SMBH/QSO形成 榎 基宏 (国立天文台天文データセンター) Contents 1. Introduction 2. 銀河+SMBH/QSO形成モデル Semi-Analytic Galaxy Formation Model (SA-model) 3.応用1.SMBH連星からの重力波 背景放射、重力波バースト、重力波放射の反跳 4.応用2.QSOの環境 QSO-QSO空間相関 と QSO-銀河空間相関 5. 議論 §1. Introduction Spheroids (bulge or elliptical galaxy) in the local universe 多くの銀河の中心にSuper Massive Black Hole (SMBH) (MBH=106-9 MSUN) --- MBH / Mbulge = 0.001 – 0.006 --- MBH ∝ σbulgen , n = 3.7 – 5.3 (e.g. Magorrian et al. 1998, Gebhardt et al 2000, Merritte & Ferrarese 2001) ⇒中心BHとバルジ(spheroid)に相関あり 一方high-zでは Quasar 非常に明るい (L > 1011 LSUN)活動銀河核 銀河中心にあるSMBH への物質の降積が放射機構 *Quasar host galaxy の観測 多くが、elliptical or bulge dominated spiral galaxies。 (e.g. Bahcall et al. 1997; McLure et al. 1999 ) 様々な観測結果は - Growth of SMBHs - Formation of spheroids - Formation of quasars これらが密接に関連していることを示唆している。 ⇒ 銀河形成とSMBHの成長は統一的に論じるべき 銀河:宇宙における物質分布の基本的な構成単位 銀河形成・SMBH形成 ⇒ 宇宙論的な構造形成理論の枠組みの中で 考える必要がある。 §2. SMBH/QSO Formation Model • Galaxy Formation in Hierarchical Clustering Scenario CLUSTERLING OF DARK HALOS ホットガス ダークハロー 衝撃波加熱による ホットガスの形成 銀河 (星間ガス, 星) ホットガスの冷却・収縮 → 星間ガスの形成 → 星形成 → 超新星爆発による 星間ガスの加熱 銀河同士の衝突合体 銀河の進化 銀河団ガス 銀河団の形成 SMBH growth model (Nagashima et al 2001, 2002 + Enoki et al. 2003) *近傍銀河での中心SMBHとbulge質量が比例 *Gas-dynamical simulation ・starburst, galaxy major merger ⇒ ・bulge formation ・trigger of gaseous inflow SMBH formation ⇔ Bulge formation via galaxy merger Assumptions 1) 銀河同士の合体が major mergerの時は、 cold gasの一部を SMBHに降着させる。 M acc = f BH M *, burst 2)銀河同士がmergeした時、 バルジにあるSMBHsは binaryとなり、重力波を出してcoalesceする. *gasの進化のサイクル galaxy cooling cold gas SNe feedback dark halo hot gas star formation hot gas accretion disk star galaxy starburst major merger bulge black hole *galaxy = disk + bulge disk = disk star + cold gas bulge = bulge star + black hole * hot gas ; diffuse gas, virial temperature bulge star *Galaxy Merging (NOT dark halo merging) hot gas dark halo merging progenitor dark halos ・satellite-central merger dynamical friction satellite galaxies central galaxy dark halo (common dark halo) central galaxy satellite galaxies (in sub-halos) ・satellite-satellite merger random collision satellite galaxies central galaxy *Galaxy merger time scale ・Satellite-Central merger tfric (dynamical friction time-scale) ・Satellite-Satellite merger tcoll (random collision) (Makino & Hut 1997) *合体のタイプ ・Major merger: msmall/ mlarge > fbulge →star burst + bulge formation ・Minor merger: msmall/ mlarge < fbulge →小さい銀河は、大きい銀河のdisk にする * SMBH growth M acc = f BH M *, burst SMBH growth; *coalescence *accretion MBH / Mbulge の結果と観測結果を 比べてfBHを決める => fBH=0.03 SMBH mass function -1 <MBH > [Msun yr ] 10 -2 dn / dlog MBH [ Mpc-3] total coalescence accretion . 10 -3 10 -4 SA model 10 -2 10 -3 10 -4 10 -5 Salucci et al. (1999) 0 2 4 z 6 8 8 9 log[M BH /M SUN ] 10 * SMBH mass function Galaxy merging processes; *Dynamical Friction [D.F.] (satellite-central merger) *Random Collision [R.C.] (satellite-satellite merger) R. C. & D. F. D. F. only R. C. only dn / dlog MBH [ Mpc-3] 10 -2 10 -3 central galaxy中のSMBHの成長 → cold gasの降着が主 → SNe feedbackが効く小 さい銀河では降着する cold gas が無くなってし まう。 10 -4 10 -5 Salucci et al. (1999) 8 9 log[M BH /M SUN ] 10 →小さい銀河中ではSMBH はあまり成長しない *QSO formation model Assumption 銀河同士の合体が major mergerの時は、 cold gasの一部を starburstでできる星の量に比例させてBHに降着させ、 以下のlight curve で光るとする。 