements for
ensuring that the
bunkering supply
used is limited to a
pressure that could
not lead to tank
failure.
Cryonorm
6. Include position
sensors on control
Cryonorm
1. If the bunkering supply
pressure is higher than
the tank design
pressure on the storage,
there is a risk if tank
rupture and the relief
valve will operate.
Bunkering through the top 1. Monitoring of bunkering
inlet line leads to cooling of operations and tank
the tank and reduce
temperature and pressure.
pressure in the tank.
Increase in bunkering time.
Failure of a sensor
on the control
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Bunkering system shuts
down.
1. Bunkering system designed
to fail to a safe condition.
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.1. LNG Storage Tank
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
system or loss of
movement of a
valve.
1.1.1.3 Electrical
system
failures
Remarks/Consideratio
Responsibility
ns
valves, HV5115NG
and HV5110NG.
Loss of power supply Whole LNG system shuts 1. Control system is on UPS.
to control system.
down, including bunkering 2. Valves are fail closed.
system.
1.1.1.4 Utility failures Instrument air (as for the control system).
1.1.2. Materials
1.1.2.1 Flammable/
oxidising
materials
1.1.2.2 Toxic/
No credible causes identified
(acknowledged that
LNG is flammable).
NG present in the
tank room
Possible asphyxiation of
personnel if NG
concentration is too high.
1.1.2.3 Corrosive
materials
No credible causes
identified.
-
1.1.2.4 Inerts
Air present in the
tank at start-up.
If air remains in the tank,
there will be an inert gas
bubble in the top of the
tank.
1. Purging and venting of the
tank on start-up.
Air present in the
Build of inerts in the tank
tank due to
may lead to operational
bunkering operation problems.
(in the connections).
1. Tank can be vented to the
vaporiser to remove inerts.
asphyxiant
materials
1.1.2.5 Water
Water in the
bunkering
connection due to
atmospheric
moisture/poor
storage of the
bunkering
connection.
1. Ventilation system.
2. Personal oxygen monitors
used.
Icing inside the LNG
1.
system leading to blockage
of piping or instrumentation 2.
connection. Process
interruption if piping
systems are blocked. Loss
of fuel supply to the
engines.
3.
B L3
7. Treat areas where
Argos
NG is present as
confined spaces and
provide the required
warnings and
procedures.
System can be emptied and
ice removed.
Good bunkering practice.
e.g. storage of hoses etc. to
prevent air/water ingress.
Purging of bunkering system
to remove air/moisture.
Back-up engine with Gas oil
fuel.
4. Monitoring of gas pressure
and flow to the engines will
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.1. LNG Storage Tank
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
indicate partial loss of fuel
supply as ice forms.
1.1.3. Operating
Parameters
1.1.3.1 Temperature No deviations
identified
-
1.1.3.2 Pressure
LNG temperature
1.
increases leading to
rupture and release of LNG 2.
if ignited.
Material trapped
between two
isolation valves.
Thermal relief valves with
vents to the vent stack.
1. Scenario not rated as
the area is not normally
occupied - injury to
personnel is not likely.
Globe valves used (avoids
issues associated in ball
valves).
3. Electrical equipment rated for
Zone 1 (ATEX).
4. Gas detection system/fire
detection system.
Firefighting systems.
5. Ventilation system removes
NG.
1.1.3.3
Flow
Bunkering flow too
high, to control
failure or bunkering
system design.
Wear to valve seats due to 1. Bunkering system
high velocity.
specification will include
maximum flow rate to reduce
wear to valve seats.
2. Valves can be removed and
repaired.
3. Flow indication and alarm at
the bunkering station (on
board fixed installation).
4. Procedures for setting
bunkering rate.
1.1.4. Location/
Environment
1.1.3.4
Level
As considered
previously
1.1.4.1
Location
hazards
Container dropped
onto the vessel
during bunkering.
Possible damage to the
LNG tank leading to
fire/explosion.
1. The tank is protected by the C L1
deck above and other
equipment.
2. Tank is a double walled
pressure vessel.
3. Bunkering line is protected
against impact by covering.
Collision due to
marine incident
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Possible damage to the
LNG tank leading to
1. Tank is a double walled
pressure vessel.
C L1
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.1. LNG Storage Tank
Item/Activity
HAZID Prompt
Causes
Consequences
fire/explosion.
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
2. The tank is located D/5 from
the bottom of the vessel.
3. Tank is a double walled
vessel.
4. Additional protection on the
inner bulkhead and shell side
of the vessel.
Flooding of compartment
following collision.
Possible damage to
equipment in the space.
Possible damage to tank
control valve leading to
loss of control.
1. Valves of fail-safe closed and
cabling is located in the
middle of the vessel, not at
risk of flooding.
8. Check the
Cryonorm
consequence of
immersing the LNG
control valve in water
PV5130NG/PV5120N
G.
Tank is dislodged from its 1. Tank is fixed to protect
mounting due to
against floating.
impact/floating.
2. Tank supports designed for
vertical/horizontal/transverse
shock waves.
Overheating due to
external fire
Escalation of loss of
containment of LNG
system.
1. Relief valves on the LNG
C L1
tank sized for fire scenarios.
9. Update P&ID to show Cryonorm
extent of the cold box.
2. Relief valves are located in
the cold box.
3. Water sprays on the deck
can be used for firefighting
(monitors).
4. Tank has secondary
containment with insulation
which reduces heat input.
5. Control for prevention of
leaks and ignition [as above].
1.1.4.2 Other
activities
Dropped
object/struck by
something during
maintenance.
As considered above.
Maintenance and
No additional hazards
inspection activities. identified. These activities
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.1. LNG Storage Tank
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
are covered by standard
procedures.
Access is provided to all
equipment and can be
removed.
1.1.5. Operating
Modes
1.1.4.3 Ambient
conditions
No additional causes
identified.
1.1.5.1 Operation
Dynamic loads on
the tank due to
vessel movement
due to extreme
weather conditions
No significant
consequences identified the tank is designed for the
range of operation and
emergency stop.
Sloshing
Not considered to be a
significant issue as the
tank is small.
on inland
water ways
1.1.5.2 Other
operations
Purging for Start-up Nitrogen supply required 1. Relief valves on the tank
or maintenance/
for purging from bunkering 2. Manual tank valve on the
system. Possibility of over
inspection.
vent is open during purging
pressure if the nitrogen
(X5109NG).
supply is at too high
3.
High pressure alarm and
pressure. Tank rupture if
shut off of purging
over pressured.
connection.
Sunk vessel
Dead ship
1.1.6. Other
1.1.6.1 Emptying
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
1. Tanker has internal baffles.
Entire LNG system
1.
submerged, including the
relief vent. Tank contents
will increase in
2.
temperature, leading to
pressure build-up of the
tank, which will eventually
rupture if not relieved.
Release of LNG into water,
3.
which will reach the
surface, possible flash fire
if ignited.
4.
B L1
Tank will withstand external C L1
pressures due to being
submerged.
Relief system will operate but
at reduced capacity and
increased set pressure due
to the presence of water in
the vent.
11. Evaluate the
consequences of
being submerged on
the relief valve
capacities (including
thermal relief
valves).
Approximately 20 days
before pressure build up will
become a problem.
Designed in accordance to
ADN standards - to high a
standard of damage stability.
As loss of power, as
considered previously.
Piping does not allow Bunkering pipe cannot be 1. Thermal relief valves on
A L2
10. Provide details of
Cryonorm
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.1. LNG Storage Tank
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
free draining into the totally emptied after
isolated sections.
of the bunkering
bunkering leading to build 2. Bunkering line rated for 20
connection. tank
up of pressure, as the pipe
barg.
warms and possible
release.
Remarks/Consideratio
Responsibility
ns
the bunkering line
route and method to
ensure that it is
empty after
bunkering.
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.2. PBU and Vaporiser
Item/Activity
1.2.1. Equipment
HAZID Prompt
Causes
1.2.1.1 Equipment - Tube leak in
failures
exchanger E-5150.
Consequences
Safeguards
LNG release into the shell 1. Relief valve on the closed
of the heat exchanger.
loop system sized for tube
Rapid vaporisation leading
rupture in E-5150.
to pressure into the
2. Pressure transmitter in the
water/glycol system.
closed loop system
Possible rupture of the
(PT1815), closes down the
water/glycol system if the
LNG system if there is a
system is over pressurized
pressure increase in the
- hot water release
closed loop system.
followed by NG. Possible
3. Secondary heat loop piping
fire/explosion if release
system and equipment
ignited.
designed for 10 barg.
S L R
C L3
Remarks/Consideratio
Responsibility
ns
Notes
22. Ensure that the relief Cryonorm
valve sizing takes
into account
pressure loss
through the piping
up to the relief valve
and the possibility of
LNG entering the
valve.
4. The shell and tube
exchanger is inspected and
approved according to
appropriate codes and
practices for LNG.
5. Instrumentation in the
secondary loop rated for
flammable atmospheres.
6. Firefighting systems on the
vessel.
Plate leak in
Exchanger E-1820
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Engine water leak into the 1. May be detectable from
closed loop system
system pressure monitors.
(dependant on the relative 2. Exchanger plates are
23. Consider using
different colour
additives to the
1. A plate failure in E-1820
will be a hidden failure.
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.2. PBU and Vaporiser
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
system pressures).
Pressure increase in the
closed loop system not
thought to be significant as
the system is designed for
10 barg.
stainless steel and are in a
relatively non corrosive
environment.
S L R
Remarks/Consideratio
Responsibility
ns
engine water and
circulation water to
indicate leakage.
Note: Sampling will
be required if this is
done.
Closed loop water leaks
1. Low flow switches on the
into the engine water
secondary loop with alarm
system (dependant on the
and shut down.
relative system pressures).
Loss of water in the closed
loop leads to low pressure
but circulation will
continue.
24. Install Pressure
Cryonorm
indications with
alarm and shut
down on the
secondary loop and
engine water
system.
Loss of circulation
around the closed
loop system due to
pump failure.
No flow of water/glycol
1. Redundant circulation pumps C L2
around the closed loop
on automatic changeover.
system. Reduced
2. Low flow alarm and shut
vaporisation capacity
down on the circulation
leading to possible carrysystem.
over of LNG into the NG
3. A low temperature shut off
feed. Note this will take
valve on the outlet of the
some time as residual heat
LNG tank.
in the shell of the heat
exchanger. Possible
failure of the gas supply
line to the engine due to
low temperatures.
Release of LNG possible
fire/explosion.
25. Confirm in the event Cryonorm
of a shut down that it
is not credible to get
LNG into the exit of
the vaporiser into
piping that is not
rated for low
temperatures.
Loss in pressure in
the air space in the
expansion vessel
Slight reduction in pressure 1. Pressure relief valve on the
in the circulation liquid
water system.
which is not a significant
failure.
(V-1800).
Notes
1. It is not planned to have
an automatic air bleed
valve on the closed loop
water system, as this
could be a release point
of an LNG leak were to
enter the water system.
If additional water is added
to make up the pressure,
the system could become
hydraulically full leading to
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.2. PBU and Vaporiser
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
rupture as the temperature
increases. Loss of
circulation as detailed in
previous scenarios.
1.2.1.2 Control
System
failures
Control failure leads
to high flow to the
PBU through valve
5130.
Pressure increase in the
storage tank, possible
leading to rupture or
leakage of the tank.
Possible Fire/explosion if
ignited, possible over
pressurization in the tank
room (refer to node 1).
1. Copy from Node 1
[Revalidated: CHRIS TO
COMPLETE]
1. Control shut off valves
are designed to be very
high integrity.
2. Safety system will close the
valves to the PBU (assuming
these can operate prior to
failure of the control system).
3. Manual valve can be closed
(refer to node 1).
Control failure leads
to valves on the inlet
to the vaporiser
being fully open (e.g.
valve 5120NG or
5125NG).
Normal operating condition
is that these valves are
fully open. Flow rate in the
system is a function of gas
demand from the engine
system. No significant
consequences (refer to
scenario were there has
been a gas line rupture).
Control failure leads
to valves on the inlet
to the vaporiser fail
to open (e.g. valve
5120NG or
5125NG).
No pressure into the top of 1.
the storage tank leading to
reduced flow to the engine,
leading to loss of power.
Control system fails Reduced flow to the
and does not feed
engine, leading to loss of
sufficient LNG to the power.
vaporiser.
C L1
1. Failure of these valves
to close when required
is a failure of the
emergency system.
Process alarms on the flow
system e.g. flow and
pressure will indicate loss of
gas supply
2. Alarms on the engine.
3. Diesel engine can be used
as a backup power supply.
1. Process alarms on the flow
system e.g. flow and
pressure will indicate loss of
gas supply
2. Alarms on the engine.
3. Diesel engine can be used
as a backup power supply.
Control system
High temperature water in 1. High temperature alarm/shut
failure leading to the the vaporiser/PBU which
down system which stops hot
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.2. PBU and Vaporiser
Item/Activity
HAZID Prompt
Causes
closed loop water
system being too
hot. Due to
temperature control
failure or electrical
heater being
operated when not
required.
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
results in higher
water circulation and LNG
temperature gas being fed
circulation system (prevents
to the fuel systems and
engine damage).
engines. Maximum
2. Temperature transmitters on
temperature specification
the outlet of the vaporiser
for the engine exceeded
(5150 and 5155) which stops
leading to possible
hot water circulation and
damage/engine shut down
LNG circulation system
and loss of power.
(prevents engine damage).
3. Diesel engine can be used
as a backup power supply.
4. Electrical heater has a small
heating capacity and if
constantly on will not lead to
overheating of the system.
Control system
failure leading to the
closed loop water
system being too
cold or fouling of
heat exchangers.
Lower vaporization in the 1. Process alarms on the flow
vaporiser and PBU leading
system e.g. flow and
to reduced flow to the
pressure will indicate loss of
engine and loss of power.
gas supply
2. Alarms on the engine.
3. Diesel engine can be used
as a backup power supply.
4. Electrically heater can be
used if the control failure
associated with the hot water
system.
Failure in the gas
line after
PCV5150NG
High flow of LNG through 1.
the vaporiser as the
downstream system is de
pressurised. Possible
carry through of LNG if the 2.
vaporiser capacity is
exceeded leading to LNG
release from the gas piping
system.
Shut down system in the gas C L3
system operates on loss of
pressure and closes the LNG
storage tank valves.
Low temperature shut down
on the exit temperature from
the vaporiser (5150 and
5155).
3. Flow indication may provide
alarm/trip (depending on the
leak position).
1.2.1.3 Electrical
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Loss of power supply Loss of heating in
1. Shut down system in the gas
1. Pumps are not on
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.2. PBU and Vaporiser
Item/Activity
HAZID Prompt
system
failures
Causes
to the circulation
pumps
Consequences
vaporiser and PBU as
considered above
Safeguards
system operates on loss of
pressure and closes the LNG
storage tank valves.
2. Low temperature shut down
on the exit temperature from
the vaporiser (5150 and
5155).
S L R
Remarks/Consideratio
Responsibility
ns
Notes
emergency power
supply as the system
can be shut down
safely.
3. Flow indication may provide
alarm/trip (depending on the
leak position).
4. Diesel engine can be used
as a backup power supply.
Loss of power supply Unable to start up as the
to the electrical
permissive in the control
heater on the
system will not operate
circulation system
until the closed loop
reaches a required
temperature.
1.2.1.4 Utility
failures
1.2.2. Materials
