Annexe 1 au RV (14) 59 = RV/G (14) 92 = JWG (14) 86 Travailler ensemble pour un monde plus sûr Système d’alimentation et de ravitaillement en GNL d’Argos HAZID Rapport HAZID Rapport destiné à: Lloyd's Register EMEA Rapport n° 50102448 R01 Rév: 00 Date: 29 April 2014 Résumé HAZID du système d’alimentation et de ravitaillement en GNL d’Argos Rapport HAZID Classification de sécurité de ce rapport: à ne distribuer qu’après l’approbation du client Rapport n°: Révision: Date du rapport: 50102448 R01 00 29 April 2014 Préparé par: Afshan Hussain Consultant Examiné par: Chris Swift Consultant principal Approuvé par: Dr. Andrew Franks Directeur général __________________________ __________________________ __________________________ Nom et adresse de l’entité: Nom et adresse du client: Lloyd's Register Consulting - Energy Limited Lloyd's Register EMEA Regus Manchester Business Park K.P. van der Mandelelaan 41-A 3000 Aviator Way Rotterdam Manchester 3062 MB M22 5TG Pays-Bas Royaume-Uni Notre contact: Contact client: Chris Swift Bas Joorman T: +44 (0) 7917 088169 T: +31 (0)6 53600397 E: [email protected] E: [email protected] Lloyd’s Register Group Limited, ses filiales et organisations affiliées ainsi que leurs représentants, employés ou agents respectifs sont appelés, individuellement et collectivement, «Lloyd’s Register» dans le cadre de la présente clause. Lloyd’s Register décline toute responsabilité et ne peut être tenu responsable en cas de perte, dommage ou frais causé par l’utilisation des renseignements ou des conseils contenus dans le présent document ou fournis par tout autre canal, à moins que cette personne n’ait signé un contrat avec l’entité pertinente de Lloyd’s Register concernant la fourniture de ces renseignements ou de ces conseils, auquel cas la responsabilité s’établit exclusivement sur la base des conditions définies dans ledit contrat. Sauf dérogations autorisées en vertu de la législation en vigueur, ce travail ne peut être photocopié, stocké dans un système électronique, publié, présenté en public, adapté, diffusé, transmis, enregistré ou reproduit sous aucune forme ni sous aucun moyen sans l’autorisation préalable du détenteur du droit d’auteur. Les demandes doivent être adressées à Lloyd’s Register, 71 Fenchurch Street, London, EC3M 4BS. ©Lloyd’s Register 2014. Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page i ©Lloyd’s Register 2014 a_ext_av/rvg14_50en_2 Historique du document Révision Date 00 Description/changements Changements effectués par 29/04/2014 Rapport HAZID Glossaire/abréviations BP Basse pression CdC Cahier des charges ELM Expert en la matière EQR Évaluation quantitative des risques FSRU Unité flottante de stockage et de regazéification GN Gaz naturel GNL Gaz naturel liquéfié GPL Gaz de pétrole liquéfié HAZID Identification des risques HAZOP Risques et opérabilité HP Haute pression IOSH Institut de la santé et sécurité au travail LOPA Analyse des couches de protection LR Lloyd’s Register Group N2 Azote ISO Organisation internationale de normalisation P&ID Diagramme de tuyauterie et d’appareillage PBU Montée en pression Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page ii ©Lloyd’s Register 2014 a_ext_av/rvg14_50en_2 Sommaire Page 1 Introduction .....................................................................................................................................1 2 Détails de la conception .................................................................................................................1 3 4 2.1 Système d'alimentation au GNL ..........................................................................................2 2.2 Cuve de stockage du GNL et boîte froide ............................................................................2 2.3 Espace réservoir ....................................................................... Erreur ! Signet non défini. 2.4 Vaporisateur .........................................................................................................................2 2.5 PBU (unité de montée en pression) .....................................................................................2 HAZID .............................................................................................................................................3 3.1 Objectifs de l'HAZID .............................................................................................................3 3.2 Équipe chargée de l'étude et présence ...............................................................................3 3.3 Méthodologie de l'étude .......................................................................................................9 3.4 Évaluation des risques .......................................................................................................11 3.5 Résultats de l'étude HAZID ...............................................................................................12 3.5.1 Réunion HAZID .............................................................................................................. 12 3.5.2 Préparation et références de l'étude ............................................................................... 12 3.5.3 Nœuds de l'étude ............................................................................................................ 12 3.5.4 Procès-verbal de l'étude.................................................................................................. 13 3.5.5 Principales questions soulevées par l'HAZID ................................................................. 13 3.5.6 Points à soumettre à examen complémentaire ............................................................... 14 3.5.7 Résultats de l'évaluation des conséquences et de l'évaluation des risques .................... 14 3.5.8 Hypothèse générales de l'HAZID .................................................................................... 15 Conclusions ..................................................................................................................................16 Annexe A – Procès-verbal de l’HAZID Annexe B – Diagrammes P&I de l’HAZID Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page iii ©Lloyd’s Register 2014 a_ext_av/rvg14_50en_2 1 Introduction ARGOS propose un bateau de ravitaillement propulsé au GNL et dont le gaz naturel liquéfié (GNL) serait le combustible principal. Il posséderait un moteur auxiliaire au mazout. La conception proposée se trouve à une étape préliminaire et possède les caractéristiques globales suivantes: réservoir de stockage de GNL unique située sous le pont; Unité de montée en pression et vaporisateur; Alimentation en combustible (gaz naturel) des moteurs; Système de ventilation de la boîte froide; et, Système de ventilation de la salle des machines. Une HAZID de la conception proposée a été entreprise afin de contribuer à la gestion des risques de sécurité. L’objectif principal de cette HAZID consiste à s’assurer que les aspects de sécurité relatifs à cette conception sont effectivement appropriés. La section 3 porte sur d’autres objectifs, détaillés dans le Cahier des charges (CdC), le document de Lloyd’s Register Consulting n° 50102448 TN01 Rev 00. 2 Détails de la conception Les détails de la conception proposée sont exposés dans les documents de référence dont la liste est reprise dans le TableauTableau 2.1. Tableau 2.1 – Documents de référence Titre du document Référence et date du document Publié par Diagramme de tuyauterie et d’appareillage – Système d’alimentation en carburant (GNL) – Page TB01 1406-1100-100, 17-03-2014 Cryonorm Systems Diagramme de tuyauterie et d’appareillage – Système d’alimentation en carburant (GNL) – Page TC01 1406-1100-100, 17-03-2014 Cryonorm Systems Diagramme de tuyauterie et d’appareillage – Système d’alimentation en carburant (GNL) – Page TD01 1406-1100-100 Rev. 1, 17-03-2014 Cryonorm Systems Plan de la zone de danger – réservers GNL et Diesel – mts «ARGO GL» 201-18 Dessin n° 10 31.12.2013 Rommerts Ship Design Développement du ravitaillement au LNG en Europe Argos LNG bunkership project CCNR – fév. 2014.pdf Argos Diagramme de sécurité Safety Diagram.pdf - Calculs sur la ventilation du moteur au gaz Argos Argos gas engine ventilation calculations.pdf Argos Ces documents ont été préalablement mis à la disposition des personnes prenant part à l’étude et des copies leur ont été fournies pendant l’étude. La conception du processus, sur la base des détails indiqués dans les documents de référence, est résumée ci-dessous. Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 1 ©Lloyd’s Register 2014 a_ext_av/rvg14_50en_2 2.1 Système d’alimentation au GNL Les caractéristiques principales du système d’alimentation au GNL sont: Une cuve de stockage du GNL unique asujetti à une boîte froide logée de façon immédiatement adjacente à ladite cuve, les deux éléments étant installés dans une salle de réservoir séparée; La boîte froide est une espace clos disposant de son propre système de ventilation qui extrait l’air de l’espace réservoir, le fait passer dans la boîte froide et l’expulse par une colonne de ventilation; Un système de ventilation séparé pour la salle de réservoir; Un système d’alimentation de trois groupes électrogènes MWM au GNL; et, Un générateur auxiliaire au diesel installé dans une salle des machines séparée. 2.2 Cuve de stockage du GNL et boîte froide La cuve de stockage du GNL est une cuve sous pression à vide isolant équipée d’une double paroi. Une «super isolation» occupe l’espace situé entre les deux parois. La cuve intérieure est fabriquée en acier inoxydable austénitique. Elle est équipée de déflecteurs internes. La cuve extérieure est conçue comme un confinement secondaire doté d’une ventilation passant par un disque de raccordement pénétrant dans la boîte froide. 2.3 Salle de réservoir La salle de réservoir est adjacente à la section inférieure de la cuve de stockage et contient la cuve de stockage du GNL, le vaporisateur (y compris le PBU) et toutes les connexions et valves du GNL. Les fuites de gaz dans cet espace sont contrôlées à l’aide de détecteurs de gaz. Il est proposé actuellement de doter cete salle d’un système de ventilation mécanique d’une capacité d’au moins 30 renouvellements d’air par heure. 2.4 Vaporisateur La fonction du vaporisateur consiste à convertir le GNL en gaz naturel pour qu’il puisse être utilisé par le moteur. La chaleur est fournie par le système de refroidissement du moteur. Une boucle fermée du système eau/glycol est utilisée comme moyen de transformation de la chaleur dans la boucle secondaire. La coque du vaporisateur (glycol/eau) est fabriquée en acier inoxydable austénitique; les tuyaux du vaporisateur et du PBU sont en acier inoxydable austénitique 316. 2.5 PBU (unité de montée en pression) L’unité de montée en pression sert à fournir de la pression dans la cuve de stockage du GNL afin d’alimenter le vaporisateur en GNL. La PBU et le vaporisateur constituent une unité unique combinée qui est située dans la salle de réservoir. Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 2 ©Lloyd’s Register 2014 a_ext_av/rvg14_50en_2 3 HAZID 3.1 Objectifs de l’HAZID Les objectifs de l’HAZID étaient d’identifier: 1. 2. 3. 4. 3.2 Les risques et comment ils peuvent se concrétiser (c-à-d les scénarios d’accident – Qu’est-ce qui peut tourner mal et comment); Les conséquences qui peuvent en résulter; Les mesures/garanties en place qui minimisent les fuites, l’ignition et leurs conséquences potentielles, et qui maximisent le confinement des déversements; et Des recommandations visant à éliminer ou à minimiser les risques en matière de sécurité. Équipe chargée de l’étude et présence L’étude a été facilitée par M. Chris Swift de Lloyd’s Register Consulting et s’est déroulée au cours de deux journées, les 15 et 16 avril 2014. L’équipe chargée de l’étude HAZID était composée de plusieurs experts en la matière (ELM) disposant de connaissances et d’expérience en ce qui concerne la conception. Les membres de l’équipe, le résumé de leurs qualifications, leur expérience et leur présence lors de chacun des nœuds de l’étude sont détaillés aux Tableau 3.1 et Table 3.2 ci-dessous ainsi que dans le procès-verbal de l’HAZID à l’annexe A. M. Swift est consultant principal auprès de Lloyd’s Register Consulting. Tant M. Swift que Lloyd’s Register Consulting sont indépendants et n’ont aucun intérêt direct dans les résultats de l’HAZID. Disposer d’un facilitateur indépendant est essentiel car c’est la condition pour qu’il puisse adopter une attitude objective et impartiale. L’une des responsabilités principales du facilitateur, dans le cadre d’une HAZID, est de veiller à ce que la méthodologie de l’HAZID soit utilisée de façon efficace et productive. Le facilitateur doit donc posséder une compréhension approfondie et une expérience considérable de la technique utilisée ainsi qu’une grande compétence technique. M. Swift est un ingénieur chimiste agréé disposant d’une maîtrise en sécurité des procédés et en prévention des pertes ; il est formé et expérimenté en ce qui concerne un large éventail de techniques relatives aux études de sécurité comme l’HAZID. Les formations pertinentes sont les suivantes: Guide Word Approach to HAZOP, IBC, 1993 Formation destinée aux garantts des études de sécurité, Rhodia, 1996 Analyse des couches de protection (LOPA), IChemE, 2009 M. Swift est consultant pour le compte de Lloyd’s Register Consulting depuis cinq ans et a facilité au cours de ces années un certain nombre d’études HAZID qui lui ont apporté une expérience en matière de systèmes maritimes fonctionnant au gaz inflammable: HAZID d’un navire-citerne propulsé au diesel/GPL (2102). Phase conceptuelle de l’HAZID concernant les options en vue de l’utilisation d’un réacteur nucléaire modulaire pour la propulsion d’un bateau (2012). Phase conceptuelle de l’HAZID d’un bateau de démantèlement de forages pétroliers (2012). HAZID, évaluation de l’ampleur d’un déversement et évaluation de la fréquence en vue d’un accroissement des opérations d’un navire-citerne/ d’une jetée (2012). HAZID et évaluation des risques des modifications d’une jetée (2012). Phase conceptuelle de l’HAZID et de l’ENVID d’une usine de capture de carbone (2012). HAZID de systèmes de propulsion de bateaux alternés (2011). Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 3 ©Lloyd’s Register 2014 a_ext_av/rvg14_50en_2 HAZID sur les options des systèmes de traitement des eaux de ballast (2011). EQR d’un terminal de regazéification au GNL sur terre (2011) Évaluation des risques d’une installation de traitement du gaz et d’un gazoduc terrestres (2011). EQR de transporteurs FSRU/GNL en mer (2011). Évaluation des risques d’un terminal FSRU/GNL en mer (2011). HAZID, évaluation de l’ampleur d’un déversement et évaluation de la fréquence d’opérations de transfert de navires-citernes (2009). Avant de rejoindre Lloyd’s Register Consulting, M. Swift a été ingénieur et ingénieur en sécurité des procédés au service d’un producteur multinational de substances chimiques. Au cours de ses 22 années de service pour cette société, M. Swift a acquis de l’expérience tout à la fois dans la conception et la conduite d’un grand nombre de procédés, notamment des circuits haute pression inflammables. M. Swift possède une grande expérience des techniques d’examen des aspects de sécurité, comme l’HAZID. Sa première participation à une étude de ce type remonte à 1985. En tant qu’ingénieur en sécurité des procédés, Chris a facilité plus d’une centaine d’études sur une période de 15 ans. Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 4 ©Lloyd’s Register 2014 a_ext_av/rvg14_50en_2 Tableau 3.1 – Membres de l’équipe HAZID Prénom Chris Nom Swift Société Fonction Qualifications professionnelles Expérience Adresse électronique Lloyd's Register Consulting Consultant principal en sécurité, Président de l’étude HAZID B.Sc. (Hons) Ingénierie chimique Conception de procédés et évaluation de la sécurité sur les sites opérationnels (22 ans). Consultant en sécurité (5 ans). Expérience comme président d’études de sécurité (18 ans). [email protected] M.Sc. Processus de sécurité & prévention des pertes MIChemE, CEng, Gradué IOSH Afshan Hussain Lloyd's Register Consulting Consultant en sécurité, secrétaire de l’étude HAZID B.Eng. (Hons) Ingénierie chimique Consultant en sécurité dans l’industrie gazière et pétrolière. Secrétaire d’études expérimenté. [email protected] Bas Joormann Lloyd's Register EMEA Principal spécialiste IWW B.Sc. Architecture navale 25 ans d’expérience, principalement sur les questions statutaires. [email protected] Matthijs Breel Lloyd's Register EMEA Spécialiste senior des systèmes mécanismes B.eng. (Hons) Ingénierie mécanique 25 ans d’expérience dans les moteurs. [email protected] Liviu Porumb Lloyd's Register EMEA Spécialiste senior des systèmes électrotechniques M.Sc. Ingénierie électrique 6 ans dans l’approbation des plans et les enquêtes de terrain pour LR. 4 ans dans la conception et la mise en service de systèmes électriques de navires. [email protected] Flag State (NSI) Observateur B.Eng. (Hons) Ingénierie > 15 ans d’expérience dans le transport maritime. [email protected] Leendert Korvink Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 5 ©Lloyd’s Register 2014 Prénom Nom Société Fonction Qualifications professionnelles Expérience Adresse électronique 25 ans d’expérience dans l’industrie (pétro)chimique et terrestre. Impliqué dans des études d’inspection basées sur le risque, services dans le domaine de la gestion d’actifs/intégrité mécanique, préparation de rapports sur la sécurité, d’EQR et d’audits sur la gestion des risques et d’audits sur l’intégrité technique. [email protected] mécanique Peter Petersen DNV GL Observateur B.Sc. Ingénierie civile Plus de 10 ans d’expérience dans la réalisation d’études d’identification des risques (HAZID/HAZOP/What-If), d’études SIL/LOPA, à la fois comme responsable ou secrétaire. Jim Kriebel MWM Benlux Responsable des ventes/Ingénieur de projet Ingénierie enélectricité Environ 15 ans d’expérience dans la vente de moteurs au gaz. [email protected] Stefan Kuijs Cryonorm Projects B.V. Ingénieur de projet/Responsab le de projet B.Sc. Ingénierie mécanique 4 ans d’expérience dans l’ingénierie, la conception, la construction, l’installation, le démantèlement et le lancement de divers systèmes cryogéniques. [email protected] Daniel Tabbers Windex Engineering Ventilation BV Ingénieur en construction 10 ans dans les systèmes CVCA. [email protected] Ubbo Rommerts Rommerts Architecte naval/ Ship Design Responsable technique Construction navale 15 ans d’expérience dans l’environnement de la construction navale, y compris conception [email protected] Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 6 ©Lloyd’s Register 2014 Prénom Nom Société Fonction Qualifications professionnelles Expérience Adresse électronique technique/financière, construction et inspections. Claudia van Raster Batenburg Chargée de compte technique B.Sc. Ingénierie en électricité Plus de 10 ans d’expérience dans l’ingénierie, la gestion de projets et la gestion de comptes techniques dans le domaine de l’automatisation industrielle dans des usines (pétro)chimiques, en mer et terrestre. [email protected] Claudia participe à des projets exécutés en vertu des normes de sécurité CEI 61508/61511 et à des projets comportant une classification et une vérification SIL. Elle participe régulièrement à des réunions de sécurité dans le cadre de son travail. Jereon van Tilborg D&A Electric Directeur général Concepteur 24 ans d’expérience dans les circuits électriques des navires. Piet van den Ouden ARGOS Responsable de projet B.Sc. Automatisation des processus et de la sécurité Plus de 25 ans d’expérience dans le piet.van.den.ouden@argosenergi secteur gazier et pétrolier en mer et es.com terrestre, y compris dans une usine chimique, mise en œuvre de normes de sécurité SIL. Gestion de projets et gestion d’entreprises Membre du groupe de travail néerlandais NEN PGS 33 chargé d’élaborer des normes de sécurité pour les stations de remplissage au GNL. Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 7 ©Lloyd’s Register 2014 [email protected] Table 3.2 – Présence aux nœuds Présence aux noeuds Prénom Nom 1.1 Cuve de stockage du GNL 1.2 PBU et vaporisateur 1.3 Alimentation en gaz des moteurs et moteurs 1.4 Système de ventilation de la boîte froide 1.5 Système de ventilation de la salle des machines Chris Swift Présent Présent Présent Présent Présent Afshan Hussain Présent Présent Présent Présent Présent Bas Joormann Présent Présent Présent Présent Présent Matthijs Breel Présent Présent Présent Présent Présent Liviu Porumb Présent Présent Présent Présent Présent Leendert Korvink Partial Partial Absent Absent Présent Peter Petersen Présent Partial Présent Présent Absent Jim Kriebel Présent Non requise Présent Non requise Non requise Stefan Kuijs Présent Présent Présent Présent Présent Daniel Tabbers Présent Présent Présent Présent Présent Ubbo Rommerts Présent Présent Présent Présent Présent Claudia van Batenburg Présente Présente Présente Présente Présente Jereon van Tilborg Présent Présent Présent Présent Présent Piet van den Ouden Présent Partial Présent Absent Présent Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 8 ©Lloyd’s Register 2014 3.3 Méthodologie de l’étude L’approche adoptée dans le cadre de l’étude s’est appuyée sur l’expérience dont dispose Lloyd’s Register Consulting ainsi que sur les orientations fournies par les sources suivantes en matière d’exigences et de bonnes pratiques liées à la conduite des études de ce type: HAZOP, Guide des bonnes pratiques, 2de Edition. IChemE (2008) BS ISO 31000: 2009, Gestion du risque – Principes et lignes directrices BS ISO 31010: 2010, Gestion du risque – Techniques d’évaluation du risque Les deux normes BS ISO livrent des renseignements utiles sur les techniques généralement utilisées pour identifier et évaluer les risques. La publication d’IChemE fournit des orientations spécifiques. Bien qu’elles soient destinées en premier lieu aux études HAZOP (risques et opérabilité), une forme plus détaillée des études HAZID, les orientations se sont avérées utiles pour établir la méthodologie de cette HAZID. Par exemple, les deux types d’études sont effectués par une équipe dotée d’un facilitateur et les approches concernant les arrangements et les rapports de l’étude sont assez similaires. La publication reconnaît que l’HAZID conduite pour la présente étude est une approche que l’on entreprend généralement très tôt dans le processus de conception. La technique de l’HAZID adoptée pour cette étude est une approche basée sur une liste de contrôles qui servent à identifier des scénarios susceptibles de conduire à des libérations de matières ou à des événements dangereux. Cette technique passe par la définition de sections du processus distinctes, appelées des «nœuds» ainsi que l’application d’une liste de contrôleà ces nœuds afin d’identifier des déviations pouvant mener à un problème de sécurité ou à un problème opérationnel (Scénario). Lors de chaque nœud, une liste de contrôle permet d’identifier d’éventuels scénarios. Une liste de contrôle propre à cette étude et qui contient une liste de questions a été élaborée avant d’entreprendre l’HAZID; elle est présentée au Tableau 3.3. Ces questions se sont inspirées d’expériences antérieures et indiquent le type de risques que l’on a estimé applicables aux types de systèmes de traitement pris en considération. La liste n’est pas exhaustive et l’HAZID n’a pas été cantonnée à ces questions. Pour chaque point repris dans la liste de questions, l’équipe a examiné des scénarios réalistes susceptibles de causer un accident et a identifié des causes et des résultats possibles de cet accident. Après avoir évalué les conséquences potentielles des scénarios d’accidents, l’équipe a élaboré des mesures qu’il faudrait veiller à mettre en place pour la prévention, le contrôle et l’atténuation. Si ces mesures ont été considérées comme inadéquates ou si les informations n’étaients pas suffisantes, ces points ont été soumis à un examen ultérieur. Le procès-verbal de l’évaluation a été enregistré à l’aide du logiciel PHA-Pro 8 par le secrétaire de l’étude et est communiqué à l’annexe A. Le procès-verbal a été projeté sur un écran pendant les réunions. Les membres ont ainsi été en mesure de formuler leurs observations concernant le procès-verbal. Tableau 3.3 – Questions / HAZID 1. Équipments 1.1 Équipements défaillances La défaillence des équipements pourrait-elle présenter des dangers ? P.ex.: perte de fonction, effondrement, désintégration, défaillance d’un composant, matériaux de construction incorrects, surchage, utilisation au-delà des limites de la conception, libération de matériaux inflammables, génération de sources d’inflammation, joints Rotatifs ? 1.2 Défaillances du système de contrôle Si le système de contrôle subissait une défaillance (partielle ou totale), que se passerait-il? 1.3 Défaillances du système électrique Les équipements utilisés présentent-ils des risques électriques? Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 9 ©Lloyd’s Register 2014 Y a-t-il du matériel électrique présent dans la zone? (dommage possible aux circuits électriques). 1.4 Pannes de courant Si les approvisionnements étaient interrompues (électricité, air), est-ce qu’il en découlerait une situation dangereuse? 2. Matériaux 2.1 Matériaux inflammables/oxydants Des matériaux inflammables/oxydants sont-ils présents ou pourraient-ils être libérés par erreur? Vapeur, liquide, solide, résidus, réaction chimique? 2.2 Matériaux toxiques/asphyxiants Des matériaux toxiques/asphyxiants – y compris écotoxiques – sont-ils présents ou pourraient-ils être libérés par erreur? Vapeur, liquide, solide, résidus, réaction chimique? 2.3 Matériaux corrosifs Des matériaux toxiques sont-ils présents ou pourraient-ils être libérés par erreur? Vapeur, liquide, solide, résidus, réaction chimique? 2.4 Inertes Des matériaux inertes (N2, CO2, etc.) sont-ils présents ou pourraient-ils être libérés par erreur? Risques d’asphyxie? 2.5 Eau Y a-t-il de l’eau ou de l’eau pourrait-elle être libérée par erreur? Est-ce que cela doit être considéré comme dangereux? 3. Paramètres d’exploitation 3.1 Température Y a-t-il des températures très hautes ou très basses, supérieures au point d’ébullition, au point d’éclair ou au point d’inflammation spontanée? Une décomposition peut-elle survenir? Des brûlures touchant le personnel, des dégâts aux équipements? Formation de glace? Solidification de matériaux? 3.2 Pression Haute pression ou vide – effets de fuites. Interfaces HP/BP 3.3 Débits Débits élevés, faibles ou inversés? 3.4 Niveau Niveaux élevés ou faibles – les cuves peuvent déborder ou s’assécher? 4. Emplacement/Environnement 4.1 Risques liés l’emplacement 4.2 Autres activités 4.3 Conditions ambiantes Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Y a-t-il des risques associés au lieu de travail? P.ex.: glissades, chutes, travail en hauteur, accès difficile, espaces confinés, travail sur l’eau, etc. D’autres activités pourraient-elles avoir lieu dans la zone? Pourraient-elles présenter un risque ou cette activité pourraitelle affecter les autres activités? Est-ce que des situations extrêmes, du point de vue des conditions ambiantes ou de la météo, pourraient poser problème? Page 10 ©Lloyd’s Register 2014 5. Modes d’exploitation 5.1 Exploitation sur des voies de navigation intérieure L’utilisation de la technologie présente-t-elle des risques quelconques associés à l’exploitation sur des voies de navigation intérieure? C-à-d le long d’un quai, dans des conditions d’urgence ou d’extinction. 5.2 Autres conditions d’exploitation Faut-il tenir compte de risques quelconques lorsque le bateau est à quai ou subit une inspection, un entretien, une mise en service ou hors service? Le cahier des charges (document n° 50102448 TN01 Rev 00 de Lloyd’s Register Consulting) a été distribué aux membres de l’équipe avant l’HAZID afin de leur communiquer davantage de détails sur l’approche adoptée par l’HAZID. 3.4 Évaluation des risques Les risques recensés pendant l’HAZID ont été évalués conformément à une matrice de risques fournie par Lloyd’s Register Consulting, comme le montre la figure ci-dessous. Cette matrice s’inspire de l’expérience accumulée par Lloyd’s Register Consulting dans l’utilisation et la conception de matrices pour le compte d’opérateurs actifs dans le secteur pétrolier et gazier. Une évaluation des risques a été entreprise à la fois avant et après avoir pris les garanties en considération. Il s’agit là d’une approche qui est souvent prise dans le cadre des évaluations de risques. Elle est bénéfique car elle permet d’identifier les scénarios qui ont les conséquences négatives les plus graves et fournit une «mesure» de l’efficacité de garanties supplémentaires. Figure 1: Matrice de risque Il convient de préciser que l’évaluation des risques ne se base que sur l’évaluation des risques pour le personnel et que les conséquences ayant une sévérité faible, pouvant résulter d’une blessure légère, ont été exclues de l’évaluation. Ce choix permet à l’équipe en charge de l’étude de se concentrer uniquement sur les risques significatifs, une approche considérée comme appropriée pour une HAZID à ce stade de la conception. Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 11 ©Lloyd’s Register 2014 3.5 Résultats de l’étude HAZID 3.5.1 Réunion HAZID La réunion de l’étude HAZID s’est déroulée les 15 et 16 avril 2014 dans la salle 5.5 du Business Centre Netherlands (BCN), avenue Barbizon 25, 2908 MB Capelle a/d Ijssel, Rotterdam, Pays-Bas. La salle de réunion avait la taille requise pour accueillir l’ensemble des membres de l’équipe et disposait des équipements adéquats pour entreprendre une HAZID. Des rafraîchissements et des repas ont été fournis pendant les pauses. 3.5.2 Préparation et références de l’étude Avant d’entamer l’étude proprement dite, le cahier des charges (CdC), le document n° 50102448 TN01 Rev 00 de Lloyd’s Register Consulting, a été montré et distribué à tous les membres de l’équipe. Le CdC fournissait les détails sur l’approche de l’HAZID, le calendrier de l’étude, les membres de l’équipe, les propriétés du GNL et certains incidents qui ont impliqué une libération de GNL. Les membres de l’équipe ont également reçu, avant l’étude, les documents de référence dont la liste est produite au Tableau 2.1 – Documents de référence. Au début de la réunion, les responsables du projet d’Argos Energies et de Lloyd’s Register Consulting ont chacun présenté à l’équipe une vue d’ensemble du projet et de la technique utilisée dans le cadre de l’HAZID. 3.5.3 Nœuds de l’étude Le système de carburant, dans le cadre de l’étude, a été scindé en nœuds, qui sont repris au Tableau 3.4. Un bref aperçu des équipements et des conditions d’exploitation a été donné avant de prendre chaque nœud en considération. Tableau 3.4 – Nœuds Détails de l’étude Heure fin Durée (procèsverbal) 15/04/2014 9h10 14h30 275 4 16/04/2014 11h00 14h30 165 1.3. Alimentation en gaz des moteurs et moteurs 2 15/04/2014 14h45pm 17h10 145 1.4. Système de ventilation de la boîte froide 3 16/04/2014 9h05 11h00 115 1.5. Système de ventilation de la salle des machines 5 16/04/2014 14h35pm 15h35 60 Nœuds Description 1.1. Session Date Cuve de stockage du GNL 1 1.2. PBU et vaporisateur Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Heure début Page 12 ©Lloyd’s Register 2014 Le nœud 1.5 a également détaillé le système de ventilation de la salle des machines. Il convient de noter que très peu d’informations étaient disponibles concernant la conception de ce système. La durée approximative de l’examen de chacun des nœuds est indiquée au tableau 3.4 et dans le procès-verbal de l’HAZID, et ces durées sont reprises à l’annexe A. Les durées incluent les pauses avec rafraîchissements mais pas les pauses de midi. Le nœud 1.1 (cuve de stockage du GNL) était le nœud le plus compliqué et a été le plus long à examiner. Le détail des présences des membres de l’équipe lors de chacune des journées de l’étude est repris dans le procès-verbal de l’HAZID, à l’annexe A et dans le tableau 3.1. Les absences notables pendant l’étude et les nœuds étudiés pendant ces absences ont été les suivantes: 15 avril 2014 Leendert Korvink (ILT) a été absent de la session de l’après-midi (une partie du nœud 1.1 et la totalité du nœud 1.3). 16 avril 2014 Piet van den Ouden (Argos) a été absent pendant environ 1h30 (une partie du nœud 1.4). Leendert Korvink (ILT) a été absent de la session de la matinée (une partie du nœud 1.2 et la totalité du nœud 1.4). Jim Kriebel (MWM Benelux) n’a pas été disponible de la journée (nœuds 1.4, 1.2 et 1.5). Peter Petersen (DNV GL) a été absent pendant la session de l’après-midi (une partie du nœud 1.2 et la totalité du nœud 1.5). Aucune de ces absences n’est considérée comme ayant réduit la compétence globale de l’équipe. Veuillez noter que l’ordre dans lequel les nœuds ont été abordés lors de chacune des journées de l’étude tenait compte de la disponibilité du personnel. Par exemple, le nœud détaillant l’alimentation en gaz des moteurs a été examiné le jour où Jim Kriebel (MWM Benelux) était disponible. 3.5.4 Procès-verbal de l’étude Une fois l’HAZID achevée, le procès-verbal a fait l’objet d’une correction orthographique et d’une relecture. Aucune correction orthographique ou grammaticale n’a été jugée nécessaire. Le procès-verbal se trouve dans l’annexe A. Il convient noter qu’il est important de ne pas modifier le contexte du procès-verbal pendant le contrôle et une copie du procès-verbal de l’étude a été conservée dans un format non contrôlé. Elle peut être mise à disposition sur demande. 3.5.5 Principales questions soulevées par l’HAZID Les questions principales recensées pendant l’HAZID sont les suivantes: Défaillance de la valve de contrôle de la pression 5150NG – Pourrait mener à l’approvisionnement en gaz des moteurs, ce qui peut entraîner des jets de gaz ou une pression légèrement élevée dans le système en aval, susceptible d’atteindre jusqu’à 10 bar à PCV5182NG. Cette situation pourrait causer des dommages en amont, peut-être jusqu’à l’entrée du moteur car il n’est pas adapté à 10 bars. Par ailleurs, la défaille de cette PCV peut causer la libération de gaz naturel sur le moteur. Défaillance du système de contrôle de l’approvisionnement en gaz – la défaillance du système de contrôle peut entraîner une trop grande ouverture des valves qui contrôlent la pression. Cela peut entraîner une surpression des systèmes d’alimentation en gaz situés en amont et subséquemment une libération de gaz naturel Préoccupations moins graves identifiées pendant l’HAZID, susceptibles d’améliorations: Débordement de la cuve de GNL – un débordement de la cuve causé par une erreur humaine, une défaillance des instruments mesurant l’avitaillement ou le niveau peut entraîner une éventuelle surpression de la cuve qui pourrait entraîner une défaillance si la pression lors de l’avitaillement est élevée. Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 13 ©Lloyd’s Register 2014 Perte du vide de la cuve – la défaillance de la cuve extérieure/de l’isolation peut entraîner une perte d’isolation pouvant causer un transfert de chaleur vers la cuve intérieure, entraînant une vaporisation dans la cuve, une augmentation de la pression et une éventuelle surpression dans la cuve, pouvant conduire à une rupture. Fuite de tuyauterie associée à la cuve de GNL – de petites libérations de GN ou de GNL dans l’espace réservoir, pourraient entraîner un incendie ou une explosion, s’il y a inflammation. Rupture fragile du pont également possible si exposition au GNL. Le gaz naturel présent dans l’espace réservoir – Asphyxie possible du personnel si concentration de GN trop élevée. Impact sur le bateau – Un contenant tombant sur le bateau pendant le ravitaillement pourrait causer des dommages éventuels à la cuve de LNG, causant un incendie ou une explosion. Surchauffe due à un incendie extérieur – Peut causer une agravation de la perte de confinement du système GNL. Fuite d’un tube dans l’échangeur de chaleur E-5150 – entraîne une libération de GNL sur la coque de l’échangeur de chaleur. Une vaporisation rapide cause de la pression dans le système eau/glycol si le système se trouve en surpression. Défaillance de la pompe avec pour conséquence une perte de circulation dans le système en circuit fermé – Pas de flux eau/glycol dans le système en circuit fermé, réduction de la capacité de vaporisation pouvant causer un déplacement du GNL vers le système d’alimentation en GN. Cela peut causer une éventuelle défaillance de la ligne d’approvisionnement en gaz du moteur à cause de températures trop faibles. Défaillance du système de contrôle cause un flux élevé vers le PBU par la valve 5130 – Une augmentation de la pression dans la cuve de stockage peut éventuellement causer une rupture, une fuite dela cuve ou une pressurisation dans l’espace réservoir. Défaillance du système de contrôle dans la ligne de gaz après PCV5150NG – Flux élevé de GNL à travers le vaporisateur puisque le système en amont est dépressurisé, cela peut causer des passages de GNL si cela dépasse la capacité du vaporisateur et même des libérations de GNL à partir du système de tuyauterie. Fuite de GNL à partir du système de tuyauterie dans la boîte froide – à cause de l’usure ou d’un bris de soudure, du GNL peut être libéré dans la boîte froide qui se concentrera à la base de la boîte et prendra une forme liquide. Le GNL se vaporisera également et formera du GN qui sera ventilé par la colonne de ventilation. Si le système d’extraction s’avère insuffisant pour la taille de la fuite, du gaz sera libéré dans l’espace réservoir, ce qui créeara la possibilité d’une surpression de l’espace réservoir et d’un incendie/d’une explosion en cas d’inflammation. Libération de GN dans la salle des machines à partir de l’approvisionnement en GN – Libération de GN dans la salle des machines qui n’est pas conçue pour les atmosphères explosives. Explosion possible si le gaz s’accumule et s’allume. 3.5.6 Points à soumettre à une évaluation complémentaire Le cas échéant, des points à soumettre à une évaluation complémentaire ont été identifiés. Au total, 27 points à prendre en considération ont été soulevés; ils sont listés dans le procèsverbal de l’HAZID, à l’annexe A. Aucune date spécifique n’a été fixée pour achever ces points et ces points ont été assignés aux sociétés plutôt qu’à des personnes. Cette approche a été adoptée car au vu du calendrier du projet tous les points doivent être pris en considération immédiatement. 3.5.7 Résultats de l’évaluation des conséquences et de l’évaluation des risques Tout au long de l’étude, certaines conséquences qui pourraient avoir des effets significatifs sur les personnes ont été évaluées en fonction de la matrice montrée à la Figure 1. Les scénarios qui ne produisaient pas d’effets notables pour le personnel n’ont pas été évalués, pas plus que les scénarios où les risques étaient fonction des opérations existantes. En d’autres termes, les évaluations concernent exclusivement des risques significatifs relatifs à la conception. Le classement des risques a été entrepris avant la prise en considération d’améliorations éventuelles. Les résultats du classement, montrant les nombres de conséquences/probabilités dans chacune des catégories, sont montré dans la Figure 2. Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 14 ©Lloyd’s Register 2014 Consequence (Severity) Figure 2: Classement du risque – Avant d’éventuelles améliorations Multiple fatalities C 6 Single fatality or multiple major injuries B 3 Major injury A 5 3 L1 10-5/y Ext. Unlikely 1 in 40,000 2 HIGH 3 1 MEDIUM 1 L2 10-6/y Remote 3 1 in 4,000 L3 LOW 10-4/y L4 1 in 400 L5 10-3/y Unlikely V. Unlikely Likely 1 in 40 Likelihood (Chance per year / Chance in Vessel Lifetime) Avant d’envisager des améliorations possibles, deux scénarios étaient évalués comme présentant des risques «élevés». Cela reflète un degré de préoccupation relatif à la conception et ces préoccupations ont été résumées et détaillées sous le point «principales questions soulevées par l’HAZID». La majorité des évaluations (18) font partie de la catégorie de risques «moyen» et sept présentent un risque «faible». Cela reflète le fait qu’une HAZID menée à cette étape de la conception et dont la durée est relativement courte s’attachera surtout à identifier les risques les plus significatifs. Il convient de noter que dans la mesure où le projet se trouve à un stade précoce, le classement du risque est difficile, en particulier lorsque la conception présente des incertitudes. 3.5.8 Hypothèses générales de l’HAZID Un certain nombre d’hypothèses générales sont habituellement soumises sur la base d’une HAZID de ce type: Le personnel concerné par le fonctionnement et l’entretien du système de carburant au GNL sera compétent. C’est pourquoi il est important que le personnel ait été formé à l’utilisation et à l’entretien de tout équipement nouveau. Les systèmes de sécurité seront conçus pour garantir le niveau de fiabilité approprié. Cela inclut tout système de fermeture ou procédures d’alarme. Le personnel réagira aux alarmes en temps utile et prendra les mesures nécessaires. Il a été supposé tout au long de l’étude que toute libération de GNL pourrait entrer en contact avec une source d’inflammation ou être allumée. Les conséquences de l’inflammation pourraient se traduire par un certain nombre de résultats, comme un feu en nappe, un incendie ou une explosion. Ces résultats sont décrits dans le CdC. Dans la mesure où le résultat dépendra d’un certain nombre de facteurs comme la taille de la libération, la localisation, la ventilation et la durée écoulée avant l’inflammation, il n’est pas possible dans une étude de cette nature d’évaluer tous les résultats possibles. L’hypothèse générale émise est que des libérations pourraient causer un incendie ou une explosion, la catégorie de gravité de la libération a été laissée à l’appréciation de l’équipe. Les règles, normes, codes et législations relatifs aux systèmes en mer seront d’application, le cas échéant. Même si la présente étude ne passe pas en revue les règles, normes, codes et législations applicables, il est précisé que ces éléments sont pertinents. Dans les cas où ils sont pertinents, référence a été faites aux normes et aux codes en question pendant la réunion. Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 15 ©Lloyd’s Register 2014 4 Conclusions L’HAZID du système de carburant au GNL proposé par Argos a permis de recenser un certain nombre de scénarios possibles qui pourraient causer des dommages au personnel. Le nombre de risques évalués comme «élevés» est de deux, avant la prise en considération de garanties supplémentaires. Les questions principales recensées portaient sur les points suivants: Défaillance de la valve de contrôle de la pression 5150NG – Pourrait mener l’approvisionnement en gaz des moteurs, ce qui peut entraîner des jets de gaz ou une pression légèrement élevée dans le système en aval, susceptible d’atteindre jusqu’à 10 bar à PCV5182NG. Cette situation pourrait causer des dommages en amont, peut-être jusqu’à l’entrée du moteur car il n’est pas adapté à 10 bars. Par ailleurs, la défaille de cette PCV peut causer la libération de gaz naturel sur le moteur. Défaillance du système de contrôle de l’approvisionnement en gaz – la défaillance du système de contrôle peut entraîner une trop grande ouverture des valves qui contrôlent la pression. Cela peut entraîner une surpression des systèmes d’alimentation en gaz situés en amont et subséquemment une libération de gaz naturel. Vingt-sept points à soumettre à une évaluation complémentaire ont été recensés. Les réponses approtées à ces points, ainsi que les détails de scénarios de défaillances potentielles et de garanties identifiées dans l’étude permettront de poursuivre l’amélioration de la conception en matière de risques et de sécurité. Document n° 50102448 R01 Rev: 00 Date: 29 April 2014 Page 16 ©Lloyd’s Register 2014 Appendix A HAZID Study Minutes Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 General Administration: Facility Information: Company: Lloyd's Register EMEA Location: 71 Fenchurch Street, London, UK Unit: Project Name: ARGOS LNG BUNKERING FUEL SYSTEM HAZID Project ID: 50102448 Revision: 00 Study Duration: Start: 15/04/2014 End: 16/04/2014 Issue Date: 15/04/2014 Comments: Methodology Methodology: Scope: To identify hazards associated with the design, operation and bunkering of the Argos LNG fuel system Study: Early Stage HAZID based on a checklist of possible causes of failure (Equipment, Location/Environment, Materials, Operating Conditions, Operating Modes). Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Team Members Node Attendance First Name Chris Last Name Swift Company Lloyd's Register Consulting Position HAZID Study Chair Principal Safety Consultant Professional Qualifications Experience E-Mail Address 1.1. LNG Storag e Tank 1.2. PBU and Vaporis er 1.3. Gas Supply to Engine s and the Engine s 1.4. Cold Box Ventilatio n System 1.5. Engine Room Ventilation System BSc (Hons) Chemical Engineering. MSc. Process Safety & Loss Prevention MIChemE, CEng, Grad IOSH Process design and assessment of safety on operational sites (22 years). Safety Consultant (5 years). Safety Study Chair experience (18 years). [email protected] Present Present Present Present Present Afshan Hussain Lloyd's Register Consulting Safety Consultant, HAZID Study Scribe BEng (Hons) Chemical Engineering Safety consultant in the Oil and Gas industry. Experienced study scribe. [email protected] Present Present Present Present Present Bas Joormann Lloyd's Register EMEA Principal Specialist IWW BSc Naval Architecture 25 years’ experience, mainly on Statutory Issues [email protected] Present Present Present Present Present Matthijs Breel Lloyd's Register EMEA Senior Specialist Machinery Systems BEng (Hons) Mechanical Engineering 25 years’ experience in Engines. [email protected] Present Present Present Present Present Liviu Porumb Lloyd's Register EMEA Senior Specialist Electro technical Systems MSc Electrical Engineering 6 years plan approval and field surveys for LR. 4 year design and commissioning electrical systems for ships. [email protected] Present Present Present Present Present Leendert Korvink Flag State (NSI) Observer BEng (Hons) Mechanical Engineering > 15 years’ experience in shipping [email protected] Partial Partial Absent Absent Present Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Node Attendance First Name Peter Last Name Petersen Company DNV GL Position Observer Professional Qualifications BSc Civil Engineering Experience E-Mail Address 1.1. LNG Storag e Tank 1.2. PBU and Vaporis er 1.3. Gas Supply to Engine s and the Engine s 25 years’ experience in (petro) chemical and offshore industry. Involved in Risk Based Inspection studies, services in the area of Asset Operations/Mechanical Integrity, preparation of Safety Reports, QRA's and risk management audits and technical integrity audits. [email protected] Present Partial Present Present Absent 1.4. Cold Box Ventilatio n System 1.5. Engine Room Ventilation System More than 10 years’ experience with performance of risk identification studies (HAZID/HAZOP/What-If), SIL/LOPA-studies, both as leader and as scribe. Jim Kriebel MWM Benlux Sales/Project Engineer Electrical Engineering +15 years’ experience in Gas Engine Sales [email protected] Present Not Required Present Not Required Not Required Stefan Kuijs Cryonorm Projects B.V. Project Engineer/Proj ect Manager BSc Mechanical Engineering. 4 years’ experience - Engineering, design, construction, installation, commissioning and start-up of several Cryogenic systems. [email protected] m Present Present Present Present Present Daniel Tabbers Windex Engineering BV Ventilation Construction Engineer 2 years in HVAC Systems [email protected] Present Present Present Present Present Ubbo Rommerts Rommerts Ship Design Technical Manager Naval Architect 15 years’ experience working in Ship building environment which includes technical/financial design, building and inspections. [email protected] Present Present Present Present Present Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Node Attendance First Name Last Name Claudia van Batenburg Company Raster Position Technical Account Manager Professional Qualifications BSc Electrical Engineering Experience E-Mail Address 1.1. LNG Storag e Tank 1.2. PBU and Vaporis er 1.3. Gas Supply to Engine s and the Engine s More than 10 years’ experience in engineering, project management and technical account management in the field of industrial automation in the (Petro) chemical plants, both on and offshore. claudia.van.batenburg@rast er.com Present Present Present Present Present 1.4. Cold Box Ventilatio n System 1.5. Engine Room Ventilation System Claudia is involved in projects executed according Safety standards IEC 61508/61511 and projects containing SIL Classification and Verification. In her work she is regularly engaged in several safety meetings. Jereon van Tilborg D&A Electric Managing Director Designer 24 years’ experience in ship electrics [email protected] Present Present Present Present Present Piet van den Ouden ARGOS Project Manager BSc Process and Safety Automation Over 25 years in offshore and onshore oil and gas industry, including work on a chemical plant, implementing SIL safety Standards. piet.van.den.ouden@argose nergies.com Present Partial Present Absent Present Project Management and Business Economics Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Member of the Dutch NEN PGS 33 workgroup to making safety standards for LNG filling stations ©Lloyd’s Register 2014 Sessions Date am/pm Leader Scribe 1. 15/04/2014 am Chris Swift Afshan Hussain 2. 15/04/2014 pm Chris Swift Afshan Hussain 3. 16/04/2014 am Chris Swift Afshan Hussain 4. 16/04/2014 pm Chris Swift Afshan Hussain Daily Attendance Team Members 1. 15/04/2014 2. 15/04/2014 3. 16/04/2014 Attendance Attendance Attendance 4. 16/04/2014 Attendance Afshan Hussain Present Present Present Present Bas Joormann Present Present Present Present Chris Swift Present Present Present Present Claudia van Batenburg Present Present Present Present Daniel Tabbers Present Present Present Present Jereon van Tilborg Present Present Present Present Jim Kriebel Present Present Not Required Not Required Leendert Korvink Present Absent Absent Present Liviu Porumb Present Present Present Present Matthijs Breel Present Present Present Present Peter Petersen Present Present Present Absent Piet van den Ouden Present Present Partial Present Stefan Kuijs Present Present Present Present Ubbo Rommerts Present Present Present Present Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Nodes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Study Details Nodes Design/Operating Details Session Date Start Time Finish Time Duration (Minutes) 1.1. LNG Storage Tank As detailed in project reference 1 documents and ToR 2 15/04/2014 9.10am 12.30pm 140 15/04/2014 1.15pm 2.30pm 75 1.2. PBU and Vaporiser As detailed in project reference 5 documents and ToR 16/04/2014 11.00am 2.30pm 1.3. Gas Supply to Engines and As detailed in project reference 3 the Engines documents and ToR 15/04/2014 2.45pm 5.10pm 1.4. Cold Box Ventilation System As detailed in project reference 4 documents and ToR 16/04/2014 9.05am 11.00am 1.5. Engine Room Ventilation System Description provided at the study 6 16/04/2014 2.35pm 3.35pm Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Notes ©Lloyd’s Register 2014 Study Minutes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.1. LNG Storage Tank Item/Activity 1.1.1. Equipment HAZID Prompt Causes Consequences Safeguards 1.1.1.1 Equipment - Overfilling of the tank Possible over 1. failures due to human error pressurization of the tank due to bunkering or leading to failure if the level instrumentation bunkering pressure is high. 2. failure. Possible fire/explosion if ignited Multiple relief valves on the tank (4 x 50%, 3-way valve isolation). S L R Remarks/Consideratio Responsibility ns C L1 High pressure trip on the bunkering feed line (PT5105) closes isolation valves on bunkering line. 3. High pressure trip on the bunkering feed line (PT5102) closes isolation valves on bunkering line. 4. High level trip on the bunkering feed line (LT5102) closes isolation valves on bunkering line. 5. Electrical equipment rated for Zone 1 (ATEX). 6. Secondary containment around the storage tank contains leaks from the storage tank itself not pipe works around the tank. 7. Control interface with the bunkering system if there is a fault (level pressure, manual operation). 8. Pre alarm through the control system, shuts down to an independent safety system. 9. Training and procedure in bunkering operation. 10. Fire extinguishing system in the cold box and separate system in the LNG propulsion room. 11. Stainless steel drip tray beneath the Cold Box, for Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.1. LNG Storage Tank Item/Activity HAZID Prompt Causes Consequences Leak into the containment around the LNG tank. Possibly caused by material/weld failure of the inner tank. Release of LNG into the annulus, this will vaporise leading to pressure increase in the annulus. Pressure rise in the annulus leading to operation of the drop-off disk. NG release into the tank room, if the extraction system capacity is exceeded. Possible Fire/explosion in the room in an ignition source is present. Possible over pressurization if large quantity of NG is entered. Safeguards S L R Remarks/Consideratio Responsibility ns Notes small releases. Loss of vacuum caused by failure of the outer tank/insulation degradation. 