A-ACCOUPLEMENTS B-LIMITEURS DE COUPLE D-FREINS SCIENCES DE L’INGENIEUR IBN SINA Kenitra 2STE TRANSMETTRE [email protected] 0699717946 Année Scolaire : 2013/ 2014 C-EMBRAYAGES TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE Système de transfert des olives La fabrication de l’huile d’olive dans les Moulins moderne passe par plusieurs étapes 1. 2. 3. 4. 5. 6. La trémie : arrivées par banastes les olives sont directement versées dedans L’effeuilleuse : il s'agit d'une puissante soufflerie qui élimine les feuilles restant La laveuse : les olives passent dans la laveuse pour les nettoyer à l’eau avant la trituration. Le broyeur : permet de broyer les olives Le malaxeur la pâte d’olive est malaxée pour extraire les cellules qui contiennent l’huile. La centrifugeuse : elle sert à séparer les éléments liquides et solides 7. Le décanteur : permet d’enlever toutes les impuretés. L’huile est tout de suite envoyée dans les cuves de stockage Système de transfert des olives Le transfert des olives de la trémie à l’effeuilleuse est assuré par la rotation d’une vis d’Archimède. Le dessin d’ensemble suivant représente le système d’entrainement de la vis d’Archimède 2 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 3 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 4 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE Problème posé : 5 Identifier les solutions adoptées pour répondre à la fonction : « Transmettre l’énergie mécanique du moteur à la vis d'Archimède (25)». Transmettre l’énergie mécanique du moteur à la Vis d’Archimède 25 Transmettre l’énergie mécanique du moteur au réducteur Etablir la liaison de l’arbre moteur 1 avec le pignon arbré 6 ………………………………… ……………………………….. Etablir la liaison complète entre les carters du moteur et du réducteur ………………………………… ……………………………….. ………………………………… ……………………………….. Adapter l’énergie mécanique Transmettre l’énergie mécanique du réducteur à la Vis d’Archimède Etablir la liaison de l’arbre de sortie 15 avec la vis d’Archimède 25 Etablir la liaison complète entre le carter du réducteur et le support 21 ………………………………… ……………………………….. ………………………………… ……………………………….. ON S’INTERESSE AUX SOLUTIONS TECHNOLOGIQUES ADOPTEES (ZONES A ET B) : S1 zone "A» : Ce montage exige un alignement parfait des arbres c’est un Accouplement Rigide S2 zone "B» : Cet ensemble comporte un composant déformable c’est un Accouplement Elastique TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE A_ LES ACCOUPLEMENTS : I. 6 GENERALITES : 1) Puissance mécanique : = ∁. C : Le couple en m.N = : Vitesse angulaire en rd/s N : en Exemple : Quelle est la valeur du couple si la puissance transmise est de 10 Kw à 500 tr/ min ? C =……………………………………………………………… daN.m 2) Fonction d’un accouplement : Les accouplements sont des organes de transmission permettant de: Transmettre la puissance mécanique en rotation entre deux arbres sensiblement alignés, sans modification de la vitesse et d’une manière permanente. 3) Types d’accouplements : On distingue généralement 3 familles d'accouplements : Rigides : la liaison entre les arbres est rigide Elastiques : la liaison entre les arbres est élastique Flexibles ou positifs : la liaison n’est rigide qu’en rotation 4) Avantages et Inconvénients Accouplements Rigides Elastiques Flexibles Avantages • Faciles à réaliser • Peu chers Inconvénients • Ne se montent que sur des arbres rigoureusement alignés • Ne filtrent pas les vibrations • Acceptent de légers défauts d’alignement • Relativement chers (100 à 1000 €) • Filtrent les vibrations • Acceptent certains légers défauts • Ne filtrent pas les vibrations d’alignement (dθ = 0) • Rigides en torsion TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 5) Critères de choix d’un Accouplement 7 Le choix d’une technologie d’accouplement se fait selon : Le couple à transmettre La vitesse atteinte Les défauts prévisibles d’alignement des arbres Les Vibrations de rotation dues à la transmission Les contraintes d’environnement ; températures extrêmes, atmosphère corrosive… II. ACCOUPLEMENTS RIGIDES : Utilisés lorsque les arbres sont correctement alignés et assurent un encastrement entre les arbres, les rendant coaxiaux Ils ne permettent aucun défaut d’alignement des arbres. Entraînement par adhérence. On relie les 2 arbres par : Un manchon ajusté "serré". Entraînement par collage ou soudure. Pincement par vis d’assemblages TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE Entraînement par obstacle. 