1.2.2.1 Flammable/
oxidising
Loss of instrument
air
1. Diesel engine can be used
as a backup power supply.
System fails to safe state, 1. Diesel engine can be used
loss of power to the
as a backup power supply.
engines.
No consequences
identified.
materials
1.2.2.2 Toxic/
asphyxiant
materials
As for node 4 - as of
NG leaks into the
cold box.
1.2.2.3 Corrosive
materials
Corrosion in the
closed loop water
system.
1.2.2.4 Inerts
No consequences
identified.
1.2.2.5 Water
Draining of water
required for
maintenance - note
Possible cause of leak as 1. Corrosion exhibitor in the
detailed above.
water system included in the
glycol mix.
2. [Revalidated]
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.2. PBU and Vaporiser
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
problem water can
be drained from the
system.
Leakage of water
from the system
1.2.3. Operating
Parameters
1.2.4. Location/
Environment
Water may be released
1. Separate drainage system
onto the deck or the tank
from the tank room which
room. No significant
can be used to pump out
hazard identified but water
water.
may need to be drained.
1.2.3.1 Temperature Total freezing of the
water contents in the
vaporiser/PBU
considered but not
thought to be a
credible event.
1.2.3.2 Pressure
No additional
scenarios identified.
1.2.3.3 Flow
No additional
scenarios identified.
1.2.3.4 Level
Water addition
No significant
required for filling the consequence as this is a
secondary loop
standard requirement for
system prior to start- this type of system.
up or after
maintenance.
1.2.4.1 Location hazards
Dropped object is a As detailed above.
possible cause for
leak from the water
system.
1.2.4.2 Other
activities
26. Include details of
Cryonorm
filling and venting on
the P&ID diagram.
1. A pipe routed close to
structures and is very short;
therefore risk of damage is
minimal.
No additional
scenarios identified.
1.2.4.3 Ambient conditions
No additional
scenarios identified.
1.2.5. Operating
Modes
1.2.5.1 Operation
on inland
water ways
1.2.5.2 Other
operations
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Time to start up the Delay in start-up if the
1. No specific criteria for startsystem from cold
heater is not large enough.
up. Note: power can be
using the electrical
supplied from the diesel
heater.
fuelled system or from shore.
No additional
scenarios identified.
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.2. PBU and Vaporiser
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
1.2.6. Other
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.3. Gas Supply to Engines and the Engines
Item/Activity
1.3.1. Equipment
HAZID Prompt
Causes
1.3.1.1 Equipment - Failure of the
failures
pressure control
valve 5150NG
Maybe surges of gas or
1.
slightly high pressure to
the downstream system,
possibly 10 barg to
2.
PCV5182NG - leading to
damage to the downstream
system, possibly up to the
3.
engine inlet as it is not
rated for 10 barg. Possible
fire/explosion if gas
released.
4.
Relief valves after the
second stage pressure
reduction.
B L3
High pressure shut down at
the engine inlet which closes
isolation valves.
Flow measurement in 4
locations which shuts off the
gas supply.
Majority of the gas pipe is
located outside the vessel,
which prevents build-up of
gas if there is a leak.
5. Firefighting equipment in the
on the vessel.
6. Control of ignition sources on
the vessel.
As above but possible feed 1. Relief valves after the
of 10 barg NG to the
second stage pressure
engine. Possible damage
reduction.
to the engine and leak of
NG at the engine. Leading
to possible fire/explosion in
the engine system.
2. High pressure shut down at
the engine inlet which closes
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
C L4
12. Clarify the design of MWM
the TRV5185 relief
valve, will it protect
the engine from
overpressure from
the high pressure
gas supply.
13. Consider designing Argos/Cryonorm/
the fuel supply
MWM
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.3. Gas Supply to Engines and the Engines
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
isolation valves.
3. Flow measurement in 4
locations which shuts off the
gas supply.
4. Gas detection in the engine
with alarm and shut down.
5. Firefighting equipment in the
engine room.
Remarks/Consideratio
Responsibility
ns
system to withstand
failure of
PCV5150NG (high
pressure - up to
PCV5182NG). Note
that similar failures
in the downstream
gas train.
Notes
6. Control of ignition sources on
the vessel.
7. Ventilation system in the
engine room.
Gas supply to engine Release of gas at the
1.
open for
engine leading to possible
maintenance leading fire/explosions and harm to
to gas release. If
personnel.
2.
isolation valves are
passing.
3.
Multiple isolation valves on A L3
the gas train (including hand
valves).
Firefighting equipment in the
engine room.
Control of ignition sources on
the vessel.
4. Ventilation system in the
engine room.
1.3.1.2 Control
system
failures
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Control system
failure leads to
pressure control
valves being too far
open.
Possible over
1. PCV5150NG designed to fail C L4
pressurization of the
closed.
downstream gas systems 2. Independent high pressure
as detailed above,
shut down using PT5160.
Control system
closes one of the
feed valve.
Leading to loss of fuel to
one or all of engines,
dependant on the failure.
1. Alarms on flow and pressure.
Fault condition in an Gas valves will close and
engine.
any engine will stop.
1. As the engine runs down gas
in the fuel supply will be
14. Ensure that PT5160 Cryonorm
and connections are
rated for maximum
pressure in failure
scenarios.
1. It is proposed to install
another shut off valve
after PT5160NG to
protect against high
pressure. Operated by
the safety shut down
system.
15. Include
MWM
consideration of this
1. It is required that the
engine is approved by
2. Gas oil fuelled back-up
engine.
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.3. Gas Supply to Engines and the Engines
Item/Activity
HAZID Prompt
Causes
Consequences
Possibility of gas remaining
in the line between the
shut off valves and the
engines.
Safeguards
S L R
used.
Engine over speed
condition.
No significant effects on
the gas system, the engine
will only consume the gas
that is provided.
Isolation valve on
engine inlet fails to
operate when
required.
Gas continues to be fed to 1. Double block isolation on the B L1
the engine when not
inlet to the engine.
required. Gas will pass
2. Engine will withstand some
through the engine to the
overpressure or will be fitted
exhaust. Possible ignition
with relief system from
in the engine and the
explosion.
exhaust system.
3. Fail safe closed action on the
isolation valves.
Remarks/Consideratio
Responsibility
ns
remaining volume of
gas in the approval
process of the
engine.
16. Install an automated MWM
bleed valve between
isolation valves on
the inlet to the
engines (X5193NG
and X5194NG for
engine 1, as similar
for other engines).
Notes
Lloyd's Register.
1. This is required to
comply with LR rules.
4. Limit switches on the
isolation valve which provide
alarm if valves not closed
fully.
1.3.1.3 Electrical
system
No additional
scenarios identified.
failures
1.3.1.4 Utility failures Cooling system
Engine stops as detailed
failure on the engine. above.
Oil system failure on Engine stops as detailed
the engine.
above.
1.3.2. Materials
1.3.2.1 Flammable/
oxidising
No additional
scenarios identified.
materials
1.3.2.2 Toxic/
asphyxiant
materials
1.3.2.3 Corrosive
materials
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
No additional
scenarios identified.
External corrosion of If corrosion is severe
the gas line and
leading to loss of
components on the containment and fire.
deck.
1. Routine painted line
B L4
2. Inspection of line
3. Emergency shutdown of the
furl system if the leak occurs.
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.3. Gas Supply to Engines and the Engines
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
4. Controls of ignition sources.
5. Firefighting system on the
deck.
Use of aluminium
component in the
gas line to the
engine.
1.3.3. Operating
Parameters
1.3.4. Location/
Environment
1.3.2.4 Inerts
No additional
scenarios identified.
1.3.2.5 Water
No additional
scenarios identified.
Aluminium components will 1. No components are
not withstand fire scenarios manufactured from
and could fail.
aluminium.
1.3.3.1 Temperature No significant
scenarios identified.
1.3.3.2 Pressure
No additional
scenarios identified.
1.3.3.3 Flow
No additional
scenarios identified.
1.3.3.4 Level
Not applicable.
1.3.4.1 Location
Dropped object or
Failure of the gas line
1. Control of lifting operations
impact to the piping leading to fire on the deck
on the vessel.
system on the deck. of the vessel.
2. Line has some impact
protection (but would not
withstand a dropped
container).
hazards
B L3
3. Fuel system shut down.
4. Firefighting system on deck.
5. Bunkering connection arm
does not pass over this fuel
line.
Vibration.
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
No specific consequences
identified related to this
design. Note: vibration
related failures and hose
failure due to poor
installation are known
failure modes.
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.3. Gas Supply to Engines and the Engines
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
Use of single walled piping 1. Gas detection in the engine B L2
on the engine, possible
room
leak if this fails due to
2. Ventilation system prevents
vibration leading to fire in
build-up of gas. Note that if
the engine room.
the ventilation system is
proved to be sufficient there
is no requirement for double
walled piping on the engine.
3. Firefighting system in the
engine room.
4. Shut down of the gas supply.
5. Design to standards and
inspected accordingly.
1.3.4.2 Other
activities
Collision with
another vessel or
dock.
Not a significant issue as
the pipe is routed away
from the side of the vessel.
Engine removal for
maintenance.
Not a significant issue
identified, the system will
operate with 1 or more
engine removed.
1.3.4.3 Ambient conditions
No significant
scenarios identified.
1.3.5. Operating
Modes
1.3.5.1 Operation
on inland
No significant
scenarios identified.
water ways
1.3.5.2 Other
operations
1.3.5.3 Parallel
operation of
the gas oil
fuelled
engine and
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
No significant
scenarios identified.
Maybe required if a
gas engine is
damaged or during
changeover between
gas and oil
operation.
1. Engines and fuel
systems designed is
appropriate for inland
water way operation.
No significant
consequence, the system
is designed for parallel
operation.
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.3. Gas Supply to Engines and the Engines
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
the NG
engine.
1.3.5.4 Engine
Required during
acceleration and
operation of the
step loads
vessel.
1.3.5.5 Purging at
start-up of
Gas fuelled engines are
less responsive than oil
fuelled engines, this is not
a significant issue with this
design, the system will
meet the required criteria.
No significant
scenarios identified.
1. Engines and fuel
systems designed is
appropriate for inland
water way operation.
the engines
1.3.6. Other
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.4. Cold Box Ventilation System
Item/Activity
1.4.1. Equipment
HAZID Prompt
Causes
1.4.1.1 Equipment - Leak from the LNG
failures
piping system into
the cold box - due to
fatigue/weld failure
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Consequences
Safeguards
S L R
LNG released into the cold 1. Electrical equipment rated for C L2
box, which will collect in
Zone 1 (ATEX).
the base of the box and
form a liquid level. LNG
will also vaporise to form
NG which will be vented
through the cold box
extraction system to the
vent stack. If the
extraction system is not
sufficient for the leak size
gas will be released into
2. The ventilation system is
the tank room leading to
sized for 30 hch.
the possibility of over
pressurization of the tank
room and fire/explosion if
ignited.
Remarks/Consideratio
Responsibility
ns
17. Check if the cold
Cryonorm
box extraction
system can remove
the maximum flow of
NG formed from
guillotine failure of
the largest bore
connection in the
cold box e.g. all the
liquid released is
vaporised.
Notes
1. if recommendation 17
deems to be correct
than recommendation
18 may not be required.
18. Make the root valves Cryonorm
on the liquid outlets
from the LNG tank
accessible in
emergency
conditions i.e. so
they can be
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.4. Cold Box Ventilation System
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
3. Piping system is designed in
accordance to B31.3.
4. All materials used are by
approval of Lloyd's Register.
5. Gas detection and alarm
within the tank room.
6. Two independent ventilation
systems in the room
(connected to the UPS) with
redundant fans.
S L R
Remarks/Consideratio
Responsibility
ns
operated manually if
the automatic shut
off valves fail.
20. If it is not possible to Cryonorm
remotely/manually
operate the root
valves, evaluate the
consequences of a
prolonged release
into the cold box i.e.
would the cold box
be overfilled and
overflow into the
tank room.
7. Equipment in the cold box is
protected against impact
from the LNG tank.
8. Shut off valve on the LNG
outlets operates on Gas
detection (Note this only
applies for leaks after the
shut off valve).
9. Firefighting systems in the
tank room and the cold box.
10. Cold box is designed to
withstand the LNG weight
released into it.
Failure of one of the Reduction in extraction
cold box extraction capacity
fans.
1. Redundant second fan.
2. Fans are on separate power
systems.
3. One fan is on a UPS.
4. Operation and load alarms
on the fans provide indication
that stopped.
5. Extraction system in the tank
room will provide some
ventilation.
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.4. Cold Box Ventilation System
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
Failure of non-return Flap fails to closed position 1. Power consumption of fan
flap on the fan outlet. leading to reduction in
will indicate loss of flow.
extraction capacity.
2. Visual inspection of counter
weight on the valve will
indicate whether in the wrong
position.
S L R
Remarks/Consideratio
Responsibility
ns
19. Consider protecting Windex/Argos
the counter weights
on the non-return
valves to prevent
movement being
blocked.
3. Valves designed/approved
for marine duty in this
environment.
Flap fails to the open
1. Valves designed/approved
position leading to
for marine duty in this
recirculation of air around
environment.
the non-operating fan.
2. Visual inspection of counter
weight on the valve will
indicate whether in the wrong
position.
3. Power consumption of fan
will indicate loss of flow.
Blockage of the mist Reduction/loss of air flow. 1. The mist eliminator is large,
eliminator on the air
total blockage is not thought
inlet to the tank
to be credible.
room.
2. Alarms on the extraction
system motors will
indicate/alarm loss of air
flow.
1.4.1.2 Control
system
failures
Second fan does not Reduction in extraction
speed up/start when capacity
the first fan fails.
1. Extraction system in the tank
room will provide some
ventilation.
2. Operation and load alarms
on the fans provide indication
that stopped.
3. One fan is on a UPS.
4. Fans are on separate power
systems.
5. Redundant second fan.
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.4. Cold Box Ventilation System
Item/Activity
HAZID Prompt
Causes
Consequences
Control system
Increased levels of noise
operates both fans
simultaneously when
only one required.
1.4.1.3 Electrical
system
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
1. Motor status indication/alarm
in the control system.
Power supply lost to Loss of extraction capacity 1. Fans are on separate power
the fans.
systems.
2. One fan is on a UPS.
failures
3. Alarms in the control system
- decision can be made
whether to shut down the
LNG system and to run on
the diesel engine.
1.4.1.4 Utility
failures
1.4.2. Materials
1.4.2.1 Flammable/
oxidising
No new cause
identified
No new cause
identified
materials
1.4.2.2 Toxic/
asphyxiant
materials
Refer to node 1 for
confined space
entry.
1.4.2.3 Corrosive
materials
No new cause
identified
1.4.2.4 Inerts
No new cause
identified
1.4.2.5 Water
Moisture (humidity)
in the air drawn
through the tank
room and cold box.
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Icing of cryogenic systems. 1.
Ice build-up may lead to
2.
operability difficulty or
equipment damage if build
3.
up is severe (e.g. valve
stems bent).
Insulation of cold surfaces.
Mist drawn into in the Icing of cryogenic systems. 1.
tank room and cold Ice build-up may lead to
2.
box through the air operability difficulty or
inlet.
equipment damage if build
3.
up is severe (e.g. valve
Insulation of cold surfaces.
Design includes
consideration of ice build-up.