1. Electrical equipment rated for C L2 Zone 1 (ATEX). 2. Tank design constructed, tested in accordance with LR requirements. 3. The ventilation system is sized for 30 hch. 4. Drop of disk alarm. 5. Gas detection and alarm within the tank room. 1. Review the ventilation Cryonorm system sizing with regards to the maximum credible release rate from the drop off disk. What size hole in the LNG tank will lead to the ventilation system being exceeded. 1. If the drop off disk fails to operate there could be over pressurisation of the outer shell. 6. Two independent ventilation systems in the room (connected to the UPS) with redundant fans. Loss of insulation leading 1. Perlite insulation is not used C L2 to heat transfer into the as it has been found to settle inner tank, leading to - super insulation used vaporisation in the tank, instead. pressure increase and 2. Periodic checks of vacuum possible overpressure of using portable instrument. the tank leading to rupture. Vacuum can be restored by portable instrumentation. 2. Include procedures Argos/Cryonorm for venting the tank in event of loss of vacuum in the O&M. 3. Drop off disk will provide alarm on loss of vacuum. 4. Multiple relief valves on the tank (4 x 50%, 3-way valve isolation). 5. Monitoring of process conditions indicates loss of vacuum, frosting may be visible on the exterior of the tank. Leakage from liquid Small releases of NG or or vapour piping LNG into the tank room, Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 1. Stainless steel drip tray with C L2 low temperature (TT5180) 3. Ensure that the stainless steel drip Rommerts/Cryon orm ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.1. LNG Storage Tank Item/Activity HAZID Prompt Causes associated with the LNG tank. Consequences possible fire/explosion if ignited. Possible brittle fracture of the deck if exposed to LNG. Safeguards shut down of the LNG system. 2. Electrical equipment rated for Zone 1 (ATEX). 3. Piping system tested in accordance with LR requirements. 4. All welded construction, no flanges. S L R Remarks/Consideratio Responsibility ns tray is designed to contain the contents/releases of the bunkering line. Notes 4. Ensure that measures Rommerts/Cryon are in place to orm prevent spraying of releases onto surfaces that are not stainless steel. 5. Gas detection alarm and trip. 1oo3 for alarm and 2oo3 for trip. 1.1.1.2 Control system failures Mal operation of the PBU (control failure or operator error). Refer to Node 2. Bunkering control system failure. Possible overfilling of the storage tank as described above. Leading to lead loss of bunkering which is a delay. Control system failure 1. Independent shut down of leads to filling through the the bunkering system, if the lower inlet pipe, this leads pressure in the tank is high. to pressure build up. 2. Supervision and monitoring Ultimately the tank of the bunkering system. pressure will reach the bunkering supply pressure and bunkering will stop which is an operational delay. 5. Consider requirements for ensuring that the bunkering supply used is limited to a pressure that could not lead to tank failure. Cryonorm 6. Include position sensors on control Cryonorm 1. If the bunkering supply pressure is higher than the tank design pressure on the storage, there is a risk if tank rupture and the relief valve will operate. Bunkering through the top 1. Monitoring of bunkering inlet line leads to cooling of operations and tank the tank and reduce temperature and pressure. pressure in the tank. Increase in bunkering time. Failure of a sensor on the control Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Bunkering system shuts down. 1. Bunkering system designed to fail to a safe condition. ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.1. LNG Storage Tank Item/Activity HAZID Prompt Causes Consequences Safeguards S L R system or loss of movement of a valve. 1.1.1.3 Electrical system failures Remarks/Consideratio Responsibility ns valves, HV5115NG and HV5110NG. Loss of power supply Whole LNG system shuts 1. Control system is on UPS. to control system. down, including bunkering 2. Valves are fail closed. system. 1.1.1.4 Utility failures Instrument air (as for the control system). 1.1.2. Materials 1.1.2.1 Flammable/ oxidising materials 1.1.2.2 Toxic/ No credible causes identified (acknowledged that LNG is flammable). NG present in the tank room Possible asphyxiation of personnel if NG concentration is too high. 1.1.2.3 Corrosive materials No credible causes identified. - 1.1.2.4 Inerts Air present in the tank at start-up. If air remains in the tank, there will be an inert gas bubble in the top of the tank. 1. Purging and venting of the tank on start-up. Air present in the Build of inerts in the tank tank due to may lead to operational bunkering operation problems. (in the connections). 1. Tank can be vented to the vaporiser to remove inerts. asphyxiant materials 1.1.2.5 Water Water in the bunkering connection due to atmospheric moisture/poor storage of the bunkering connection. 1. Ventilation system. 2. Personal oxygen monitors used. Icing inside the LNG 1. system leading to blockage of piping or instrumentation 2. connection. Process interruption if piping systems are blocked. Loss of fuel supply to the engines. 3. B L3 7. Treat areas where Argos NG is present as confined spaces and provide the required warnings and procedures. System can be emptied and ice removed. Good bunkering practice. e.g. storage of hoses etc. to prevent air/water ingress. Purging of bunkering system to remove air/moisture. Back-up engine with Gas oil fuel. 4. Monitoring of gas pressure and flow to the engines will Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.1. LNG Storage Tank Item/Activity HAZID Prompt Causes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Notes indicate partial loss of fuel supply as ice forms. 1.1.3. Operating Parameters 1.1.3.1 Temperature No deviations identified - 1.1.3.2 Pressure LNG temperature 1. increases leading to rupture and release of LNG 2. if ignited. Material trapped between two isolation valves. Thermal relief valves with vents to the vent stack. 1. Scenario not rated as the area is not normally occupied - injury to personnel is not likely. Globe valves used (avoids issues associated in ball valves). 3. Electrical equipment rated for Zone 1 (ATEX). 4. Gas detection system/fire detection system. Firefighting systems. 5. Ventilation system removes NG. 1.1.3.3 Flow Bunkering flow too high, to control failure or bunkering system design. Wear to valve seats due to 1. Bunkering system high velocity. specification will include maximum flow rate to reduce wear to valve seats. 2. Valves can be removed and repaired. 3. Flow indication and alarm at the bunkering station (on board fixed installation). 4. Procedures for setting bunkering rate. 1.1.4. Location/ Environment 1.1.3.4 Level As considered previously 1.1.4.1 Location hazards Container dropped onto the vessel during bunkering. Possible damage to the LNG tank leading to fire/explosion. 1. The tank is protected by the C L1 deck above and other equipment. 2. Tank is a double walled pressure vessel. 3. Bunkering line is protected against impact by covering. Collision due to marine incident Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Possible damage to the LNG tank leading to 1. Tank is a double walled pressure vessel. C L1 ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.1. LNG Storage Tank Item/Activity HAZID Prompt Causes Consequences fire/explosion. Safeguards S L R Remarks/Consideratio Responsibility ns 2. The tank is located D/5 from the bottom of the vessel. 3. Tank is a double walled vessel. 4. Additional protection on the inner bulkhead and shell side of the vessel. Flooding of compartment following collision. Possible damage to equipment in the space. Possible damage to tank control valve leading to loss of control. 1. Valves of fail-safe closed and cabling is located in the middle of the vessel, not at risk of flooding. 8. Check the Cryonorm consequence of immersing the LNG control valve in water PV5130NG/PV5120N G. Tank is dislodged from its 1. Tank is fixed to protect mounting due to against floating. impact/floating. 2. Tank supports designed for vertical/horizontal/transverse shock waves. Overheating due to external fire Escalation of loss of containment of LNG system. 1. Relief valves on the LNG C L1 tank sized for fire scenarios. 9. Update P&ID to show Cryonorm extent of the cold box. 2. Relief valves are located in the cold box. 3. Water sprays on the deck can be used for firefighting (monitors). 4. Tank has secondary containment with insulation which reduces heat input. 5. Control for prevention of leaks and ignition [as above]. 1.1.4.2 Other activities Dropped object/struck by something during maintenance. As considered above. Maintenance and No additional hazards inspection activities. identified. These activities Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.1. LNG Storage Tank Item/Activity HAZID Prompt Causes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns are covered by standard procedures. Access is provided to all equipment and can be removed. 1.1.5. Operating Modes 1.1.4.3 Ambient conditions No additional causes identified. 1.1.5.1 Operation Dynamic loads on the tank due to vessel movement due to extreme weather conditions No significant consequences identified the tank is designed for the range of operation and emergency stop. Sloshing Not considered to be a significant issue as the tank is small. on inland water ways 1.1.5.2 Other operations Purging for Start-up Nitrogen supply required 1. Relief valves on the tank or maintenance/ for purging from bunkering 2. Manual tank valve on the system. Possibility of over inspection. vent is open during purging pressure if the nitrogen (X5109NG). supply is at too high 3. High pressure alarm and pressure. Tank rupture if shut off of purging over pressured. connection. Sunk vessel Dead ship 1.1.6. Other 1.1.6.1 Emptying Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 1. Tanker has internal baffles. Entire LNG system 1. submerged, including the relief vent. Tank contents will increase in 2. temperature, leading to pressure build-up of the tank, which will eventually rupture if not relieved. Release of LNG into water, 3. which will reach the surface, possible flash fire if ignited. 4. B L1 Tank will withstand external C L1 pressures due to being submerged. Relief system will operate but at reduced capacity and increased set pressure due to the presence of water in the vent. 11. Evaluate the consequences of being submerged on the relief valve capacities (including thermal relief valves). Approximately 20 days before pressure build up will become a problem. Designed in accordance to ADN standards - to high a standard of damage stability. As loss of power, as considered previously. Piping does not allow Bunkering pipe cannot be 1. Thermal relief valves on A L2 10. Provide details of Cryonorm ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.1. LNG Storage Tank Item/Activity HAZID Prompt Causes Consequences Safeguards S L R free draining into the totally emptied after isolated sections. of the bunkering bunkering leading to build 2. Bunkering line rated for 20 connection. tank up of pressure, as the pipe barg. warms and possible release. Remarks/Consideratio Responsibility ns the bunkering line route and method to ensure that it is empty after bunkering. Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.2. PBU and Vaporiser Item/Activity 1.2.1. Equipment HAZID Prompt Causes 1.2.1.1 Equipment - Tube leak in failures exchanger E-5150. Consequences Safeguards LNG release into the shell 1. Relief valve on the closed of the heat exchanger. loop system sized for tube Rapid vaporisation leading rupture in E-5150. to pressure into the 2. Pressure transmitter in the water/glycol system. closed loop system Possible rupture of the (PT1815), closes down the water/glycol system if the LNG system if there is a system is over pressurized pressure increase in the - hot water release closed loop system. followed by NG. Possible 3. Secondary heat loop piping fire/explosion if release system and equipment ignited. designed for 10 barg. S L R C L3 Remarks/Consideratio Responsibility ns Notes 22. Ensure that the relief Cryonorm valve sizing takes into account pressure loss through the piping up to the relief valve and the possibility of LNG entering the valve. 4. The shell and tube exchanger is inspected and approved according to appropriate codes and practices for LNG. 5. Instrumentation in the secondary loop rated for flammable atmospheres. 6. Firefighting systems on the vessel. Plate leak in Exchanger E-1820 Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Engine water leak into the 1. May be detectable from closed loop system system pressure monitors. (dependant on the relative 2. Exchanger plates are 23. Consider using different colour additives to the 1. A plate failure in E-1820 will be a hidden failure. ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.2. PBU and Vaporiser Item/Activity HAZID Prompt Causes Consequences Safeguards system pressures). Pressure increase in the closed loop system not thought to be significant as the system is designed for 10 barg. stainless steel and are in a relatively non corrosive environment. S L R Remarks/Consideratio Responsibility ns engine water and circulation water to indicate leakage. Note: Sampling will be required if this is done. Closed loop water leaks 1. Low flow switches on the into the engine water secondary loop with alarm system (dependant on the and shut down. relative system pressures). Loss of water in the closed loop leads to low pressure but circulation will continue. 24. Install Pressure Cryonorm indications with alarm and shut down on the secondary loop and engine water system. Loss of circulation around the closed loop system due to pump failure. No flow of water/glycol 1. Redundant circulation pumps C L2 around the closed loop on automatic changeover. system. Reduced 2. Low flow alarm and shut vaporisation capacity down on the circulation leading to possible carrysystem. over of LNG into the NG 3. A low temperature shut off feed. Note this will take valve on the outlet of the some time as residual heat LNG tank. in the shell of the heat exchanger. Possible failure of the gas supply line to the engine due to low temperatures. Release of LNG possible fire/explosion. 25. Confirm in the event Cryonorm of a shut down that it is not credible to get LNG into the exit of the vaporiser into piping that is not rated for low temperatures. Loss in pressure in the air space in the expansion vessel Slight reduction in pressure 1. Pressure relief valve on the in the circulation liquid water system. which is not a significant failure. (V-1800). Notes 1. It is not planned to have an automatic air bleed valve on the closed loop water system, as this could be a release point of an LNG leak were to enter the water system. If additional water is added to make up the pressure, the system could become hydraulically full leading to Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.2. PBU and Vaporiser Item/Activity HAZID Prompt Causes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Notes rupture as the temperature increases. Loss of circulation as detailed in previous scenarios. 1.2.1.2 Control System failures Control failure leads to high flow to the PBU through valve 5130. Pressure increase in the storage tank, possible leading to rupture or leakage of the tank. Possible Fire/explosion if ignited, possible over pressurization in the tank room (refer to node 1). 1. Copy from Node 1 [Revalidated: CHRIS TO COMPLETE] 1. Control shut off valves are designed to be very high integrity. 2. Safety system will close the valves to the PBU (assuming these can operate prior to failure of the control system). 3. Manual valve can be closed (refer to node 1). Control failure leads to valves on the inlet to the vaporiser being fully open (e.g. valve 5120NG or 5125NG). Normal operating condition is that these valves are fully open. Flow rate in the system is a function of gas demand from the engine system. No significant consequences (refer to scenario were there has been a gas line rupture). Control failure leads to valves on the inlet to the vaporiser fail to open (e.g. valve 5120NG or 5125NG). No pressure into the top of 1. the storage tank leading to reduced flow to the engine, leading to loss of power. Control system fails Reduced flow to the and does not feed engine, leading to loss of sufficient LNG to the power. vaporiser. C L1 1. Failure of these valves to close when required is a failure of the emergency system. Process alarms on the flow system e.g. flow and pressure will indicate loss of gas supply 2. Alarms on the engine. 3. Diesel engine can be used as a backup power supply. 1. Process alarms on the flow system e.g. flow and pressure will indicate loss of gas supply 2. Alarms on the engine. 3. Diesel engine can be used as a backup power supply. Control system High temperature water in 1. High temperature alarm/shut failure leading to the the vaporiser/PBU which down system which stops hot Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.2. PBU and Vaporiser Item/Activity HAZID Prompt Causes closed loop water system being too hot. Due to temperature control failure or electrical heater being operated when not required. Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Notes results in higher water circulation and LNG temperature gas being fed circulation system (prevents to the fuel systems and engine damage). engines. Maximum 2. Temperature transmitters on temperature specification the outlet of the vaporiser for the engine exceeded (5150 and 5155) which stops leading to possible hot water circulation and damage/engine shut down LNG circulation system and loss of power. (prevents engine damage). 