1) Manchon et goupilles 2) 3) Manchon et clavettes 4) Accouplement rigide à plateaux 2 STE 8 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE III. 2 STE ACCOUPLEMENTS ELASTIQUES 9 Ils sont constitués de deux éléments rigides reliés par un ou plusieurs éléments intermédiaires élastiques (élastomère ou métal), qui permettent la compensation des défauts ; l’absorption des chocs et l’amortissement des vibrations. Ils plus au moins, des défauts d’alignement limités entre les deux arbres. 1) Types de défauts d’alignement entre les arbres 2) Exemples de construction : Accouplement Flector •Elément élastique Caoutchouc naturel 3 enrobant l’ensemble de forme hexagonale TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 10 Manchon à gaine flexible •Elément élastique gaine flexible 5 en Caoutchouc TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE IV. 2 STE ACCOUPLEMENTS FLEXIBLES Ces accouplements, proches des accouplements élastiques, ont une rigidité en torsion importante. Accouplement «Paname Multi-Beam» Elément élastique Métallique en forme de profilés hélicoïdaux, générés par usinage d'une gorge en hélice débouchant dans un tube cylindrique Accouplement à soufflet •Elément élastique Soufflet métallique 2 11 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE Accouplement à denture interne 12 Les deux plateaux sont des roues dentées à denture bombée qui engrènent avec la denture interne d’un manchon Accouplement à plateaux rainurés : Joint d’ OLDHAM . Permet la transmission du mouvement circulaire entre arbres ayant un léger décalage (les axes des arbres restent parallèles) TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE V. 2 STE LE JOINT DE CARDAN Le joint de cardan permet aux arbres d’avoir une liberté angulaire variable et relativement importante au cours du fonctionnement. Constitution – Une mâchoire (2) liée à l’arbre du moteur (1) – Une mâchoire (4) liée à l’arbre récepteur (5) – Les axes du croisillon (3) ainsi que ceux des arbres moteur et récepteur doivent coïncider au même point. Inconvénient de la transmission : Les vitesses angulaires instantanées (ω1 et ω5) ne sont pas les mêmes pour les deux arbres, donc la transmission n’est pas homocinétique. Réalisation d’une transmission homocinétique : La réalisation d’une transmission homocinétique (ωe= ωs) est assurée par deux joints de cardan. Autre exemple de joint de cardan 13 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE B-LES LIMITEURS DE COUPLE (OU MANCHON DE SECURITE) Problème : Que se passe t-il si l’arbre récepteur se trouve accidentellement bloqué ? Réponse : L’un des organes de liaison sera endommagé. Remède : Remplacer l’accouplement par un dispositif nommé : limiteur de couple C’est un dispositif de sécurité qui évite toute surcharge ou blocage d’une machine. La transmission ce fait par adhérence Le tarage du couple est en général obtenu par un système presseur à ressort (Rondelles belleville (4)).en serrant ou en desserrant les écrous (5). I. SYMBOLES NORMALISES DES ACCOUPLEMENTS 14 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE II. APPLICATION Soit l’Assemblage réalisé par un accouplement rigide. On demande de réaliser: - Arrêt en rotation de l’arbre (1) et la vis (12) par deux clavettes parallèles, forme A. - Pincement par 4 vis à tête cylindrique à six pans. 2 STE 15 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 16 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE I. 2 STE Présentation : 17 Le système à étudier fait partie d'une unité de bouchonnage de flacons de parfum. Il permet d’entrainer un tapis roulant qui alimente l’unité en flacons vides. II. Analyse fonctionnelle 1. Donner les repères et la désignation des composants assurant les fonctions techniques suivantes Fonction technique Transmettre la rotation de l'arbre moteur à la poulie ( 2 ) Transmettre la rotation de la poulie ( 2 ) à l'arbre ( 4 ) Transmettre la rotation de l'arbre ( 4 ) à l'arbre ( 24 ) Transmettre la rotation de l'arbre ( 24 ) au tambour Commander l'embrayage Avoir une surface de contact liée à l'élément moteur (poulie 2) Créer l'effort presseur pour embrayer Commander le frein Avoir une surface de contact liée à l'élément fixe (frotteur) Créer l'effort presseur pour freiner 2. Compléter le schéma cinématique : Composants + repères adhérence Obstacle TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 3. Conception : On se propose de modifier le guidage en rotation de l'arbre de sortie (24) par deux roulements à bille à contact oblique type BT Sur le dessin de conception ci-dessous : Compléter le montage des roulements, la liaison encastrement du pignon (28) par un écrou à encoche et rondelle