Cryogenic valves with long
stems used.
Design includes
consideration of ice build-up.
Cryogenic valves with long
stems used.
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.4. Cold Box Ventilation System
Item/Activity
HAZID Prompt
Causes
Consequences
stems bent).
1.4.3. Operating
Parameters
1.4.4. Location/
Environment
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
4. Mist eliminator on the inlet.
1.4.3.1 Temperature Operation at low
ambient conditions
considered but not
thought to be an
issue.
1.4.3.2 Pressure
Room may operate
at slight under
pressure - not
considered to be a
problem.
1.4.3.3 Flow
Overall flow of air
through the tank
room is not
considered to be
sufficient to be an
operational problem.
Velocities are not
high enough to be a
nuisance.
1.4.3.4 Level
Refer to previous
scenarios.
1.4.4.1 Location
No additional
scenarios identified
(refer to node 1).
hazards
Air inlet to the tank
room located in a
hazardous area
(flammables).
1.4.4.2 Other
activities
1.4.4.3 Ambient
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Possibility of flammable
atmosphere entering the
tank room and cold room.
21. Verification of extent Rommerts
of hazardous area
according to rules is
required.
No problems
identified with access
for maintenance and
removal of
equipment’s - this
has already been
included in design.
No additional
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.4. Cold Box Ventilation System
Item/Activity
1.4.5. Operating
Modes
HAZID Prompt
Causes
conditions
scenarios identified.
1.4.5.1 Operation
No additional
scenarios identified.
on inland
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
water ways
1.4.5.2 Other
operations
No additional
scenarios identified.
1.4.6. Other
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.5. Engine Room Ventilation System
Item/Activity
1.5.1. Equipment
HAZID Prompt
Causes
1.5.1.1 Equipment - No redundancy in
failures
fan operation due to
equipment, power or
control failure.
Insufficient ventilation,
reduced protection if there
is a release of NG.
Possible over heating of
engines if ventilation
system is not adequate. If
air supply is not sufficient
then adequate combustion
air may not be available.
1. Installed redundant fans
available.
2. System will be shut down if
insufficient fans are
available.
3. Alarms on the fan systems.
4. Diesel engine used for vessel
power supply.
5. Engines will provide alarm
and shut down on high
temperature.
6. Engine combustion air
requirement is small in
comparison to overall
ventilation flow.
Too many fans
No significant
running due to
consequences identified
equipment or control other than waste of energy.
failure.
Non return damper
failed closed on a
fan.
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Common duct to the fans No significant
consequences identified
due to system
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.5. Engine Room Ventilation System
Item/Activity
HAZID Prompt
Causes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Notes
configuration.
Non return damper Fan operates against a
1. Power indication on the
failed open on a fan. closed discharge damper,
power will indicate operation
loss of flow as detailed
against the closed discharge.
above.
NG release into the Release of NG into the
engine room from
engine room which is not
the NG fuel supply. rated for explosive
atmospheres. Possible
explosion if the gas
accumulates and ignites.
1.5.1.2 Control
system
1. Ventilation system designed C L3
to remove releases of NG;
however it is acknowledged
that a short term explosive
atmosphere could occur.
27. Additional validation Argos
that the hazardous
area is acceptable is
required using CFD
modeling.
1. This topic is a subject to
ongoing discussions.
2. Emergency shutdown system
based on gas detection and
flow
measurement/comparison
with engine usage (note that
this is not a safety system
acceptable by Lloyd's
Register).
No additional
scenarios identified.
failures
1.5.1.3 Electrical
system
No additional
scenarios identified.
failures
1.5.1.4 Utility
failures
1.5.2. Materials
1.5.2.1 Flammable/
oxidising
materials
1.5.2.2 Toxic/
asphyxiant
materials
1.5.2.3 Corrosive
materials
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
No additional
scenarios identified.
Present in an engine No significant impact on
room environment, this ventilation system.
possible cause of
fire.
No significant
difference to normal
ventilation system
requirements.
No significant
difference to normal
ventilation system
requirements.
©Lloyd’s Register 2014
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.5. Engine Room Ventilation System
Item/Activity
1.5.3. Operating
Parameters
HAZID Prompt
1.5.2.4 Inerts
No significant
difference to normal
ventilation system
requirements.
1.5.2.5 Water
As for tank room moisture content less
significant.
Environment
Positive pressure in
the engine room due
to multiple fans
running.
1.5.3.3 Flow
No additional
scenarios identified.
1.5.3.4 Level
Not applicable
1.5.4.1 Location
Suction and
discharge location
considered - no
problems identified.
hazards
1.5.4.2 Other
activities
1.5.4.3 Ambient
conditions
1.5.5. Operating
Modes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
1.5.3.1 Temperature No additional
scenarios identified.
1.5.3.2 Pressure
1.5.4. Location/
Causes
1.5.5.1 Operation
on inland
Door may be difficult to
open/closing and may
strike someone on
opening.
Following shut down Possible ignition of small
of engines in fault
quantities of NG on startconditions there is a up.
possibility that small
quantities of NG may
contain in the system
and enter the engine
room.
1. Warning signs on the Door
A L2
2. Special door mechanism with
two steps for opening (allows
pressure release).
1. Gas detection in the engine
room.
A L2
2. Portable Gas testing around
the engines.
No additional
scenarios identified.
No additional
scenarios identified.
water ways
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Notes
Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM
Node: 1.5. Engine Room Ventilation System
Item/Activity
HAZID Prompt
1.5.5.2 Other
operations
1.5.6. Other
Causes
Consequences
Safeguards
S L R
Remarks/Consideratio
Responsibility
ns
Maintenance - no
issues identified, the
engines must be
shut down prior to
maintenance. Note
that maintenance
activity on a nonoperational engine is
allowed whilst the
others are operating
as long as the
engine is adequately
isolated according to
requirements.
1.5.6.1 Fire in the
Fire due to gas
Requirement for reduced
engine room release or oil fire etc. air flow into the engine
room to reduce oxygen
availability.
1. Ventilation system stops if
there is a fire condition
automatically.
2. Air inlet dampers can be
closed if required.
3. Firefighting system in the
engine room.
Remarks/Considerations
Remarks/Considerations
Place(s) Used
Responsibility
1. Review the ventilation system sizing with regards to the maximum credible release rate from the drop off disk.
What size hole in the LNG tank will lead to the ventilation system being exceeded.
Consequences: 1.1.1.1.2.1
Cryonorm
2. Include procedures for venting the tank in event of loss of vacuum in the O&M.
Consequences: 1.1.1.1.3.1
Argos/Cryonorm
3. Ensure that the stainless steel drip tray is designed to contain the contents/releases of the bunkering line.
Consequences: 1.1.1.1.4.1
Rommerts/Cryonorm
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Notes
Remarks/Considerations
Place(s) Used
Responsibility
4. Ensure that measures are in place to prevent spraying of releases onto surfaces that are not stainless steel.
Consequences: 1.1.1.1.4.1
Rommerts/Cryonorm
5. Consider requirements for ensuring that the bunkering supply used is limited to a pressure that could not lead to
tank failure.
Consequences: 1.1.1.2.2.2
Cryonorm
6. Include position sensors on control valves, HV5115NG and HV5110NG.
Consequences: 1.1.1.2.3.1
Cryonorm
7. Treat areas where NG is present as confined spaces and provide the required warnings and procedures.
Consequences: 1.1.2.2.1.1
Argos
8. Check the consequence of immersing the LNG control valve in water - PV5130NG/PV5120NG.
Consequences: 1.1.4.1.2.2
Cryonorm
9. Update P&ID to show extent of the cold box.
Consequences: 1.1.4.1.3.1
Cryonorm
10. Provide details of the bunkering line route and method to ensure that it is empty after bunkering.
Consequences: 1.1.6.1.1.1
Cryonorm
11. Evaluate the consequences of being submerged on the relief valve capacities (including thermal relief valves).
Consequences: 1.1.5.2.2.1
Cryonorm
12. Clarify the design of the TRV5185 relief valve, will it protect the engine from overpressure from the high
pressure gas supply.
Consequences: 1.3.1.1.1.2
MWM
13. Consider designing the fuel supply system to withstand failure of PCV5150NG (high pressure - up to
PCV5182NG). Note that similar failures in the downstream gas train.
Consequences: 1.3.1.1.1.2
Argos/Cryonorm/MWM
14. Ensure that PT5160 and connections are rated for maximum pressure in failure scenarios.
Consequences: 1.3.1.2.1.1
Cryonorm
15. Include consideration of this remaining volume of gas in the approval process of the engine.
Consequences: 1.3.1.2.3.1
MWM
16. Install an automated bleed valve between isolation valves on the inlet to the engines (X5193NG and X5194NG
for engine 1, as similar for other engines).
Consequences: 1.3.1.2.5.1
MWM
17. Check if the cold box extraction system can remove the maximum flow of NG formed from guillotine failure of
the largest bore connection in the cold box e.g. all the liquid released is vaporised.
Consequences: 1.4.1.1.1.1
Cryonorm
18. Make the root valves on the liquid outlets from the LNG tank accessible in emergency conditions i.e. so they can
be operated manually if the automatic shut off valves fail.
Consequences: 1.4.1.1.1.1
Cryonorm
19. Consider protecting the counter weights on the non-return valves to prevent movement being blocked.
Consequences: 1.4.1.1.3.1
Windex/Argos
20. If it is not possible to remotely/manually operate the root valves, evaluate the consequences of a prolonged
release into the cold box i.e. would the cold box be overfilled and overflow into the tank room.
Consequences: 1.4.1.1.1.1
Cryonorm
21. Verification of extent of hazardous area according to rules is required.
Consequences: 1.4.4.1.2.1
Rommerts
22. Ensure that the relief valve sizing takes into account pressure loss through the piping up to the relief valve and
the possibility of LNG entering the valve.
Consequences: 1.2.1.1.1.1
Cryonorm
23. Consider using different colour additives to the engine water and circulation water to indicate leakage. Note:
Sampling will be required if this is done.
Consequences: 1.2.1.1.2.1
Argos/Cryonorm/MWM
24. Install Pressure indications with alarm and shut down on the secondary loop and engine water system.
Consequences: 1.2.1.1.2.2
Cryonorm
25. Confirm in the event of a shut down that it is not credible to get LNG into the exit of the vaporiser into piping that
is not rated for low temperatures.
Consequences: 1.2.1.1.3.1
Cryonorm
26. Include details of filling and venting on the P&ID diagram.
Consequences: 1.2.3.4.1.1
Cryonorm
27. Additional validation that the hazardous area is acceptable is required using CFD modelling.
Consequences: 1.5.1.1.5.1
Argos
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Risk Matrix
L1
L2
Likelihood
L3
L4
L5
Severity
C
B
A
Severity
Severity
C
B
Description
Likelihood
L1
L2
L3
L4
L5
Multiple
fatalities
Single fatality or
multiple major
injuries
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Severity
A
Likelihood
Description
L1
L2
L3
L4
L5
Major injury
Likelihood
Code
Description
Chance Per Year
Chance Per Vessel Lifetime
L1
Remote
<10E-6
> 1 in 40,000
L2
Extremely Unlikely
10E-6 to 10E-5
1 in 40,000 to 1 in 4,000
L3
Very Unlikely
10E-5 to 10E-4
1 in 4,000 to 1 in 400
L4
Unlikely
10E-4 to 10E-3
1 in 400 to 1 in 40
L5
Likely
10E-3 to 10E-2
1 in 40 to 1 in 4
Risk Ranking
Code
Description
Low
Medium
High
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Appendix B
HAZID P&IDs
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Node 1.1 (LNG Storage Tank) and Node 1.2 (PBU and Vaporiser)
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Node 1.2 (PBU and Vaporiser) and Node 1.3 (Gas Supply to the Engines)
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Node 1.3 (Gas Supply to the Engines)
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
©Lloyd’s Register 2014
Annexe 2 au RV (14) 59 = RV/G (14) 92 = JWG (14) 86
Synthèse des dérogations au Code IGF
(Résolution de l'OMI MSC.285(86)
Code IGF
(version juillet 2009)
Dérogation
Situation à bord
1.1.2 Renvoi à SOLAS
Un bateau de la navigation
intérieure n'est pas tenu de
satisfaire aux exigences
SOLAS.
2. Type de citerne de
GNL : citerne de type C
OMI
La citerne de stockage de
GNL n'est pas une citerne de
type C OMI.
La citerne de stockage de GNL est
construite conformément à la
norme EN 3458-2, avec des calculs
supplémentaires pour une
accélération du bateau de 2g dans
le sens horizontal et 1g dans le
sens vertical.
2.8.1.2
Branchements de tuyaux
sur la citerne
normalement situés audessus du niveau de
remplissage maximal
Tous les branchements de
tuyaux sur la citerne ne sont
pas au-dessus du niveau de
remplissage maximal
La conception de la citerne
suppose un branchement sur le
fond afin de pouvoir établir de la
pression pour la consommation.
De plus, le niveau de remplissage
est déterminé à partir du
branchement sur le fond.
2.8.1.4
L’échappement par les
vannes de surpression est
situé au moins à 6 m ou
largeur/3 au-dessus du
pont exposé aux
intempéries (la plus
grande des deux
dimensions étant retenue)
Ceci est impossible en raison
du tirant d'air insuffisant des
ponts
L'orifice de dégagement est situé à
2 m au-dessus du pont principal,
soit à une hauteur supérieure à
celle des "high jets" des citernes à
cargaison.
2.8.3.4
Gatte de récupération en
dessous de la citerne (et
de la station de
remplissage de la citerne)
Absence de gate de
récupération sous la citerne
La citerne possède une double
paroi. La citerne extérieure en
acier inoxydable tient lieu de
barrière secondaire pour la citerne
intérieure.
Une gatte de récupération d’une
3
capacité d'1 m est prévue sous la
boîte froide (cold box) pourvue des
vannes de raccordement de la
citerne
Report no: 50102448 R01 Rev: 00
Date: 29 April 2014
Annexe 3 au RV (14) 59 = RV/G (14) 92 = JWG (14) 86
Argos Bunkering b.v.
Gasoil/LNG bunker ship project
1
Table of Contents
1.
Introduction .................................................................................................................................... 3
2.
Strategy ........................................................................................................................................... 3
2.1 Vision ............................................................................................................................................. 3
2.2 Mission .......................................................................................................................................... 3
3.
Gasoil/LNG bunker ship project ..................................................................................................... 4
3.1 Design ............................................................................................................................................ 4
3.2 Operational functions ................................................................................................................... 4
3.2.1 Gasoil cargo................................................................................................................................ 4
3.2.2 LNG cargo ................................................................................................................................... 4
3.2.3 LNG propulsion .......................................................................................................................... 5
3.2.4 Facilitator for practical LNG training ......................................................................................... 5
4.
Crew Competence & course ........................................................................................................... 5
Appendix:
A. General arrangement of the ship
B. LNG bunker procedures
Argos Bunkering b.v.
Waalhaven Z.z. 11
3089 JH Rotterdam
2
1. Introduction
Argos is the largest independent player (not listed on the stock exchange or state affiliated) in the
Western European downstream oil market, combining storage and distribution with the international
trade in and sale of mineral oils and biofuels.
2. Strategy
To further expanding its current activities, in scale as well as geographically, Argos will focus on a
wider spectrum of low-emission energy products with safety, sustainability and environment getting
high priority at all times. These could also include activities that at first sight do not fit within the
current portfolio.
2.1 Vision
Our vision on the bunker fuel in the maritime sector is that:



this will change in the near further regarding SECA area regulations for the see going vessels
national and internal stringent environment regulations for propulsion engines used for
vessels in inland waterways
economic drivers to use other type of bunker fuel
For the above criteria, LNG as bunker fuel can satisfy our customers to comply with dear needs.
Benefits of LNG as a fuel:
With regard to other fuels LNG provides the following advantages:




± 20% less CO2 (carbon dioxide) than gasoil
± 95% les NOX (nitrogen oxide) than gasoil
No emission of SOX
Price is competitively when compared to gasoil
2.2 Mission
Argos acts upon the changing demand for alternative energy sources by introducing the first LNG
bunkering vessel in 2015. Suitable to provide LNG as a fuel to inland shipping and see going vessels.
For operational and economic reasons, we made the decision to design an combined gasoil/LNG
bunker ship. Because in “one call” from our customers we can provide gasoil and LNG as bunker fuel.
It‘s the extra services we can give.
3
3. Gasoil/LNG bunker ship project
The work area of this ship is mainly in ARA (Amsterdam, Rotterdam, Antwerp) ports. This means that
the movability of this ship should be perfect to handle.
3.1 Design
The main dimensions of the ship are:
Length 11Ϭ meters
With 13,5 meters
The ship is designed with an extra (“Schelde huid”) double side construction to protect the ship for
external impact.
The following volumes are on this ship available for transport:
Gasoil
LNG cargo
4 tanks of 380 m³
2 tanks of 935 m³
total
total
1520 m³ (volume 100%)
1870 m³ (volume 100%)
For LNG propulsion we will use a LNG tank of 40 m³ (volume 100%)
See appendix A : General arrangement of the ship.
The maximum movability of this ship will be handled by, 2 L drives (650 kW each) in the after ship
and 1channel bow thruster (500 kW). ĞƚĂŝůĚĞƐĐƌŝƉƚŝŽŶĂŶĚĚƌĂǁŝŶŐƐŽĨƚŚĞ>E'ƉƌŽƉƵůƐŝŽŶƐLJƐƚĞŵ
ĂƌĞŝŶĐůƵĚĞĚŝŶƚŚĞ,/ƌĞƉŽƌƚŽĨ>ůŽLJĚ͛ƐZĞŐŝƐƚĞƌ͕ƌĞƉŽƌƚŶƵŵďĞƌϱϬϭϬϮϰϰϴͲZϬϭ͕ĚĂƚĞϮϵͲϰͲϮϬϭϰ͕
;ƐĞĞĂƉƉĞŶĚŝdžϭŽĨƚŚŝƐƌĞĐŽŵŵĞŶĚĂƚŝŽŶͿ͘
3.2 Operational functions 3.2.1 Gasoil cargo
As Argos Bunkering organization we have a lot of expertise in the World of bunkering regarding
operational, and environment regulations on the inland waterways including management skills at
our office in Rotterdam to operate the bunker fleet in a safe way. We will use those expertise in our
project. We will use similar systems, nautical technical equipment, cargo pumps e.g.
3.2.2 LNG cargo
We will use for the LNG cargos tanks, GTT membrane technology to optimal the volume of the LNG
tanks in relation with the deign of the ship. With redundant Boill off Gas installations the LNG shall be
conditioned. For LNG bunkering, we will use Lloyds Register LNG hoses. Depending on the
size of the ship of our customer, we shall use our bunker arm to make a safe connection with
a double isolated LNG hose.
4
3.2.3 LNG propulsion
The main reasons to use LNG for propulsion for this ship are:
 Environment benefits
 The economics are positive in relation to use gasoil
 Strategic choice, what we sell , we use also for our purpose
 To get experience in the LNG marked
The design of our LNG propulsion system is similar of the other inland waterway projects the
company Cryonom Projects designed. The expertise of other projects is used for our project. The
main different is, we will use a smaller LNG propulsion tank. We will bunker ourselves from the LNG
cargo tanks. The power management of the ship will be handled by 3 x MWM gas engines of
400 ekW. Installed in the front engine room. For back-up we will use a Caterpillar diesel of 450 ekW,
installed in the after engine room.
3.2.4 Facilitator for practical LNG training
We are member of the European LNG master plan project, this also creates obligations. As member
of the several workings groups we have the opportunity to facilitate students and teacher/ trainers
on the ship in a separate training room to transferring knowledge and see in practice the operational
activities on the ship regarding LNG bunkering e.g.
In cooperation with STC bv. (Shipping and Transport College) also member of the European LNG
master plan we will develop a practical LNG bunkering training for our crew and also available for
other crew members out site our organization.
4. Crew Competence & course
Crew on board of an inland LNG bunker vessels shall be qualified according to:




ADN requirements applicable for gas carriers
followed a general LNG training (theoretical) at STC b.v. (Shipping and Transport College)
followed specific LNG bunker training (theoretical)
followed the LNG bunker training on our LNG bunker ship (practical)
The main purpose of the courses is to familiarize the crew of inland waterway vessels with the
properties and hazards of LNG and to get knowledge how to work with LNG as fuel onboard the
vessel. For instance in case of bunkering and maintenance.
The course will include a theoretical part, consisting of the main LNG topics and a practical training
on board of the vessel in which the theoretical items will be dealt with in practice.
5
Annexe 4 au RV (14) 59 = RV/G (14) 92 = JWG (14) 86
OPERATIONAL
LNG BUNKERING PROCEDURES
1
Table of Contents
1.
Purpose ........................................................................................................................................... 3
2.
General ............................................................................................................................................ 3
3.
Crew competence ........................................................................................................................... 3
4.
Communication and Connection .................................................................................................... 3
4.1 Communication............................................................................................................................. 3
4.2 Connection .................................................................................................................................... 4
5.
Pre Bunkering.................................................................................................................................. 4
5.2.Bunker check list ........................................................................................................................... 4
5.2 Line–up .......................................................................................................................................... 4
6.
Bunkering ........................................................................................................................................ 5
7.
After- Bunkering ............................................................................................................................. 5
7.1 Inerting of the LNG bunker hose .................................................................................................. 5
7.2 Documents .................................................................................................................................... 5
Appendix:
A. LNG bunker transfer check list “truck -> ship”
B. LNG bunker transfer check list “ship -> ship”
Argos Bunkering b.v.
Waalhaven Z.z. 11
3089 JH Rotterdam
2
1. Purpose
To fill the LNG holding tank(s) in a safe way, the following procedures should be followed closely:
2. General
Only class approved LNG bunker ship suppliers are allowed to perform ship to ship bunkering in the
ports.
Before the vessel’s LNG storage tanks can be filled on a certain place, (local) authorities should be
informed. These authorities could demand for extra safety precautions. The authority’s approval for
the bunker transfer must be available before bunkering is started.
3. Crew competence
Crew on board of an inland LNG bunker vessels shall be qualified according to:
 ADN requirements applicable for gas carriers
 followed a general LNG training (theoretical)
 followed specific LNG bunker training (theoretical)
 followed the LNG bunker training on our LNG bunker ship (practical)
4. Communication and Connection
4.1 Communication