3. Diesel engine can be used as a backup power supply. 4. Electrical heater has a small heating capacity and if constantly on will not lead to overheating of the system. Control system failure leading to the closed loop water system being too cold or fouling of heat exchangers. Lower vaporization in the 1. Process alarms on the flow vaporiser and PBU leading system e.g. flow and to reduced flow to the pressure will indicate loss of engine and loss of power. gas supply 2. Alarms on the engine. 3. Diesel engine can be used as a backup power supply. 4. Electrically heater can be used if the control failure associated with the hot water system. Failure in the gas line after PCV5150NG High flow of LNG through 1. the vaporiser as the downstream system is de pressurised. Possible carry through of LNG if the 2. vaporiser capacity is exceeded leading to LNG release from the gas piping system. Shut down system in the gas C L3 system operates on loss of pressure and closes the LNG storage tank valves. Low temperature shut down on the exit temperature from the vaporiser (5150 and 5155). 3. Flow indication may provide alarm/trip (depending on the leak position). 1.2.1.3 Electrical Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Loss of power supply Loss of heating in 1. Shut down system in the gas 1. Pumps are not on ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.2. PBU and Vaporiser Item/Activity HAZID Prompt system failures Causes to the circulation pumps Consequences vaporiser and PBU as considered above Safeguards system operates on loss of pressure and closes the LNG storage tank valves. 2. Low temperature shut down on the exit temperature from the vaporiser (5150 and 5155). S L R Remarks/Consideratio Responsibility ns Notes emergency power supply as the system can be shut down safely. 3. Flow indication may provide alarm/trip (depending on the leak position). 4. Diesel engine can be used as a backup power supply. Loss of power supply Unable to start up as the to the electrical permissive in the control heater on the system will not operate circulation system until the closed loop reaches a required temperature. 1.2.1.4 Utility failures 1.2.2. Materials 1.2.2.1 Flammable/ oxidising Loss of instrument air 1. Diesel engine can be used as a backup power supply. System fails to safe state, 1. Diesel engine can be used loss of power to the as a backup power supply. engines. No consequences identified. materials 1.2.2.2 Toxic/ asphyxiant materials As for node 4 - as of NG leaks into the cold box. 1.2.2.3 Corrosive materials Corrosion in the closed loop water system. 1.2.2.4 Inerts No consequences identified. 1.2.2.5 Water Draining of water required for maintenance - note Possible cause of leak as 1. Corrosion exhibitor in the detailed above. water system included in the glycol mix. 2. [Revalidated] Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.2. PBU and Vaporiser Item/Activity HAZID Prompt Causes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns problem water can be drained from the system. Leakage of water from the system 1.2.3. Operating Parameters 1.2.4. Location/ Environment Water may be released 1. Separate drainage system onto the deck or the tank from the tank room which room. No significant can be used to pump out hazard identified but water water. may need to be drained. 1.2.3.1 Temperature Total freezing of the water contents in the vaporiser/PBU considered but not thought to be a credible event. 1.2.3.2 Pressure No additional scenarios identified. 1.2.3.3 Flow No additional scenarios identified. 1.2.3.4 Level Water addition No significant required for filling the consequence as this is a secondary loop standard requirement for system prior to start- this type of system. up or after maintenance. 1.2.4.1 Location hazards Dropped object is a As detailed above. possible cause for leak from the water system. 1.2.4.2 Other activities 26. Include details of Cryonorm filling and venting on the P&ID diagram. 1. A pipe routed close to structures and is very short; therefore risk of damage is minimal. No additional scenarios identified. 1.2.4.3 Ambient conditions No additional scenarios identified. 1.2.5. Operating Modes 1.2.5.1 Operation on inland water ways 1.2.5.2 Other operations Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Time to start up the Delay in start-up if the 1. No specific criteria for startsystem from cold heater is not large enough. up. Note: power can be using the electrical supplied from the diesel heater. fuelled system or from shore. No additional scenarios identified. ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.2. PBU and Vaporiser Item/Activity HAZID Prompt Causes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Notes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Notes 1.2.6. Other Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.3. Gas Supply to Engines and the Engines Item/Activity 1.3.1. Equipment HAZID Prompt Causes 1.3.1.1 Equipment - Failure of the failures pressure control valve 5150NG Maybe surges of gas or 1. slightly high pressure to the downstream system, possibly 10 barg to 2. PCV5182NG - leading to damage to the downstream system, possibly up to the 3. engine inlet as it is not rated for 10 barg. Possible fire/explosion if gas released. 4. Relief valves after the second stage pressure reduction. B L3 High pressure shut down at the engine inlet which closes isolation valves. Flow measurement in 4 locations which shuts off the gas supply. Majority of the gas pipe is located outside the vessel, which prevents build-up of gas if there is a leak. 5. Firefighting equipment in the on the vessel. 6. Control of ignition sources on the vessel. As above but possible feed 1. Relief valves after the of 10 barg NG to the second stage pressure engine. Possible damage reduction. to the engine and leak of NG at the engine. Leading to possible fire/explosion in the engine system. 2. High pressure shut down at the engine inlet which closes Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 C L4 12. Clarify the design of MWM the TRV5185 relief valve, will it protect the engine from overpressure from the high pressure gas supply. 13. Consider designing Argos/Cryonorm/ the fuel supply MWM ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.3. Gas Supply to Engines and the Engines Item/Activity HAZID Prompt Causes Consequences Safeguards S L R isolation valves. 3. Flow measurement in 4 locations which shuts off the gas supply. 4. Gas detection in the engine with alarm and shut down. 5. Firefighting equipment in the engine room. Remarks/Consideratio Responsibility ns system to withstand failure of PCV5150NG (high pressure - up to PCV5182NG). Note that similar failures in the downstream gas train. Notes 6. Control of ignition sources on the vessel. 7. Ventilation system in the engine room. Gas supply to engine Release of gas at the 1. open for engine leading to possible maintenance leading fire/explosions and harm to to gas release. If personnel. 2. isolation valves are passing. 3. Multiple isolation valves on A L3 the gas train (including hand valves). Firefighting equipment in the engine room. Control of ignition sources on the vessel. 4. Ventilation system in the engine room. 1.3.1.2 Control system failures Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Control system failure leads to pressure control valves being too far open. Possible over 1. PCV5150NG designed to fail C L4 pressurization of the closed. downstream gas systems 2. Independent high pressure as detailed above, shut down using PT5160. Control system closes one of the feed valve. Leading to loss of fuel to one or all of engines, dependant on the failure. 1. Alarms on flow and pressure. Fault condition in an Gas valves will close and engine. any engine will stop. 1. As the engine runs down gas in the fuel supply will be 14. Ensure that PT5160 Cryonorm and connections are rated for maximum pressure in failure scenarios. 1. It is proposed to install another shut off valve after PT5160NG to protect against high pressure. Operated by the safety shut down system. 15. Include MWM consideration of this 1. It is required that the engine is approved by 2. Gas oil fuelled back-up engine. ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.3. Gas Supply to Engines and the Engines Item/Activity HAZID Prompt Causes Consequences Possibility of gas remaining in the line between the shut off valves and the engines. Safeguards S L R used. Engine over speed condition. No significant effects on the gas system, the engine will only consume the gas that is provided. Isolation valve on engine inlet fails to operate when required. Gas continues to be fed to 1. Double block isolation on the B L1 the engine when not inlet to the engine. required. Gas will pass 2. Engine will withstand some through the engine to the overpressure or will be fitted exhaust. Possible ignition with relief system from in the engine and the explosion. exhaust system. 3. Fail safe closed action on the isolation valves. Remarks/Consideratio Responsibility ns remaining volume of gas in the approval process of the engine. 16. Install an automated MWM bleed valve between isolation valves on the inlet to the engines (X5193NG and X5194NG for engine 1, as similar for other engines). Notes Lloyd's Register. 1. This is required to comply with LR rules. 4. Limit switches on the isolation valve which provide alarm if valves not closed fully. 1.3.1.3 Electrical system No additional scenarios identified. failures 1.3.1.4 Utility failures Cooling system Engine stops as detailed failure on the engine. above. Oil system failure on Engine stops as detailed the engine. above. 1.3.2. Materials 1.3.2.1 Flammable/ oxidising No additional scenarios identified. materials 1.3.2.2 Toxic/ asphyxiant materials 1.3.2.3 Corrosive materials Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 No additional scenarios identified. External corrosion of If corrosion is severe the gas line and leading to loss of components on the containment and fire. deck. 1. Routine painted line B L4 2. Inspection of line 3. Emergency shutdown of the furl system if the leak occurs. ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.3. Gas Supply to Engines and the Engines Item/Activity HAZID Prompt Causes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns 4. Controls of ignition sources. 5. Firefighting system on the deck. Use of aluminium component in the gas line to the engine. 1.3.3. Operating Parameters 1.3.4. Location/ Environment 1.3.2.4 Inerts No additional scenarios identified. 1.3.2.5 Water No additional scenarios identified. Aluminium components will 1. No components are not withstand fire scenarios manufactured from and could fail. aluminium. 1.3.3.1 Temperature No significant scenarios identified. 1.3.3.2 Pressure No additional scenarios identified. 1.3.3.3 Flow No additional scenarios identified. 1.3.3.4 Level Not applicable. 1.3.4.1 Location Dropped object or Failure of the gas line 1. Control of lifting operations impact to the piping leading to fire on the deck on the vessel. system on the deck. of the vessel. 2. Line has some impact protection (but would not withstand a dropped container). hazards B L3 3. Fuel system shut down. 4. Firefighting system on deck. 5. Bunkering connection arm does not pass over this fuel line. Vibration. Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 No specific consequences identified related to this design. Note: vibration related failures and hose failure due to poor installation are known failure modes. ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.3. Gas Supply to Engines and the Engines Item/Activity HAZID Prompt Causes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Notes Use of single walled piping 1. Gas detection in the engine B L2 on the engine, possible room leak if this fails due to 2. Ventilation system prevents vibration leading to fire in build-up of gas. Note that if the engine room. the ventilation system is proved to be sufficient there is no requirement for double walled piping on the engine. 3. Firefighting system in the engine room. 4. Shut down of the gas supply. 5. Design to standards and inspected accordingly. 1.3.4.2 Other activities Collision with another vessel or dock. Not a significant issue as the pipe is routed away from the side of the vessel. Engine removal for maintenance. Not a significant issue identified, the system will operate with 1 or more engine removed. 1.3.4.3 Ambient conditions No significant scenarios identified. 1.3.5. Operating Modes 1.3.5.1 Operation on inland No significant scenarios identified. water ways 1.3.5.2 Other operations 1.3.5.3 Parallel operation of the gas oil fuelled engine and Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 No significant scenarios identified. Maybe required if a gas engine is damaged or during changeover between gas and oil operation. 1. Engines and fuel systems designed is appropriate for inland water way operation. No significant consequence, the system is designed for parallel operation. ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.3. Gas Supply to Engines and the Engines Item/Activity HAZID Prompt Causes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Notes the NG engine. 1.3.5.4 Engine Required during acceleration and operation of the step loads vessel. 1.3.5.5 Purging at start-up of Gas fuelled engines are less responsive than oil fuelled engines, this is not a significant issue with this design, the system will meet the required criteria. No significant scenarios identified. 1. Engines and fuel systems designed is appropriate for inland water way operation. the engines 1.3.6. Other Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.4. Cold Box Ventilation System Item/Activity 1.4.1. Equipment HAZID Prompt Causes 1.4.1.1 Equipment - Leak from the LNG failures piping system into the cold box - due to fatigue/weld failure Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Consequences Safeguards S L R LNG released into the cold 1. Electrical equipment rated for C L2 box, which will collect in Zone 1 (ATEX). the base of the box and form a liquid level. LNG will also vaporise to form NG which will be vented through the cold box extraction system to the vent stack. If the extraction system is not sufficient for the leak size gas will be released into 2. The ventilation system is the tank room leading to sized for 30 hch. the possibility of over pressurization of the tank room and fire/explosion if ignited. Remarks/Consideratio Responsibility ns 17. Check if the cold Cryonorm box extraction system can remove the maximum flow of NG formed from guillotine failure of the largest bore connection in the cold box e.g. all the liquid released is vaporised. Notes 1. if recommendation 17 deems to be correct than recommendation 18 may not be required. 18. Make the root valves Cryonorm on the liquid outlets from the LNG tank accessible in emergency conditions i.e. so they can be ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.4. Cold Box Ventilation System Item/Activity HAZID Prompt Causes Consequences Safeguards 3. Piping system is designed in accordance to B31.3. 4. All materials used are by approval of Lloyd's Register. 5. Gas detection and alarm within the tank room. 6. Two independent ventilation systems in the room (connected to the UPS) with redundant fans. S L R Remarks/Consideratio Responsibility ns operated manually if the automatic shut off valves fail. 20. If it is not possible to Cryonorm remotely/manually operate the root valves, evaluate the consequences of a prolonged release into the cold box i.e. would the cold box be overfilled and overflow into the tank room. 7. Equipment in the cold box is protected against impact from the LNG tank. 8. Shut off valve on the LNG outlets operates on Gas detection (Note this only applies for leaks after the shut off valve). 9. Firefighting systems in the tank room and the cold box. 10. Cold box is designed to withstand the LNG weight released into it. Failure of one of the Reduction in extraction cold box extraction capacity fans. 1. Redundant second fan. 2. Fans are on separate power systems. 3. One fan is on a UPS. 4. Operation and load alarms on the fans provide indication that stopped. 5. Extraction system in the tank room will provide some ventilation. Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.4. Cold Box Ventilation System Item/Activity HAZID Prompt Causes Consequences Safeguards Failure of non-return Flap fails to closed position 1. Power consumption of fan flap on the fan outlet. leading to reduction in will indicate loss of flow. extraction capacity. 2. Visual inspection of counter weight on the valve will indicate whether in the wrong position. S L R Remarks/Consideratio Responsibility ns 19. Consider protecting Windex/Argos the counter weights on the non-return valves to prevent movement being blocked. 3. Valves designed/approved for marine duty in this environment. Flap fails to the open 1. Valves designed/approved position leading to for marine duty in this recirculation of air around environment. the non-operating fan. 2. Visual inspection of counter weight on the valve will indicate whether in the wrong position. 3. Power consumption of fan will indicate loss of flow. Blockage of the mist Reduction/loss of air flow. 1. The mist eliminator is large, eliminator on the air total blockage is not thought inlet to the tank to be credible. room. 2. Alarms on the extraction system motors will indicate/alarm loss of air flow. 1.4.1.2 Control system failures Second fan does not Reduction in extraction speed up/start when capacity the first fan fails. 1. Extraction system in the tank room will provide some ventilation. 2. Operation and load alarms on the fans provide indication that stopped. 