frein, compléter la représentation du couvercle (32) et prévoir l'étanchéité des roulements 18 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 4. Chaines de cotes Tracer les chaînes de cotes relatives aux conditions A maxi et B mini Indiquer les ajustements représentés sur le dessin 2 STE 19 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE B : LES EMBRAYAGES : 20 I. Fonction globale : Transmettre une puissance entre 2 arbres sans modification du couple ni de la vitesse, avec possibilité de rendre les 2 arbres solidaires (embrayés) ou indépendants (débrayés) II. Classification Les embrayages sont classifiés Selon deux critères: Le principe d'entraînement : o :Embrayages instantanés. o :Embrayages progressifs Par obstacle Par adhérence La nature de la commande extérieure : Mécanique ; hydraulique ; Pneumatique ou électromagnétique. III. Embrayages instantanés : Entraînement par un obstacle escamotable. L'inconvénient majeur de ce dispositif est que le changement d'état doit se faire à l'arrêt. 1) Embrayage à griffes Crabot par tenons 1 Entrée ou sortie 3 sortie ou Entrée 2: Crabot (tenons). 4: Fourchette 5: Doigt d’indexage. TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE Crabot par cannelures 1: Entrée (ou sortie) ; 2: Première sortie (ou entrée); 2’: Deuxième sortie (ou entrée) 3: Crabot (cannelures); 4: Fourchette, commandant la translation du crabot (3). Exemple d’application : Boite de vitesse de machine outil 21 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE IV. Embrayages progressifs 22 1. Avantages : La manœuvre peut être effectuée en marche L’entraînement de la transmission est progressif 2. Constitution d'un embrayage Un embrayage progressif comprend: Un plateau 1 en liaison encastrement avec l’un des arbres à relier Un plateau 2 en liaison glissière avec l'autre arbre Un dispositif presseur, par exemple un ressort Un dispositif de commande. 3. formes des surfaces de friction Les surfaces de contact peuvent être : Planes Coniques (pour augmenter l’effort) Cylindriques TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 4. garniture de friction : 23 Conditions à remplir : Important coefficient de frottement Grande résistance à l’usure et l’échauffement Matériaux utilisés : FERODO : Tissu d’amiante armé de fil de cuivre ; Métaux : Aciers, Fontes et bronze. 5. Systèmes de commande Commande mécanique: Commande hydraulique Pneumatique Commande électromagnétique: 6. Embrayage à friction plane mono disque La transmission est assurée par l’adhérence des surfaces de friction du disque récepteur et du plateau de pression lié à l’arbre moteur. TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 7. Embrayage à friction plane multi disque 24 Afin d'augmenter le couple transmissible, on peut aussi augmenter le nombre de surfaces en contact, on réalise ainsi un embrayage multidisque Le nombre de surfaces de contact entre disques d’embrayage est : n= ……………………. Embrayage Progressif à friction plane multidisques à commande mécanique Le déplacement axial du coulisseau (8) agit sur les leviers coudés (4) qui de leur côté transmettent les efforts sur le jeu de disques (5_6) TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE Embrayage multidisques à commande Hydraulique / Pneumatique - Embrayage La pression agit sur le piston (4) qui comprime les disques d’embrayage (3-4) contre le disque d’appui (1), assurant ainsi la transmission du couple. - Débrayage Est assuré par, les ressorts (5) qui repoussent le piston (6) libérant ainsi les disques d’embrayage. Embrayage Progressif à friction plane monodisque à commande Electromagnétique Lorsque la bobine (1) est mise sous tension Le disque (3) est attiré contre le rotor (2) muni de la garniture de friction (4). Le couple est transmis par friction 2 STE 25 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 8. Embrayage à friction conique La friction conique permet d’augmenter l’effort presseur sur les surfaces de contact et par suite d’augmenter le couple à transmettre Le couple à transmettre est : = ⋯ … … … … … . . …. F : force pressante dues à un système presseur. Embrayage à friction conique à commande hydraulique L’embrayage est assuré par la mise sous pression de la chambre P ce qui provoque le déplacement du coulisseau 16 vers la droite contre la poulie motrice 13 Les ressorts 14 assurent le débrayage et le freinage du coulisseau 16 après suppression de la pression 2 STE 26 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 9. embrayage Progressif à friction cylindrique centrifuge ou à commande automatique Lorsque la vitesse est suffisante, les garnitures de friction viennent au contact de la cloche 5, Sous l’action de la force centrifuge agissant sur les masselottes, et l’adhérence générée entre les garnitures et la cloche permet la transmission du couple. 