As a general principle, the LNG bunker ship has to provide the communication equipment
(radio) to the receiving ship.

A dedicated working channel for communication has to be agreed upon and duly tested prior
to the transfer operation.

The ESD link between the ships (SIGTTO system for sea going vessels) is available.

The bunker vessel’s emergency plan including the emergency signals have to be
communicated to the receiving vessel prior to the transfer operation.
3
4.2 Connection

The LNG transfer line connection system has to be equipped with a dry disconnect coupling.

LNG hoses have to be adequately supported to prevent contact with sharp edges and
freezing to surfaces.

Spill containment arrangements such as drip trays shall be adequately installed, of an
appropriate volume and visually inspected (empty).

The ESD link between the ships (SIGTTO system for sea going vessels) is in place.
5. Pre Bunkering
All accommodation openings in the LNG bunker area on the receiving ship shall be closed during
transfer. Unauthorized personnel transit through the safety zone is not allowed during bunkering
unless in case of emergency.
5.2.Bunker check list
The bunker transfer checklist (see appendix A and B) is a mutual document with steps to be made by
the supplier and the receiver, and signed by authorized persons to confirm that all points are
addressed. The LNG bunker supplier is responsible for the checklist to be properly filled in and signed
before delivery to the receiving ship. The receiving ship’s Master or the appointed responsible will
accept the checklist and issue the order to proceed. The checklist is to be further filled out and signed
by the receiving vessel’s responsible, and returned to the bunker operator before starting any
transfer.
5.2 Line–up
The line-up procedure is to be sure that there is a no nitrogen left in the LNG bunker hose. This
means that the LNG bunker hose will connected to the LNG bunker pole on the LNG bunker ship. LNG
bunker pole is connected to the LNG gas propulsion system. A minimum of LNG will be pumped
trough the LNG bunker hose. When the temperature is below zero and no nitrogen is measured this
procedure is finessed.
4
6. Bunkering
The bunkering area is an EX-classified and restricted area during bunkering. Only authorized
personnel are allowed in the safety zone during bunkering. This is to be adequately supervised by the
receiving vessel’s responsible and the LNG bunker ship supplier.
The LNG cargo pumps shall be ramped down to an agreed topping up rate when the total transfer
amount is almost reached. The final filling requires special attention on the receiving ship to watch
the tank level and pressure. When the valves are confirmed to be lined up and the personnel are
confirmed to be outside the safety zone, the bunker operator and the receiving ship’s engineers
confirm that they are ready to commence bunkering by giving a ready signal via the agreed
communication link (VHF or other).
ESD system
 Manual ESD will be used to prevent dangerous situations
 Manual ESD will also be used when there are unforeseen operational actions
 The ESD system will automatically stop the bunkering sequence at a maximum liquid level in
the fuel tanks.
During bunker transfer the following items should continuously be checked:




The gas pipes, -hose and connectors for leakage
The mooring lines
Forces on the transfer hose
Tank pressure, which can be controlled by use of the top filling spray facility (with this
procedure a vapour return is not required)
7. After- Bunkering
7.1 Inerting of the LNG bunker hose
Inerting with nitrogen, is performed in order to remove LNG in the bunker hose. The supplier of the
LNG shall make sure nitrogen is available. Nitrogen systems have to be checked prior to inerting. The
inerting sequence has to be adequately controlled and monitored.
The temperature of the LNG hose, give the status of inerting.
7.2 Documents
The LNG supplier is to deliver a document, clearly stating the quantity and quality of fuel
transferred, signed by both parties. The undersigned bunker check list stay at the LNG bunker
ship and will be archived (available for the port/local authorities).
5
LNG Bunker Checklist
Truck to Ship
(Version 3.0 - June 26th, 2014)
I. PART A:
Pre Operations Checklist
(This part should be completed before actual bunker operations start)
Date and time:
_________________________________________________
Designated LNG bunker location:
_________________________________________________
LNG receiving ship:
_________________________________________________
LNG supplying tank truck:
_________________________________________________
Check
Ship
LNG
Truck
Terminal Code
Remarks
1
Local authorities have granted permission for
LNG transfer operations for the specific location
and time.
P
2
The terminal has granted permission for LNG
transfer operations for the specific location and
time.
P
3
Local authorities have been notified of the start
of LNG bunker operations as per local
regulations.
Time notified: ________ hrs
4
The terminal has been notified of the start of
LNG bunker operations as per terminal
regulations.
Time notified: ________ hrs
5
Local authorities’ requirements are being
observed.
6
Local terminal requirements are being observed.
7
All personnel involved in the LNG bunker
operation have the appropriate training and
have been instructed on the particular LNG
bunker equipment and procedures.
LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014
e.g. Port byelaws.
e.g. Terminal regulations
FINAL
a/rv14_59fr
8
The bunker location is accessible for the LNG
supplying tank truck and the total truck weight
does not exceed the maximum permitted load of
the quay or jetty.
9
The bunker location can be sufficiently
illuminated.
Check
A
Ship
LNG
Truck
Terminal Code
All LNG transfer and gas detection equipment is
10 certified, in good condition and appropriate for
the service intended.
A
The procedures for bunkering, cooling down and
11 purging operations have been agreed upon by
ship and truck.
A
12
Remarks
The system and method of electrical insulation
have been agreed upon by ship and truck.
Exclusion zone:
13
The LNG transfer exclusion zone has been
agreed upon and designated.
A
_______________ mtr / ft
IAPH recommended minimum
distance:25 mtr / 82 ft
Regulations with regards to ignition sources can
be observed. These include but are not limited
to smoking restrictions and regulations with
14
regards to naked light, mobile phones, pagers,
VHF and UHF equipment, radar and AIS
equipment.
15
All mandatory ship fire fighting equipment is
ready for immediate use.
16
All mandatory truck fire fighting equipment is
ready for immediate use.
17
All mandatory terminal fire fighting equipment is
ready for immediate use.
LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014
A
FINAL
a/rv14_59fr
I. PART B:
Pre Transfer Checklist
(This part should be completed before actual transfer operations start)
Check
18
Present weather and wave conditions are within
the agreed limits.
The LNG receiving ship is securely moored.
Regulations with regards to mooring
19
arrangements are observed. Sufficient
fendering is in place.
20
There is a safe means of access between the
ship and shore.
21 The bunker location is sufficiently illuminated.
The ship and truck are able to move under their
22 own power in a safe and non-obstructed
direction.
Ship
LNG
Truck
Terminal Code
Remarks
AR
R
R
AR
R
Adequate supervision of the bunker operation is
in place both on the ship and at the LNG tank
23
truck and an effective watch is being kept at all
times.
VHF / UHF Channel: ____
Language:
An effective means of communication between
the responsible operators and supervisors on
24 the ship and at truck has been established and
tested. The communication language has been
agreed upon.
______________________
A R Primary System:
______________________
Backup System:
______________________
The emergency stop signal and shutdown
25 procedures have been agreed upon, tested,
and explained to all personnel involved.
A
The predetermined LNG transfer exclusion
26 zone has been established. Appropriate signs
mark this area.
A
The LNG transfer exclusion zone is free of
27 unauthorized persons, objects and ignition
sources.
R
External doors, portholes and accommodation
28 ventilation inlets are closed as per operation
manual.
Emergency Stop Signal:
______________________
R
At no time they should be
locked
The gas detection equipment has been
29 operationally tested and found to be in good
working order.
30
Material Safety Data Sheets (MSDS) for the
delivered LNG fuel are available.
LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014
A
FINAL
a/rv14_59fr
Check
Regulations with regards to ignition sources are
observed. These include but are not limited to
31 smoking restrictions and regulations with regards
to naked light, mobile phones, pagers, VHF and
UHF equipment, radar and AIS equipment.
Ship
LNG
Truck
Terminal Code
Remarks
R
Appropriate and sufficient suitable protective
32 clothing and equipment is ready for immediate
use.
Personnel involved in the connection and
disconnection of the bunker hoses and personnel
33 in the direct vicinity of these operations make use
of sufficient and appropriate protective clothing
and equipment.
34
Hand torches (flashlights) are of an approved
explosion proof type.
35
The water spray system has been tested and is
ready for immediate use.
36
Spill containment arrangements are of an
appropriate volume, in position, and empty.
If applicable.
If applicable.
37 Hull protection system is in place.
38
Bunker pumps and compressors are in good
working order.
39
All remote control valves are well maintained and
in good working order.
If applicable.
A
Bunker system gauges, high level alarms and
40 high-pressure alarms are operational, correctly
set and in good working order.
The ship’s bunker tanks are protected against
41 inadvertent overfilling at all times, tank content is
constantly monitored and alarms are correctly set.
R
Intervals not exceeding
___________ minutes
All safety and control devices on the LNG
42 installations are checked, tested and found to be
in good working order.
Pressure control equipment and boil off or re43 liquefaction equipment is operational and in good
working order.
LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014
FINAL
a/rv14_59fr
Check
Both on the ship and at the tank truck the
ESDs, automatic valves or similar devices have
been tested, have found to be in good working
44 order, and are ready for use.
The closing rates of the ESDs have been
exchanged.
Ship
LNG
Truck
Terminal Code
Remarks
ESD Ship:
A
____________ seconds
Initial LNG bunker line up has been checked.
45 Unused connections are closed, blanked and
fully bolted.
LNG bunker hoses, fixed pipelines and
manifolds are in good condition, properly
46
rigged, supported, properly connected, leak
tested and certified for the LNG transfer.
If applicable.
The LNG bunker connection between the ship
47 and the truck is provided with dry disconnection
couplings.
The LNG bunker connection between the ship
48 and the LNG bunker truck has adequate
electrical insulating means in place.
Dry breakaway couplings in the LNG bunker
connections are in place, have been visually
49
inspected for functioning and found to be in a
good working order.
50
A
The tank truck is electrically grounded and the
wheels are chocked.
The tank truck engine is off during the
51 connection, purging and disconnection of the
LNG bunker hoses.
52
The tank truck engine is switched off during
transfer.
Unless the truck engine is
required for transfer of LNG.
The ship’s emergency fire control plans are
located externally.
Location:
53
54
An International Shore Connection has been
provided.
55
The LNG specifications have been agreed upon
by ship and truck.
______________________
A
e.g. quality, temperature and
density of the LNG.
Port authorities have been informed that bunker
transfer operations are commencing and have
56
been requested to inform other vessels in the
vicinity.
LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014
FINAL
a/rv14_59fr
I. PART C:
LNG Transfer Data
(This part should be completed before actual transfer operations start)
Agreed starting temperatures and pressures
LNG receiving ship
LNG supplying truck
LNG tank start temperature:
°C / °F
LNG tank start pressure:
bar / psi
(abs)
Agreed bunker operations
Note the agreed Physical Quantity Unit (PQU):

m3
Tank 1

Tonnes

_____________
Tank 2
Agreed quantity to be transferred:
PQU
Starting pressure:
bar / psi
(abs)
Starting rate:
PQU
per hour
Max transfer rate:
PQU
per hour
Topping of rate:
PQU
per hour
Max pressure at manifold:
bar / psi
(abs)
Agreed maximums and minimums
Maximum
Minimum
Maximum working pressure:
bar / psi
(abs)
Maximum and minimum pressures in
the LNG bunker tanks:
bar / psi
(abs)
Maximum and minimum
temperatures of the LNG:
°C / °F
Maximum filling limit of the LNG
bunker tanks:
LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014
%
FINAL
a/rv14_59fr
Declaration
We, the undersigned, have checked the above items in chapter I parts A, B and C in accordance
with the instructions and have satisfied ourselves that the entries we have made are correct.
We have also made arrangements to carry out repetitive checks as necessary and agreed that those
items coded ‘R’ in the checklist should be re-checked at intervals not exceeding ______ hours.
If, to our knowledge, the status of any item changes, we will immediately inform the other party.
Ship
LNG Truck
Terminal
Name
Name
Name
Rank
Position
Position
Signature
Signature
Signature
Date
Date
Date
Time
Time
Time
Record of repetitive checks
Date
Time
Initials for ship
Initials for truck
Initials for
terminal
Guideline for completing this checklist
The presence of the letters ‘A’ or ‘R’ in the column entitled ‘Code’ indicates the following:

A (‘Agreement’).
This indicates an agreement or procedure that should be identified in the ‘Remarks’ column of the checklist or
communicated in some other mutually acceptable form.

R (‘Re-check’).
This indicates items to be re-checked at appropriate intervals, as agreed between both parties, at periods stated in the
declaration.

P (‘Permission’)
This indicates that permission is to be granted by authorities.
The joint declaration should not be signed until both parties have checked and accepted their assigned responsibilities and
accountabilities. When duly signed, this document is to be kept at least one year on board of the LNG receiving vessel.
LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014
FINAL
a/rv14_59fr
II.
After LNG Transfer Checklist
(This part should be completed after transfer operations have been completed)
Check
Ship
LNG
Truck
Terminal Code
LNG bunker hoses, fixed pipelines and
57 manifolds have been purged and are ready for
disconnection.
58
A
Remote and manually controlled valves are
closed and ready for disconnection.
A
After disconnection the LNG transfer safety
59 zone has been deactivated. Appropriate signs
have been removed.
60
61
Remarks
A
Local authorities have been notified that LNG
bunker operations have been completed.
Time notified:
The terminal has been notified that LNG
bunker operations have been completed.
Time notified:
_______________ hrs
_______________ hrs
Port authorities have been informed that
bunker transfer operations have ceased and
62
have been requested to inform other vessels in
the vicinity.
63
Report nr:
Near misses and incidents have been reported
to local authorities.
_______________
Declaration
We, the undersigned, have checked the above items in chapter II in accordance with the instructions
and have satisfied ourselves that the entries we have made are correct.
Ship
LNG Truck
Terminal
Name
Name
Name
Rank
Position
Position
Signature
Signature
Signature
Date
Date
Date
Time
Time
Time
LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014
FINAL
a/rv14_59fr
Guideline for completing this checklist
The presence of the letters ‘A’ or ‘R’ in the column entitled ‘Code’ indicates the following:

A (‘Agreement’).
This indicates an agreement or procedure that should be identified in the ‘Remarks’ column of the checklist or
communicated in some other mutually acceptable form.

R (‘Re-check’).
This indicates items to be re-checked at appropriate intervals, as agreed between both parties, at periods stated in the
declaration.