3. One fan is on a UPS. 4. Fans are on separate power systems. 5. Redundant second fan. Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.4. Cold Box Ventilation System Item/Activity HAZID Prompt Causes Consequences Control system Increased levels of noise operates both fans simultaneously when only one required. 1.4.1.3 Electrical system Safeguards S L R Remarks/Consideratio Responsibility ns 1. Motor status indication/alarm in the control system. Power supply lost to Loss of extraction capacity 1. Fans are on separate power the fans. systems. 2. One fan is on a UPS. failures 3. Alarms in the control system - decision can be made whether to shut down the LNG system and to run on the diesel engine. 1.4.1.4 Utility failures 1.4.2. Materials 1.4.2.1 Flammable/ oxidising No new cause identified No new cause identified materials 1.4.2.2 Toxic/ asphyxiant materials Refer to node 1 for confined space entry. 1.4.2.3 Corrosive materials No new cause identified 1.4.2.4 Inerts No new cause identified 1.4.2.5 Water Moisture (humidity) in the air drawn through the tank room and cold box. Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Icing of cryogenic systems. 1. Ice build-up may lead to 2. operability difficulty or equipment damage if build 3. up is severe (e.g. valve stems bent). Insulation of cold surfaces. Mist drawn into in the Icing of cryogenic systems. 1. tank room and cold Ice build-up may lead to 2. box through the air operability difficulty or inlet. equipment damage if build 3. up is severe (e.g. valve Insulation of cold surfaces. Design includes consideration of ice build-up. Cryogenic valves with long stems used. Design includes consideration of ice build-up. Cryogenic valves with long stems used. ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.4. Cold Box Ventilation System Item/Activity HAZID Prompt Causes Consequences stems bent). 1.4.3. Operating Parameters 1.4.4. Location/ Environment Safeguards S L R Remarks/Consideratio Responsibility ns 4. Mist eliminator on the inlet. 1.4.3.1 Temperature Operation at low ambient conditions considered but not thought to be an issue. 1.4.3.2 Pressure Room may operate at slight under pressure - not considered to be a problem. 1.4.3.3 Flow Overall flow of air through the tank room is not considered to be sufficient to be an operational problem. Velocities are not high enough to be a nuisance. 1.4.3.4 Level Refer to previous scenarios. 1.4.4.1 Location No additional scenarios identified (refer to node 1). hazards Air inlet to the tank room located in a hazardous area (flammables). 1.4.4.2 Other activities 1.4.4.3 Ambient Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Possibility of flammable atmosphere entering the tank room and cold room. 21. Verification of extent Rommerts of hazardous area according to rules is required. No problems identified with access for maintenance and removal of equipment’s - this has already been included in design. No additional ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.4. Cold Box Ventilation System Item/Activity 1.4.5. Operating Modes HAZID Prompt Causes conditions scenarios identified. 1.4.5.1 Operation No additional scenarios identified. on inland Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Notes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Notes water ways 1.4.5.2 Other operations No additional scenarios identified. 1.4.6. Other Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.5. Engine Room Ventilation System Item/Activity 1.5.1. Equipment HAZID Prompt Causes 1.5.1.1 Equipment - No redundancy in failures fan operation due to equipment, power or control failure. Insufficient ventilation, reduced protection if there is a release of NG. Possible over heating of engines if ventilation system is not adequate. If air supply is not sufficient then adequate combustion air may not be available. 1. Installed redundant fans available. 2. System will be shut down if insufficient fans are available. 3. Alarms on the fan systems. 4. Diesel engine used for vessel power supply. 5. Engines will provide alarm and shut down on high temperature. 6. Engine combustion air requirement is small in comparison to overall ventilation flow. Too many fans No significant running due to consequences identified equipment or control other than waste of energy. failure. Non return damper failed closed on a fan. Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Common duct to the fans No significant consequences identified due to system ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.5. Engine Room Ventilation System Item/Activity HAZID Prompt Causes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Notes configuration. Non return damper Fan operates against a 1. Power indication on the failed open on a fan. closed discharge damper, power will indicate operation loss of flow as detailed against the closed discharge. above. NG release into the Release of NG into the engine room from engine room which is not the NG fuel supply. rated for explosive atmospheres. Possible explosion if the gas accumulates and ignites. 1.5.1.2 Control system 1. Ventilation system designed C L3 to remove releases of NG; however it is acknowledged that a short term explosive atmosphere could occur. 27. Additional validation Argos that the hazardous area is acceptable is required using CFD modeling. 1. This topic is a subject to ongoing discussions. 2. Emergency shutdown system based on gas detection and flow measurement/comparison with engine usage (note that this is not a safety system acceptable by Lloyd's Register). No additional scenarios identified. failures 1.5.1.3 Electrical system No additional scenarios identified. failures 1.5.1.4 Utility failures 1.5.2. Materials 1.5.2.1 Flammable/ oxidising materials 1.5.2.2 Toxic/ asphyxiant materials 1.5.2.3 Corrosive materials Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 No additional scenarios identified. Present in an engine No significant impact on room environment, this ventilation system. possible cause of fire. No significant difference to normal ventilation system requirements. No significant difference to normal ventilation system requirements. ©Lloyd’s Register 2014 Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.5. Engine Room Ventilation System Item/Activity 1.5.3. Operating Parameters HAZID Prompt 1.5.2.4 Inerts No significant difference to normal ventilation system requirements. 1.5.2.5 Water As for tank room moisture content less significant. Environment Positive pressure in the engine room due to multiple fans running. 1.5.3.3 Flow No additional scenarios identified. 1.5.3.4 Level Not applicable 1.5.4.1 Location Suction and discharge location considered - no problems identified. hazards 1.5.4.2 Other activities 1.5.4.3 Ambient conditions 1.5.5. Operating Modes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns 1.5.3.1 Temperature No additional scenarios identified. 1.5.3.2 Pressure 1.5.4. Location/ Causes 1.5.5.1 Operation on inland Door may be difficult to open/closing and may strike someone on opening. Following shut down Possible ignition of small of engines in fault quantities of NG on startconditions there is a up. possibility that small quantities of NG may contain in the system and enter the engine room. 1. Warning signs on the Door A L2 2. Special door mechanism with two steps for opening (allows pressure release). 1. Gas detection in the engine room. A L2 2. Portable Gas testing around the engines. No additional scenarios identified. No additional scenarios identified. water ways Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Notes Process: 1. ARGOS LNG BUNKERING FUEL SYSTEM Node: 1.5. Engine Room Ventilation System Item/Activity HAZID Prompt 1.5.5.2 Other operations 1.5.6. Other Causes Consequences Safeguards S L R Remarks/Consideratio Responsibility ns Maintenance - no issues identified, the engines must be shut down prior to maintenance. Note that maintenance activity on a nonoperational engine is allowed whilst the others are operating as long as the engine is adequately isolated according to requirements. 1.5.6.1 Fire in the Fire due to gas Requirement for reduced engine room release or oil fire etc. air flow into the engine room to reduce oxygen availability. 1. Ventilation system stops if there is a fire condition automatically. 2. Air inlet dampers can be closed if required. 3. Firefighting system in the engine room. Remarks/Considerations Remarks/Considerations Place(s) Used Responsibility 1. Review the ventilation system sizing with regards to the maximum credible release rate from the drop off disk. What size hole in the LNG tank will lead to the ventilation system being exceeded. Consequences: 1.1.1.1.2.1 Cryonorm 2. Include procedures for venting the tank in event of loss of vacuum in the O&M. Consequences: 1.1.1.1.3.1 Argos/Cryonorm 3. Ensure that the stainless steel drip tray is designed to contain the contents/releases of the bunkering line. Consequences: 1.1.1.1.4.1 Rommerts/Cryonorm Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Notes Remarks/Considerations Place(s) Used Responsibility 4. Ensure that measures are in place to prevent spraying of releases onto surfaces that are not stainless steel. Consequences: 1.1.1.1.4.1 Rommerts/Cryonorm 5. Consider requirements for ensuring that the bunkering supply used is limited to a pressure that could not lead to tank failure. Consequences: 1.1.1.2.2.2 Cryonorm 6. Include position sensors on control valves, HV5115NG and HV5110NG. Consequences: 1.1.1.2.3.1 Cryonorm 7. Treat areas where NG is present as confined spaces and provide the required warnings and procedures. Consequences: 1.1.2.2.1.1 Argos 8. Check the consequence of immersing the LNG control valve in water - PV5130NG/PV5120NG. Consequences: 1.1.4.1.2.2 Cryonorm 9. Update P&ID to show extent of the cold box. Consequences: 1.1.4.1.3.1 Cryonorm 10. Provide details of the bunkering line route and method to ensure that it is empty after bunkering. Consequences: 1.1.6.1.1.1 Cryonorm 11. Evaluate the consequences of being submerged on the relief valve capacities (including thermal relief valves). Consequences: 1.1.5.2.2.1 Cryonorm 12. Clarify the design of the TRV5185 relief valve, will it protect the engine from overpressure from the high pressure gas supply. Consequences: 1.3.1.1.1.2 MWM 13. Consider designing the fuel supply system to withstand failure of PCV5150NG (high pressure - up to PCV5182NG). Note that similar failures in the downstream gas train. Consequences: 1.3.1.1.1.2 Argos/Cryonorm/MWM 14. Ensure that PT5160 and connections are rated for maximum pressure in failure scenarios. Consequences: 1.3.1.2.1.1 Cryonorm 15. Include consideration of this remaining volume of gas in the approval process of the engine. Consequences: 1.3.1.2.3.1 MWM 16. Install an automated bleed valve between isolation valves on the inlet to the engines (X5193NG and X5194NG for engine 1, as similar for other engines). Consequences: 1.3.1.2.5.1 MWM 17. Check if the cold box extraction system can remove the maximum flow of NG formed from guillotine failure of the largest bore connection in the cold box e.g. all the liquid released is vaporised. Consequences: 1.4.1.1.1.1 Cryonorm 18. Make the root valves on the liquid outlets from the LNG tank accessible in emergency conditions i.e. so they can be operated manually if the automatic shut off valves fail. Consequences: 1.4.1.1.1.1 Cryonorm 19. Consider protecting the counter weights on the non-return valves to prevent movement being blocked. Consequences: 1.4.1.1.3.1 Windex/Argos 20. If it is not possible to remotely/manually operate the root valves, evaluate the consequences of a prolonged release into the cold box i.e. would the cold box be overfilled and overflow into the tank room. Consequences: 1.4.1.1.1.1 Cryonorm 21. Verification of extent of hazardous area according to rules is required. Consequences: 1.4.4.1.2.1 Rommerts 22. Ensure that the relief valve sizing takes into account pressure loss through the piping up to the relief valve and the possibility of LNG entering the valve. Consequences: 1.2.1.1.1.1 Cryonorm 23. Consider using different colour additives to the engine water and circulation water to indicate leakage. Note: Sampling will be required if this is done. Consequences: 1.2.1.1.2.1 Argos/Cryonorm/MWM 24. Install Pressure indications with alarm and shut down on the secondary loop and engine water system. Consequences: 1.2.1.1.2.2 Cryonorm 25. Confirm in the event of a shut down that it is not credible to get LNG into the exit of the vaporiser into piping that is not rated for low temperatures. Consequences: 1.2.1.1.3.1 Cryonorm 26. Include details of filling and venting on the P&ID diagram. Consequences: 1.2.3.4.1.1 Cryonorm 27. Additional validation that the hazardous area is acceptable is required using CFD modelling. Consequences: 1.5.1.1.5.1 Argos Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Risk Matrix L1 L2 Likelihood L3 L4 L5 Severity C B A Severity Severity C B Description Likelihood L1 L2 L3 L4 L5 Multiple fatalities Single fatality or multiple major injuries Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Severity A Likelihood Description L1 L2 L3 L4 L5 Major injury Likelihood Code Description Chance Per Year Chance Per Vessel Lifetime L1 Remote <10E-6 > 1 in 40,000 L2 Extremely Unlikely 10E-6 to 10E-5 1 in 40,000 to 1 in 4,000 L3 Very Unlikely 10E-5 to 10E-4 1 in 4,000 to 1 in 400 L4 Unlikely 10E-4 to 10E-3 1 in 400 to 1 in 40 L5 Likely 10E-3 to 10E-2 1 in 40 to 1 in 4 Risk Ranking Code Description Low Medium High Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Appendix B HAZID P&IDs Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Node 1.1 (LNG Storage Tank) and Node 1.2 (PBU and Vaporiser) Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Node 1.2 (PBU and Vaporiser) and Node 1.3 (Gas Supply to the Engines) Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Node 1.3 (Gas Supply to the Engines) Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 ©Lloyd’s Register 2014 Annexe 2 au RV (14) 59 = RV/G (14) 92 = JWG (14) 86 Synthèse des dérogations au Code IGF (Résolution de l'OMI MSC.285(86) Code IGF (version juillet 2009) Dérogation Situation à bord 1.1.2 Renvoi à SOLAS Un bateau de la navigation intérieure n'est pas tenu de satisfaire aux exigences SOLAS. 2. Type de citerne de GNL : citerne de type C OMI La citerne de stockage de GNL n'est pas une citerne de type C OMI. La citerne de stockage de GNL est construite conformément à la norme EN 3458-2, avec des calculs supplémentaires pour une accélération du bateau de 2g dans le sens horizontal et 1g dans le sens vertical. 2.8.1.2 Branchements de tuyaux sur la citerne normalement situés audessus du niveau de remplissage maximal Tous les branchements de tuyaux sur la citerne ne sont pas au-dessus du niveau de remplissage maximal La conception de la citerne suppose un branchement sur le fond afin de pouvoir établir de la pression pour la consommation. De plus, le niveau de remplissage est déterminé à partir du branchement sur le fond. 2.8.1.4 L’échappement par les vannes de surpression est situé au moins à 6 m ou largeur/3 au-dessus du pont exposé aux intempéries (la plus grande des deux dimensions étant retenue) Ceci est impossible en raison du tirant d'air insuffisant des ponts L'orifice de dégagement est situé à 2 m au-dessus du pont principal, soit à une hauteur supérieure à celle des "high jets" des citernes à cargaison. 2.8.3.4 Gatte de récupération en dessous de la citerne (et de la station de remplissage de la citerne) Absence de gate de récupération sous la citerne La citerne possède une double paroi. La citerne extérieure en acier inoxydable tient lieu de barrière secondaire pour la citerne intérieure. Une gatte de récupération d’une 3 capacité d'1 m est prévue sous la boîte froide (cold box) pourvue des vannes de raccordement de la citerne Report no: 50102448 R01 Rev: 00 Date: 29 April 2014 Annexe 3 au RV (14) 59 = RV/G (14) 92 = JWG (14) 86 Argos Bunkering b.v. Gasoil/LNG bunker ship project 1 Table of Contents 1. Introduction .................................................................................................................................... 3 2. Strategy ........................................................................................................................................... 3 2.1 Vision ............................................................................................................................................. 3 2.2 Mission .......................................................................................................................................... 3 3. Gasoil/LNG bunker ship project ..................................................................................................... 4 3.1 Design ............................................................................................................................................ 4 3.2 Operational functions ................................................................................................................... 4 3.2.1 Gasoil cargo................................................................................................................................ 4 3.2.2 LNG cargo ................................................................................................................................... 4 3.2.3 LNG propulsion .......................................................................................................................... 5 3.2.4 Facilitator for practical LNG training ......................................................................................... 5 4. Crew Competence & course ........................................................................................................... 