27 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 10.Couple transmissible par un embrayage à friction plane r 28 Garniture R C: N: f: R: r: n: Rm : Couple transmissible par adhérence Effort Presseur Coefficient de Frottement Rayon Extérieur de la Surface de Friction Rayon Intérieur de la Surface de Friction Nombre de Surfaces de Friction Rayon Moyen (N.m) (N) Sans (m) (m) Sans Rm = C = n.N.f.Rm R+r 2 11. Application: Sachant que le dessin d’ensemble est à l’echelle 1 :2 L’effort presseur de l’éléctroaimant est 650 N L’effort presseur du ressort est 150 N Le coefficient de frottement est 0,5 1. Calculer le couple à transmettre par cette embrayage : 2. Que proposer vous si en désire doubler la valeur du couple à tranmettre ? ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE C :LES FREINS I. Fonction globale : II. Ralentir ou arrêter un organe (un mécanisme) en mouvement. Constitution: Un frein comprend: Un organe solidaire de l'organe en mouvement: poulies, roues,tambours ou disques... Un élément solidaire au bâti de la machine: flotteur Un mécanisme de commande de la force pressante III. Différent types : 1. Frein à tambour Un cylindre au sein duquel des mâchoires munies de garnitures s'écartent pour réaliser le freinage L'effort de freinage peut être fourni par un vérin hydraulique (encore appelée cylindre) ou par un dispositif à came. 29 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 2. Frein à disque à étrier : 30 Un disque solidaire de l’élément en mouvement (roue de véhicule) serré par . des plaquettes logées dans un étrier de frein fixé au châssis. 3. Frein mono-disques. Le freinage est obtenu par la translation du Piston (4) sous l'effet de la pression, ce qui provoque la translation du Plateau mobile (3) et la mise en contact des garnitures sur le bâti (0). Le relâchement du frein est réalisé par les Ressorts de rappel (5). 4 3 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 1. Frein multi-disques. Afin d'augmenter le couple de freinage, sans pour autant pénaliser l'encombrement, on peut aussi augmenter le nombre de surface en contact, on réalise ainsi un frein multi-disques. 1. Autres types de freins Frein à sangle Frein à Sabot 31 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE IV. I. Application : 2 STE Embrayage frein Présentation : Le dessin d’ensemble doc 3/3 représente un embrayage frein destiné à accoupler la polie motrice 1 avec le pignon récepteur 19, et permettre l’arrêt en rotation immédiat de ce dernier dés le débrayage du système. II. Etude de l’embrayage frein 1) En se référant au dessin d’ensemble (page 3/3), indiquer ci-dessous le processeur assurant les fonctions techniques suivantes: Guider en rotation la poulie 1 par rapport à l'arbre 2 Commander l'embrayage Créer l'effort presseur pour l'embrayage Commander le frein Créer l'effort presseur pour le frein Guider en rotation l'arbre 2 par rapport au carter 15/22 2) Compléter par les repères des pièces les classes d’équivalences suivantes : A: 1; B: 2; C: 12 ; D: 15 ; 3) Compléter le schéma cinématique suivant : 32 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE Sachant que l’effort presseur sur la surface de friction de l’embrayage est 200 daN La surface de friction a pour rayons (r = 140 mm R = 190 mm) Le coefficient de frottement f = 0,5 4) Indiquer sur le dessin d’ensemble les rayons (r et R) de la surface de friction de l’embrayage 5) Calculer le couple transmissible par cet embrayage …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… 6) Donner le nom complet de cet embrayage …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… 7) Quel est l’avantage d’un tel embrayage …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… 8) Quel est le type de frein utilisé dans ce mécanisme …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… 9) Dans quelle position est représenté l’embrayage frein (encadrer la bonne réponse) Embrayée Freinée III. 1. 2. 3. 4. Etude graphique Réaliser la liaison complète du pignon 19 avec l’arbre 2 (Vis Chc _ Rondelle _ clavette) Compléter le montage des deux roulements 17 et 18 Indiquer les ajustements Quelle est la fonction des trous T …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… 33 TRANSMETTRE L’ENERGIE MECANIQUE SANS MODIFICATION DE LA VITESSE 2 STE 34
© Copyright 2025 Paperzz