P (‘Permission’)
This indicates that permission is to be granted by authorities.
The joint declaration should not be signed until both parties have checked and accepted their assigned responsibilities and
accountabilities. When duly signed, this document is to be kept at least one year on board of the LNG receiving vessel.
LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014
FINAL
a/rv14_59fr
Internal transfer, LNG Bunker Checklist
(LNG cargo - LNG propulsion tank)
Note:
The Internal transfer LNG Bunker Checklist
is made in line with the IAPH procedures.
I. PART A:
Pre Operations Checklist
(This part should be completed before actual bunker operations start)
Date and time:
Port and Berth:
Ship name:
Argos GL (LNG Bunker Vessel)
LNG cargo tank no.:
Check
1
Local authorities have granted permission for
LNG transfer operations for the specific location
and time.
2
Local authorities have been notified of the start
of LNG bunker operations as per local
regulations.
3
Local authorities requirements are being
observed.
4
The ship’s class approved bunker plan and
operations manual are available.
5
6
The LNG bunker vessel is moored properly.
The bunker location can be sufficiently
illuminated.
Version 1.0 – June 10, 2014
Bunker
Code
Vessel
Remarks
P
Time notified:
e.g. Port Bye Law.
A
A
hrs
Check
Bunker
Vessel
Code
7
All LNG transfer and gas detection equipment is
certified, in good condition and appropriate for
the service intended.
A
8
The procedures for bunkering, cooling down and
purging operations is defined between LNG
cargo tanks and LNG propulsion tank
A
Remarks
Exclusion zone:
9
The LNG transfer exclusion zone has been
agreed and designated.
A
mtr / ft
IAPH recommended minimum distance:25
mtr / 82 ft
Regulations with regards to ignition sources can
be observed. These include but are not limited
to smoking restrictions and regulations with
10 regards to naked light, mobile phones, pagers,
VHF and UHF equipment, radar and AIS
equipment.
11
All mandatory bunker vessel fire fighting
equipment is ready for immediate use.
Version 1.0 June 10, 2014
A
I. PART B:
Pre Transfer Checklist
(This part should be completed before actual transfer operations start)
Check
12
Present weather and wave conditions are within
the agreed limits.
Bunker
Vessel
Code
Remarks
AR
The LNG bunker vessel is securely moored.
Regulations with regards to mooring
13
arrangements are observed. Sufficient
fendering is in place.
R
The LNG bunker vessel is able to move under
14 their own power in a safe and non-obstructed
direction.
R
Adequate supervision of the bunker operation
by responsible officers is in place, on the LNG
15 bunker vessel. An effective watch is being kept
at all times.
VHF / UHF Channel:
Language:
An effective means of communication between
the responsible operators and supervisors at
16 the LNG bunker vessel has been established
and tested. The communication language has
been agreed upon.
________________________________
AR
Primary System:
________________________________
___
Backup System:
Emergency signal and the shutdown
17 procedures have been agreed upon, tested,
and explained to personnel involved.
A
The predetermined LNG transfer exclusion
18 zone has been established. Appropriate signs
mark this area.
A
The LNG transfer exclusion zone is free of
19 other ships, unauthorized persons, objects and
ignition sources.
R
20
On the ship an effective deck watch is
established.
Version 1.0 June 10, 2014
Emergency Stop Signal:
The deck watch pays particular
attention to moorings, fenders and
simultaneous activities.
Check
External doors, portholes and accommodation
21 ventilation inlets are closed as per operations
manual.
Bunker- Code
vessel
Remarks
At no time they should be locked
R
22 The gas detection equipment has been
operational tested and found to be in good
working order.
Material Safety Data Sheets (MSDS) for the
23 LNG product are available.
A
Regulations with regards to ignition sources are
observed. These include but are not limited to
smoking restrictions and regulations with
24
regards to naked light, mobile phones, pagers,
VHF and UHF equipment, radar and AIS
equipment.
R
Appropriate and sufficient suitable protective
25 clothing and equipment is ready for immediate
use.
Personnel involved in the connection and
disconnection of the bunker hoses and
26 personnel in the direct vicinity of these
operations make use of sufficient and
appropriate protective clothing and equipment.
27
Hand torches (flashlights) are of an approved
explosion proof type.
28
The water spray system has been tested and is
ready for immediate use.
29
Spill containment arrangements are of an
appropriate volume, in position, and empty.
30 The hull protection system is in place.
31
Bunker pumps and compressors are in good
working order.
32
All remote control valves are well maintained
and in good working order.
A
Bunker system gauges, high level alarms and
33 high pressure alarms are operational, correctly
set and in good working order.
The ship’s bunker tanks are protected against
inadvertent overfilling at all times, tank content
34
is constantly monitored and alarms are
correctly set.
All safety and control devices on the LNG
35 installations are checked, tested and found to
be in good working order.
Version 1.0 June 10, 2014
Intervals not exceeding
R
minutes
Check
Bunker
Vessel
Code
Remark
36 Pressure control equipment and boil off or reliquefaction equipment is operational and in
good working order.
37
On the LNG bunker vessel the ESD’s,
automatic valves have been tested, have found
to be in good working order, and are ready for
use. The closing rates of the ESD’s have been
exchanged.
ESD LNG cargo tank:
seconds
A
ESD LNG propulsion tank:
seconds
Initial LNG bunker line up has been checked.
38 Unused connections are closed, blanked and
fully bolted
LNG bunker hoses, fixed pipelines and
manifolds are in good condition, properly
39
rigged, supported, properly connected, leak
tested and certified for the LNG transfer.
40
The LNG bunker connection between the ship
and the LNG bunker vessel is provided with dry
disconnection couplings.
Dry break away couplings in the LNG bunker
connections are in place, visual inspected for
41
functioning and found to be in a good working
order.
42
The ship’s emergency fire control plans are
located externally.
43
An International ESD Connection has been
provided.
44
The LNG specifications is known and will be
logged in the LNG propulsion log book
Port authorities have been informed that bunker
transfer operations are commencing and have
45
been requested to inform other vessels in the
vicinity
Version 1.0 June 10, 2014
A
Location:
A
e.g. quality, temperature
and density of the LNG.
I. PART C:
LNG Transfer Data
(This part should be completed before actual transfer operations start)
Agreed starting temperatures and pressures
LNG cargo tanks
LNG propulsion tank
°C / °F
LNG cargo tank 1 start temperature:
bar / psi
(abs)
LNG cargo tank 1 start pressure:
°C / °F
LNG cargo tank 2 start temperature:
bar / psi
(abs)
LNG cargo tank 2 start pressure:
Agreed bunker operations
Note the agreed Physical Quantity Unit (PQU):

Tank 1
Agreed quantity to be transferred:
m3

Tones

Tank 2
PQU
Starting pressure:
bar / psi
(abs)
Starting rate:
PQU
per hour
Max transfer rate:
PQU
per hour
Topping of rate:
PQU
per hour
Max pressure at manifold:
bar / psi
(abs)
Version 1.0 June 10, 2014
Agreed maximums and minimums
Maximum
Minimum
Maximum working pressure:
bar / psi
(abs)
Maximum and minimum pressures in
the LNG bunker tanks:
bar / psi
(abs)
Maximum and minimum
temperatures of the LNG:
°C / °F
Maximum filling limit of the LNG
propulsion tank:
%
Declaration
I, the undersigned, (skipper or a person authorized by the skipper of the LNG bunker vessel) have
checked the above items in chapter I in accordance with the instructions and have satisfied myself
that the entries I have made are correct.
Bunker vessel
Name
Position
Signature
Date
Time
Guidelines for completing the Internal LNG cargo – LNG propulsion Bunker Checklist.
The presence of the letters ‘A’ or ‘R’ in the column entitled ‘Code’ indicates the following:

A (‘Agreement’).
This indicates an agreement or procedure that should be identified in the ‘Remarks’ column of the checklist or
communicated in some other form.

R (‘Re-check’).
This indicates items to be re-checked at appropriate intervals at periods stated in the declaration.

P (‘Permission’)
This indicates that permission is to be granted by authorities.
The declaration should not be signed until both parties have checked and accepted their assigned responsibilities and
accountabilities.This document is to be kept at least one year on board of the LNG bunker vessel.
Version 1.0 June 10, 2014
II.
After LNG Transfer Checklist
(This part should be completed after transfer operations have been completed)
Check
LNG bunker hoses, fixed pipelines and
46 manifolds have been purged and are ready for
disconnection.
Bunker
Vessel
Code
A
Remote and manual controlled valves are
closed and ready for disconnection.
A
After disconnection the LNG transfer safety
48 zone has been deactivated. Appropriate signs
have been removed.
A
47
49
Local authorities have been notified that LNG
bunker operations are completed.
Remarks
Time notified:
hrs
Port authorities have been informed that
50 bunker transfer operations have ceased and
have been requested to inform other vessels in
the vicinity.
51
Near misses and incidents have been reported
to local authorities.
Report nr:
Declaration
I, the undersigned, (skipper or a person authorized by the skipper of the LNG bunker vessel) have
checked the above items in chapter II in accordance with the instructions and have satisfied myself
that the entries I have made are correct.
Bunker vessel
Name
Position
Signature
Date
Time
Version 1.0 June 10, 2014
Guidelines for completing the Internal LNG cargo – LNG propulsion Bunker Checklist.
The presence of the letters ‘A’ or ‘R’ in the column entitled ‘Code’ indicates the following:

A (‘Agreement’).
This indicates an agreement or procedure that should be identified in the ‘Remarks’ column of
the checklist or communicated in some other form.

R (‘Re-check’).
This indicates items to be re-checked at appropriate intervals at periods stated in the declaration.

P (‘Permission’)
This indicates that permission is to be granted by authorities.
The declaration should not be signed until both parties have checked and accepted their assigned
responsibilities and accountabilities.This document is to be kept at least one year on board of the LNG
bunker vessel.
***
Version 1.0 June 10, 2014