5 Appendix: A. General arrangement of the ship B. LNG bunker procedures Argos Bunkering b.v. Waalhaven Z.z. 11 3089 JH Rotterdam 2 1. Introduction Argos is the largest independent player (not listed on the stock exchange or state affiliated) in the Western European downstream oil market, combining storage and distribution with the international trade in and sale of mineral oils and biofuels. 2. Strategy To further expanding its current activities, in scale as well as geographically, Argos will focus on a wider spectrum of low-emission energy products with safety, sustainability and environment getting high priority at all times. These could also include activities that at first sight do not fit within the current portfolio. 2.1 Vision Our vision on the bunker fuel in the maritime sector is that: this will change in the near further regarding SECA area regulations for the see going vessels national and internal stringent environment regulations for propulsion engines used for vessels in inland waterways economic drivers to use other type of bunker fuel For the above criteria, LNG as bunker fuel can satisfy our customers to comply with dear needs. Benefits of LNG as a fuel: With regard to other fuels LNG provides the following advantages: ± 20% less CO2 (carbon dioxide) than gasoil ± 95% les NOX (nitrogen oxide) than gasoil No emission of SOX Price is competitively when compared to gasoil 2.2 Mission Argos acts upon the changing demand for alternative energy sources by introducing the first LNG bunkering vessel in 2015. Suitable to provide LNG as a fuel to inland shipping and see going vessels. For operational and economic reasons, we made the decision to design an combined gasoil/LNG bunker ship. Because in “one call” from our customers we can provide gasoil and LNG as bunker fuel. It‘s the extra services we can give. 3 3. Gasoil/LNG bunker ship project The work area of this ship is mainly in ARA (Amsterdam, Rotterdam, Antwerp) ports. This means that the movability of this ship should be perfect to handle. 3.1 Design The main dimensions of the ship are: Length 11Ϭ meters With 13,5 meters The ship is designed with an extra (“Schelde huid”) double side construction to protect the ship for external impact. The following volumes are on this ship available for transport: Gasoil LNG cargo 4 tanks of 380 m³ 2 tanks of 935 m³ total total 1520 m³ (volume 100%) 1870 m³ (volume 100%) For LNG propulsion we will use a LNG tank of 40 m³ (volume 100%) See appendix A : General arrangement of the ship. The maximum movability of this ship will be handled by, 2 L drives (650 kW each) in the after ship and 1channel bow thruster (500 kW). ĞƚĂŝůĚĞƐĐƌŝƉƚŝŽŶĂŶĚĚƌĂǁŝŶŐƐŽĨƚŚĞ>E'ƉƌŽƉƵůƐŝŽŶƐLJƐƚĞŵ ĂƌĞŝŶĐůƵĚĞĚŝŶƚŚĞ,/ƌĞƉŽƌƚŽĨ>ůŽLJĚ͛ƐZĞŐŝƐƚĞƌ͕ƌĞƉŽƌƚŶƵŵďĞƌϱϬϭϬϮϰϰϴͲZϬϭ͕ĚĂƚĞϮϵͲϰͲϮϬϭϰ͕ ;ƐĞĞĂƉƉĞŶĚŝdžϭŽĨƚŚŝƐƌĞĐŽŵŵĞŶĚĂƚŝŽŶͿ͘ 3.2 Operational functions 3.2.1 Gasoil cargo As Argos Bunkering organization we have a lot of expertise in the World of bunkering regarding operational, and environment regulations on the inland waterways including management skills at our office in Rotterdam to operate the bunker fleet in a safe way. We will use those expertise in our project. We will use similar systems, nautical technical equipment, cargo pumps e.g. 3.2.2 LNG cargo We will use for the LNG cargos tanks, GTT membrane technology to optimal the volume of the LNG tanks in relation with the deign of the ship. With redundant Boill off Gas installations the LNG shall be conditioned. For LNG bunkering, we will use Lloyds Register LNG hoses. Depending on the size of the ship of our customer, we shall use our bunker arm to make a safe connection with a double isolated LNG hose. 4 3.2.3 LNG propulsion The main reasons to use LNG for propulsion for this ship are: Environment benefits The economics are positive in relation to use gasoil Strategic choice, what we sell , we use also for our purpose To get experience in the LNG marked The design of our LNG propulsion system is similar of the other inland waterway projects the company Cryonom Projects designed. The expertise of other projects is used for our project. The main different is, we will use a smaller LNG propulsion tank. We will bunker ourselves from the LNG cargo tanks. The power management of the ship will be handled by 3 x MWM gas engines of 400 ekW. Installed in the front engine room. For back-up we will use a Caterpillar diesel of 450 ekW, installed in the after engine room. 3.2.4 Facilitator for practical LNG training We are member of the European LNG master plan project, this also creates obligations. As member of the several workings groups we have the opportunity to facilitate students and teacher/ trainers on the ship in a separate training room to transferring knowledge and see in practice the operational activities on the ship regarding LNG bunkering e.g. In cooperation with STC bv. (Shipping and Transport College) also member of the European LNG master plan we will develop a practical LNG bunkering training for our crew and also available for other crew members out site our organization. 4. Crew Competence & course Crew on board of an inland LNG bunker vessels shall be qualified according to: ADN requirements applicable for gas carriers followed a general LNG training (theoretical) at STC b.v. (Shipping and Transport College) followed specific LNG bunker training (theoretical) followed the LNG bunker training on our LNG bunker ship (practical) The main purpose of the courses is to familiarize the crew of inland waterway vessels with the properties and hazards of LNG and to get knowledge how to work with LNG as fuel onboard the vessel. For instance in case of bunkering and maintenance. The course will include a theoretical part, consisting of the main LNG topics and a practical training on board of the vessel in which the theoretical items will be dealt with in practice. 5 Annexe 4 au RV (14) 59 = RV/G (14) 92 = JWG (14) 86 OPERATIONAL LNG BUNKERING PROCEDURES 1 Table of Contents 1. Purpose ........................................................................................................................................... 3 2. General ............................................................................................................................................ 3 3. Crew competence ........................................................................................................................... 3 4. Communication and Connection .................................................................................................... 3 4.1 Communication............................................................................................................................. 3 4.2 Connection .................................................................................................................................... 4 5. Pre Bunkering.................................................................................................................................. 4 5.2.Bunker check list ........................................................................................................................... 4 5.2 Line–up .......................................................................................................................................... 4 6. Bunkering ........................................................................................................................................ 5 7. After- Bunkering ............................................................................................................................. 5 7.1 Inerting of the LNG bunker hose .................................................................................................. 5 7.2 Documents .................................................................................................................................... 5 Appendix: A. LNG bunker transfer check list “truck -> ship” B. LNG bunker transfer check list “ship -> ship” Argos Bunkering b.v. Waalhaven Z.z. 11 3089 JH Rotterdam 2 1. Purpose To fill the LNG holding tank(s) in a safe way, the following procedures should be followed closely: 2. General Only class approved LNG bunker ship suppliers are allowed to perform ship to ship bunkering in the ports. Before the vessel’s LNG storage tanks can be filled on a certain place, (local) authorities should be informed. These authorities could demand for extra safety precautions. The authority’s approval for the bunker transfer must be available before bunkering is started. 3. Crew competence Crew on board of an inland LNG bunker vessels shall be qualified according to: ADN requirements applicable for gas carriers followed a general LNG training (theoretical) followed specific LNG bunker training (theoretical) followed the LNG bunker training on our LNG bunker ship (practical) 4. Communication and Connection 4.1 Communication As a general principle, the LNG bunker ship has to provide the communication equipment (radio) to the receiving ship. A dedicated working channel for communication has to be agreed upon and duly tested prior to the transfer operation. The ESD link between the ships (SIGTTO system for sea going vessels) is available. The bunker vessel’s emergency plan including the emergency signals have to be communicated to the receiving vessel prior to the transfer operation. 3 4.2 Connection The LNG transfer line connection system has to be equipped with a dry disconnect coupling. LNG hoses have to be adequately supported to prevent contact with sharp edges and freezing to surfaces. Spill containment arrangements such as drip trays shall be adequately installed, of an appropriate volume and visually inspected (empty). The ESD link between the ships (SIGTTO system for sea going vessels) is in place. 5. Pre Bunkering All accommodation openings in the LNG bunker area on the receiving ship shall be closed during transfer. Unauthorized personnel transit through the safety zone is not allowed during bunkering unless in case of emergency. 5.2.Bunker check list The bunker transfer checklist (see appendix A and B) is a mutual document with steps to be made by the supplier and the receiver, and signed by authorized persons to confirm that all points are addressed. The LNG bunker supplier is responsible for the checklist to be properly filled in and signed before delivery to the receiving ship. The receiving ship’s Master or the appointed responsible will accept the checklist and issue the order to proceed. The checklist is to be further filled out and signed by the receiving vessel’s responsible, and returned to the bunker operator before starting any transfer. 5.2 Line–up The line-up procedure is to be sure that there is a no nitrogen left in the LNG bunker hose. This means that the LNG bunker hose will connected to the LNG bunker pole on the LNG bunker ship. LNG bunker pole is connected to the LNG gas propulsion system. A minimum of LNG will be pumped trough the LNG bunker hose. When the temperature is below zero and no nitrogen is measured this procedure is finessed. 4 6. Bunkering The bunkering area is an EX-classified and restricted area during bunkering. Only authorized personnel are allowed in the safety zone during bunkering. This is to be adequately supervised by the receiving vessel’s responsible and the LNG bunker ship supplier. The LNG cargo pumps shall be ramped down to an agreed topping up rate when the total transfer amount is almost reached. The final filling requires special attention on the receiving ship to watch the tank level and pressure. When the valves are confirmed to be lined up and the personnel are confirmed to be outside the safety zone, the bunker operator and the receiving ship’s engineers confirm that they are ready to commence bunkering by giving a ready signal via the agreed communication link (VHF or other). ESD system Manual ESD will be used to prevent dangerous situations Manual ESD will also be used when there are unforeseen operational actions The ESD system will automatically stop the bunkering sequence at a maximum liquid level in the fuel tanks. During bunker transfer the following items should continuously be checked: The gas pipes, -hose and connectors for leakage The mooring lines Forces on the transfer hose Tank pressure, which can be controlled by use of the top filling spray facility (with this procedure a vapour return is not required) 7. After- Bunkering 7.1 Inerting of the LNG bunker hose Inerting with nitrogen, is performed in order to remove LNG in the bunker hose. The supplier of the LNG shall make sure nitrogen is available. Nitrogen systems have to be checked prior to inerting. The inerting sequence has to be adequately controlled and monitored. The temperature of the LNG hose, give the status of inerting. 7.2 Documents The LNG supplier is to deliver a document, clearly stating the quantity and quality of fuel transferred, signed by both parties. The undersigned bunker check list stay at the LNG bunker ship and will be archived (available for the port/local authorities). 5 LNG Bunker Checklist Truck to Ship (Version 3.0 - June 26th, 2014) I. PART A: Pre Operations Checklist (This part should be completed before actual bunker operations start) Date and time: _________________________________________________ Designated LNG bunker location: _________________________________________________ LNG receiving ship: _________________________________________________ LNG supplying tank truck: _________________________________________________ Check Ship LNG Truck Terminal Code Remarks 1 Local authorities have granted permission for LNG transfer operations for the specific location and time. P 2 The terminal has granted permission for LNG transfer operations for the specific location and time. P 3 Local authorities have been notified of the start of LNG bunker operations as per local regulations. Time notified: ________ hrs 4 The terminal has been notified of the start of LNG bunker operations as per terminal regulations. Time notified: ________ hrs 5 Local authorities’ requirements are being observed. 6 Local terminal requirements are being observed. 7 All personnel involved in the LNG bunker operation have the appropriate training and have been instructed on the particular LNG bunker equipment and procedures. LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014 e.g. Port byelaws. e.g. Terminal regulations FINAL a/rv14_59fr 8 The bunker location is accessible for the LNG supplying tank truck and the total truck weight does not exceed the maximum permitted load of the quay or jetty. 9 The bunker location can be sufficiently illuminated. Check A Ship LNG Truck Terminal Code All LNG transfer and gas detection equipment is 10 certified, in good condition and appropriate for the service intended. A The procedures for bunkering, cooling down and 11 purging operations have been agreed upon by ship and truck. A 12 Remarks The system and method of electrical insulation have been agreed upon by ship and truck. Exclusion zone: 13 The LNG transfer exclusion zone has been agreed upon and designated. A _______________ mtr / ft IAPH recommended minimum distance:25 mtr / 82 ft Regulations with regards to ignition sources can be observed. These include but are not limited to smoking restrictions and regulations with 14 regards to naked light, mobile phones, pagers, VHF and UHF equipment, radar and AIS equipment. 15 All mandatory ship fire fighting equipment is ready for immediate use. 16 All mandatory truck fire fighting equipment is ready for immediate use. 17 All mandatory terminal fire fighting equipment is ready for immediate use. LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014 A FINAL a/rv14_59fr I. PART B: Pre Transfer Checklist (This part should be completed before actual transfer operations start) Check 18 Present weather and wave conditions are within the agreed limits. The LNG receiving ship is securely moored. Regulations with regards to mooring 19 arrangements are observed. Sufficient fendering is in place. 20 There is a safe means of access between the ship and shore. 21 The bunker location is sufficiently illuminated. The ship and truck are able to move under their 22 own power in a safe and non-obstructed direction. Ship LNG Truck Terminal Code Remarks AR R R AR R Adequate supervision of the bunker operation is in place both on the ship and at the LNG tank 23 truck and an effective watch is being kept at all times. VHF / UHF Channel: ____ Language: An effective means of communication between the responsible operators and supervisors on 24 the ship and at truck has been established and tested. The communication language has been agreed upon. ______________________ A R Primary System: ______________________ Backup System: ______________________ The emergency stop signal and shutdown 25 procedures have been agreed upon, tested, and explained to all personnel involved. A The predetermined LNG transfer exclusion 26 zone has been established. Appropriate signs mark this area. A The LNG transfer exclusion zone is free of 27 unauthorized persons, objects and ignition sources. R External doors, portholes and accommodation 28 ventilation inlets are closed as per operation manual. Emergency Stop Signal: ______________________ R At no time they should be locked The gas detection equipment has been 29 operationally tested and found to be in good working order. 30 Material Safety Data Sheets (MSDS) for the delivered LNG fuel are available. LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014 A FINAL a/rv14_59fr Check Regulations with regards to ignition sources are observed. These include but are not limited to 31 smoking restrictions and regulations with regards to naked light, mobile phones, pagers, VHF and UHF equipment, radar and AIS equipment. Ship LNG Truck Terminal Code Remarks R Appropriate and sufficient suitable protective 32 clothing and equipment is ready for immediate use. Personnel involved in the connection and disconnection of the bunker hoses and personnel 33 in the direct vicinity of these operations make use of sufficient and appropriate protective clothing and equipment. 34 Hand torches (flashlights) are of an approved explosion proof type. 35 The water spray system has been tested and is ready for immediate use. 36 Spill containment arrangements are of an appropriate volume, in position, and empty. If applicable. If applicable. 37 Hull protection system is in place. 38 Bunker pumps and compressors are in good working order. 39 All remote control valves are well maintained and in good working order. If applicable. A Bunker system gauges, high level alarms and 40 high-pressure alarms are operational, correctly set and in good working order. The ship’s bunker tanks are protected against 41 inadvertent overfilling at all times, tank content is constantly monitored and alarms are correctly set. R Intervals not exceeding ___________ minutes All safety and control devices on the LNG 42 installations are checked, tested and found to be in good working order. Pressure control equipment and boil off or re43 liquefaction equipment is operational and in good working order. LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014 FINAL a/rv14_59fr Check Both on the ship and at the tank truck the ESDs, automatic valves or similar devices have been tested, have found to be in good working 44 order, and are ready for use. The closing rates of the ESDs have been exchanged. Ship LNG Truck Terminal Code Remarks ESD Ship: A ____________ seconds Initial LNG bunker line up has been checked. 45 Unused connections are closed, blanked and fully bolted. LNG bunker hoses, fixed pipelines and manifolds are in good condition, properly 46 rigged, supported, properly connected, leak tested and certified for the LNG transfer. If applicable. The LNG bunker connection between the ship 47 and the truck is provided with dry disconnection couplings. The LNG bunker connection between the ship 48 and the LNG bunker truck has adequate electrical insulating means in place. Dry breakaway couplings in the LNG bunker connections are in place, have been visually 49 inspected for functioning and found to be in a good working order. 50 A The tank truck is electrically grounded and the wheels are chocked. The tank truck engine is off during the 51 connection, purging and disconnection of the LNG bunker hoses. 52 The tank truck engine is switched off during transfer. Unless the truck engine is required for transfer of LNG. The ship’s emergency fire control plans are located externally. Location: 53 54 An International Shore Connection has been provided. 55 The LNG specifications have been agreed upon by ship and truck. ______________________ A e.g. quality, temperature and density of the LNG. Port authorities have been informed that bunker transfer operations are commencing and have 56 been requested to inform other vessels in the vicinity. LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014 FINAL a/rv14_59fr I. PART C: LNG Transfer Data (This part should be completed before actual transfer operations start) Agreed starting temperatures and pressures LNG receiving ship LNG supplying truck LNG tank start temperature: °C / °F LNG tank start pressure: bar / psi (abs) Agreed bunker operations Note the agreed Physical Quantity Unit (PQU): m3 Tank 1 Tonnes _____________ Tank 2 Agreed quantity to be transferred: PQU Starting pressure: bar / psi (abs) Starting rate: PQU per hour Max transfer rate: PQU per hour Topping of rate: PQU per hour Max pressure at manifold: bar / psi (abs) Agreed maximums and minimums Maximum Minimum Maximum working pressure: bar / psi (abs) Maximum and minimum pressures in the LNG bunker tanks: bar / psi (abs) Maximum and minimum temperatures of the LNG: °C / °F Maximum filling limit of the LNG bunker tanks: LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014 % FINAL a/rv14_59fr Declaration We, the undersigned, have checked the above items in chapter I parts A, B and C in accordance with the instructions and have satisfied ourselves that the entries we have made are correct. We have also made arrangements to carry out repetitive checks as necessary and agreed that those items coded ‘R’ in the checklist should be re-checked at intervals not exceeding ______ hours. If, to our knowledge, the status of any item changes, we will immediately inform the other party. Ship LNG Truck Terminal Name Name Name Rank Position Position Signature Signature Signature Date Date Date Time Time Time Record of repetitive checks Date Time Initials for ship Initials for truck Initials for terminal Guideline for completing this checklist The presence of the letters ‘A’ or ‘R’ in the column entitled ‘Code’ indicates the following: A (‘Agreement’). This indicates an agreement or procedure that should be identified in the ‘Remarks’ column of the checklist or communicated in some other mutually acceptable form. R (‘Re-check’). This indicates items to be re-checked at appropriate intervals, as agreed between both parties, at periods stated in the declaration. P (‘Permission’) This indicates that permission is to be granted by authorities. The joint declaration should not be signed until both parties have checked and accepted their assigned responsibilities and accountabilities. When duly signed, this document is to be kept at least one year on board of the LNG receiving vessel. LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014 FINAL a/rv14_59fr II. After LNG Transfer Checklist (This part should be completed after transfer operations have been completed) Check Ship LNG Truck Terminal Code LNG bunker hoses, fixed pipelines and 57 manifolds have been purged and are ready for disconnection. 58 A Remote and manually controlled valves are closed and ready for disconnection. A After disconnection the LNG transfer safety 59 zone has been deactivated. Appropriate signs have been removed. 60 61 Remarks A Local authorities have been notified that LNG bunker operations have been completed. Time notified: The terminal has been notified that LNG bunker operations have been completed. Time notified: _______________ hrs _______________ hrs Port authorities have been informed that bunker transfer operations have ceased and 62 have been requested to inform other vessels in the vicinity. 63 Report nr: Near misses and incidents have been reported to local authorities. _______________ Declaration We, the undersigned, have checked the above items in chapter II in accordance with the instructions and have satisfied ourselves that the entries we have made are correct. Ship LNG Truck Terminal Name Name Name Rank Position Position Signature Signature Signature Date Date Date Time Time Time LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014 FINAL a/rv14_59fr Guideline for completing this checklist The presence of the letters ‘A’ or ‘R’ in the column entitled ‘Code’ indicates the following: A (‘Agreement’). This indicates an agreement or procedure that should be identified in the ‘Remarks’ column of the checklist or communicated in some other mutually acceptable form. R (‘Re-check’). This indicates items to be re-checked at appropriate intervals, as agreed between both parties, at periods stated in the declaration. P (‘Permission’) This indicates that permission is to be granted by authorities. The joint declaration should not be signed until both parties have checked and accepted their assigned responsibilities and accountabilities. When duly signed, this document is to be kept at least one year on board of the LNG receiving vessel. LNG Bunker Checklist - Truck to Ship - Version 3.0 - June 26th, 2014 FINAL a/rv14_59fr Internal transfer, LNG Bunker Checklist (LNG cargo - LNG propulsion tank) Note: The Internal transfer LNG Bunker Checklist is made in line with the IAPH procedures. I. PART A: Pre Operations Checklist (This part should be completed before actual bunker operations start) Date and time: Port and Berth: Ship name: Argos GL (LNG Bunker Vessel) LNG cargo tank no.: Check 1 Local authorities have granted permission for LNG transfer operations for the specific location and time. 2 Local authorities have been notified of the start of LNG bunker operations as per local regulations. 3 Local authorities requirements are being observed. 4 The ship’s class approved bunker plan and operations manual are available. 5 6 The LNG bunker vessel is moored properly. The bunker location can be sufficiently illuminated. Version 1.0 – June 10, 2014 Bunker Code Vessel Remarks P Time notified: e.g. Port Bye Law. A A hrs Check Bunker Vessel Code 7 All LNG transfer and gas detection equipment is certified, in good condition and appropriate for the service intended. A 8 The procedures for bunkering, cooling down and purging operations is defined between LNG cargo tanks and LNG propulsion tank A Remarks Exclusion zone: 9 The LNG transfer exclusion zone has been agreed and designated. A mtr / ft IAPH recommended minimum distance:25 mtr / 82 ft Regulations with regards to ignition sources can be observed. These include but are not limited to smoking restrictions and regulations with 10 regards to naked light, mobile phones, pagers, VHF and UHF equipment, radar and AIS equipment. 11 All mandatory bunker vessel fire fighting equipment is ready for immediate use. Version 1.0 June 10, 2014 A I. PART B: Pre Transfer Checklist (This part should be completed before actual transfer operations start) Check 12 Present weather and wave conditions are within the agreed limits. Bunker Vessel Code Remarks AR The LNG bunker vessel is securely moored. Regulations with regards to mooring 13 arrangements are observed. Sufficient fendering is in place. R The LNG bunker vessel is able to move under 14 their own power in a safe and non-obstructed direction. R Adequate supervision of the bunker operation by responsible officers is in place, on the LNG 15 bunker vessel. An effective watch is being kept at all times. VHF / UHF Channel: Language: An effective means of communication between the responsible operators and supervisors at 16 the LNG bunker vessel has been established and tested. The communication language has been agreed upon. ________________________________ AR Primary System: ________________________________ ___ Backup System: Emergency signal and the shutdown 17 procedures have been agreed upon, tested, and explained to personnel involved. A The predetermined LNG transfer exclusion 18 zone has been established. Appropriate signs mark this area. A The LNG transfer exclusion zone is free of 19 other ships, unauthorized persons, objects and ignition sources. R 20 On the ship an effective deck watch is established. Version 1.0 June 10, 2014 Emergency Stop Signal: The deck watch pays particular attention to moorings, fenders and simultaneous activities. Check External doors, portholes and accommodation 21 ventilation inlets are closed as per operations manual. Bunker- Code vessel Remarks At no time they should be locked R 22 The gas detection equipment has been operational tested and found to be in good working order. Material Safety Data Sheets (MSDS) for the 23 LNG product are available. A Regulations with regards to ignition sources are observed. These include but are not limited to smoking restrictions and regulations with 24 regards to naked light, mobile phones, pagers, VHF and UHF equipment, radar and AIS equipment. R Appropriate and sufficient suitable protective 25 clothing and equipment is ready for immediate use. Personnel involved in the connection and disconnection of the bunker hoses and 26 personnel in the direct vicinity of these operations make use of sufficient and appropriate protective clothing and equipment. 27 Hand torches (flashlights) are of an approved explosion proof type. 28 The water spray system has been tested and is ready for immediate use. 29 Spill containment arrangements are of an appropriate volume, in position, and empty. 30 The hull protection system is in place. 31 Bunker pumps and compressors are in good working order. 32 All remote control valves are well maintained and in good working order. A Bunker system gauges, high level alarms and 33 high pressure alarms are operational, correctly set and in good working order. The ship’s bunker tanks are protected against inadvertent overfilling at all times, tank content 34 is constantly monitored and alarms are correctly set. All safety and control devices on the LNG 35 installations are checked, tested and found to be in good working order. Version 1.0 June 10, 2014 Intervals not exceeding R minutes Check Bunker Vessel Code Remark 36 Pressure control equipment and boil off or reliquefaction equipment is operational and in good working order. 37 On the LNG bunker vessel the ESD’s, automatic valves have been tested, have found to be in good working order, and are ready for use. The closing rates of the ESD’s have been exchanged. ESD LNG cargo tank: seconds A ESD LNG propulsion tank: seconds Initial LNG bunker line up has been checked. 38 Unused connections are closed, blanked and fully bolted LNG bunker hoses, fixed pipelines and manifolds are in good condition, properly 39 rigged, supported, properly connected, leak tested and certified for the LNG transfer. 40 The LNG bunker connection between the ship and the LNG bunker vessel is provided with dry disconnection couplings. Dry break away couplings in the LNG bunker connections are in place, visual inspected for 41 functioning and found to be in a good working order. 42 The ship’s emergency fire control plans are located externally. 43 An International ESD Connection has been provided. 44 The LNG specifications is known and will be logged in the LNG propulsion log book Port authorities have been informed that bunker transfer operations are commencing and have 45 been requested to inform other vessels in the vicinity Version 1.0 June 10, 2014 A Location: A e.g. quality, temperature and density of the LNG. I. PART C: LNG Transfer Data (This part should be completed before actual transfer operations start) Agreed starting temperatures and pressures LNG cargo tanks LNG propulsion tank °C / °F LNG cargo tank 1 start temperature: bar / psi (abs) LNG cargo tank 1 start pressure: °C / °F LNG cargo tank 2 start temperature: bar / psi (abs) LNG cargo tank 2 start pressure: Agreed bunker operations Note the agreed Physical Quantity Unit (PQU): Tank 1 Agreed quantity to be transferred: m3 Tones Tank 2 PQU Starting pressure: bar / psi (abs) Starting rate: PQU per hour Max transfer rate: PQU per hour Topping of rate: PQU per hour Max pressure at manifold: bar / psi (abs) Version 1.0 June 10, 2014 Agreed maximums and minimums Maximum Minimum Maximum working pressure: bar / psi (abs) Maximum and minimum pressures in the LNG bunker tanks: bar / psi (abs) Maximum and minimum temperatures of the LNG: °C / °F Maximum filling limit of the LNG propulsion tank: % Declaration I, the undersigned, (skipper or a person authorized by the skipper of the LNG bunker vessel) have checked the above items in chapter I in accordance with the instructions and have satisfied myself that the entries I have made are correct. Bunker vessel Name Position Signature Date Time Guidelines for completing the Internal LNG cargo – LNG propulsion Bunker Checklist. The presence of the letters ‘A’ or ‘R’ in the column entitled ‘Code’ indicates the following: A (‘Agreement’). This indicates an agreement or procedure that should be identified in the ‘Remarks’ column of the checklist or communicated in some other form. R (‘Re-check’). This indicates items to be re-checked at appropriate intervals at periods stated in the declaration. P (‘Permission’) This indicates that permission is to be granted by authorities. The declaration should not be signed until both parties have checked and accepted their assigned responsibilities and accountabilities.This document is to be kept at least one year on board of the LNG bunker vessel. Version 1.0 June 10, 2014 II. After LNG Transfer Checklist (This part should be completed after transfer operations have been completed) Check LNG bunker hoses, fixed pipelines and 46 manifolds have been purged and are ready for disconnection. Bunker Vessel Code A Remote and manual controlled valves are closed and ready for disconnection. A After disconnection the LNG transfer safety 48 zone has been deactivated. Appropriate signs have been removed. A 47 49 Local authorities have been notified that LNG bunker operations are completed. Remarks Time notified: hrs Port authorities have been informed that 50 bunker transfer operations have ceased and have been requested to inform other vessels in the vicinity. 51 Near misses and incidents have been reported to local authorities. Report nr: Declaration I, the undersigned, (skipper or a person authorized by the skipper of the LNG bunker vessel) have checked the above items in chapter II in accordance with the instructions and have satisfied myself that the entries I have made are correct. Bunker vessel Name Position Signature Date Time Version 1.0 June 10, 2014 Guidelines for completing the Internal LNG cargo – LNG propulsion Bunker Checklist. The presence of the letters ‘A’ or ‘R’ in the column entitled ‘Code’ indicates the following: A (‘Agreement’). This indicates an agreement or procedure that should be identified in the ‘Remarks’ column of the checklist or communicated in some other form. R (‘Re-check’). This indicates items to be re-checked at appropriate intervals at periods stated in the declaration. P (‘Permission’) This indicates that permission is to be granted by authorities. The declaration should not be signed until both parties have checked and accepted their assigned responsibilities and accountabilities.This document is to be kept at least one year on board of the LNG bunker vessel. *** Version 1.0 June 10, 2014
© Copyright 2024 Paperzz