QSO light curve (B-band) L B (t ) = ε B M acc c 2 t life ⎛ t ⎞⎟ ⎜ exp − ⎜ t ⎟ ⎝ life ⎠ εΒ : B-bandでの放射効率 t life = tlife ( z ) ∝ t dyn :QSO lifetime scale *QSO Luminosity function 2dF; z<0.5 3 2dF; 0.5<z< 1 tlife (0) 3 *107 yr 3 *108 yr -3 -1 10 -5 (b)z=0.5 10 -6 (c)z=1.25 10 -5 (d)z=2 2dF; 1<z<1.5 2dF; 1.5<z<2 3 -3 -1 Φ [ h Mpc mag ] 放射効率、life timeの決定 => 様々なredshift での 光度函数の比較が 重要 Φ [ h Mpc mag ] (a)z=0.25 10 -6 -26 -24 M B-5 log[h] -22 -26 -24 M B-5 log[h] -22 §3.SMBH連星からの重力波 CDM宇宙における銀河形成 ⇒Hierarchical clustering scenario 銀河は衝突合体を繰り返し成長する 銀河同士が衝突合体(merge)した時、 中心にあるSMBHはどうなる? ⇒dynamical friction によりmerger 後の銀河の 中心に沈み込みbinaryとなる。 ⇒最後には重力波(GW)を放射し合体(coalescence) ・SMBH binary からの重力波の重ね合わせ → Gravitational Wave Background Radiation ・SMBHの合体による強い重力波 → Gravitational Wave Burst * Coalescence of SMBH binary 1. in-spiraling phase 2. plunge and merge to form a single BH 3. ring-down phase - An ensemble of GWs from in-spiraling SMBH binaries. => Gravitational Wave Background Radiation (GWBR) f ~ 10 -9 -- 10-5 Hz ・Pulsar timingの測定により上限が決まる。 ・スペクトルは ? - Coalescence of SMBH (phase 2+3) => Gravitational Wave Burst h ~ 10 -18 -- 10 -15 ・LISA (レーザー干渉型宇宙重力波望遠鏡)なら測定可能。 ・出現確率は? SMBH coalescing rateを知る必要がある。 そこで、 準解析的銀河+SMBH形成モデル (SA-model) SMBH coalescence rate *GW background radiation spectrum from SMBH binaries * Events rate of GW burst from SMBH coalescence §3-1. SMBH連星からの重力波背景輻射(GWBR) (Enoki et al. 2004, Enoki & Nagashima 2006) Phinney (2001)の公式を用いる 現在のGWBGのエネルギー密度 n(z): Number density of GW source EGW: Energy emitted in GW from a source fr : GW frequency in the source’s rest frame *GWBG spectrum hc(f): Characteristic amplitude of GWBG spectrum 重力波源が連星系なら n(M1,M2,z): Number density of binaries * Gravitational Wave from a Binary *円軌道の場合(weak field /slow motion 近似で) GWのLuminosity GW輻射のtime scale *Eccentricity ? これまでのSMBH連星系からの重力波背景輻射の研究 → 連星系の軌道は円と仮定されている しかし、SMBHを中心に持つ銀河がmergeする時に形成され るSMBH連星の軌道は楕円になることが多い。 ・SMBH - IMBH (Matsubayashi et al. 2005) ・SMBH binary + SMBH (Iwasawa et al. 2006) ・SMBH binary + gas disk (Armitage & Natarajan 2005) 連星系の軌道が楕円なら、円の場合と比べて ・ 重力波放射のSpectral Energy Distribution が異なる ・ 重力波放射のtimescaleが短くなる ・ 重力波放射のluminosityが大きくなる => GWBRのspectrumの形も変わってくる *GW from Binaries on Eccentric Orbit 連星系の軌道が楕円であると、 軌道周波数 fpの整数倍の振動数の高調波が放射される。 (Peters & Mathews 1963) GWのSED *g(n,e) 5 e=0.0 e=0.2 e=0.4 e=0.6 e=0.8 g(n,e) 4 3 2 1 0 0 4 8 12 n 16 20 *Fourier analysis of Kepler motion 軌道周波数 fpの整数倍の振動数の高調波? ← Kepler運動の各フーリエモードの重力波 r 軌道長半径:a 離心率:e θ ( ) a 1 − e2 r= 1 + e cos θ ∞ r e2 2e ′ = 1+ −∑ J n (ne ) cos (n ω t ) a 2 n =1 n *Luminosity & Timescale of GW from Eccentric Binary GWのLuminosity GW輻射のtime scale *Evolution of Binary Orbit 重力波放射による、 連星系の軌道長半径(a)、離心率(e)の進化 *Energy emitted in GW from a Binary 楕円軌道の場合、軌道周波数の整数倍の 周波数の重力波が放射される。 fp: Orbital frequency τGW: timescale of the emitting GW *GWBG from binaries on eccentric orbit ※円軌道であれば、hc2 ∝ f -4/3 離心率eは定数ではない。 ある fp,0での、離心率e0の分布函数が必要。 *Spectrum of GWBG 10 0 10 0 10 e0 =0.8 10 -1 -1 10 -2 10 Φn Φ 10 -2 e0 e0 e0 e0 e0 -3 10 -4 0 1 log[fr /fp,0 ] 2 = = = = = 0.2 0.4 0.6 0.8 0.9 10 -3 Φ Φ1 Φ2 Φ3 Φ4 Φ5 10 -4 10 -5 3 0 1 log[fr /fp,0 ] →高調波が出るため、 低周波数側のspectrumの振幅が小さくなる。 2 3 *GWBG Spectrum from SMBH Binaries e0=0.0 e0=0.2 e0=0.4 e0=0.6 e0=0.8 e0=0.9 -13 log(hc) -14 -15 fmax; 考える周波数の上限 <= BH の大きさ fmax ~ 5×10-5 (MBH/108Msun)-1 Hz -16 -17 ※ e0の分布は 考慮していない -10 -9 -8 -7 log(f [Hz]) -6 -5 *GWBG Spectrum from SMBH Binaries 2 e 0=0.0 e 0=0.8 e 0=0.8, n=1 e 0=0.8, n=2 e 0=0.8, n=3 -13 -15 -16 -17 -14 log(hc) log(hc) -14 circular fmax/fp,0=10 3 fmax/fp,0=5 3 fmax/fp,0=20 3 -13 -15 -16 -10 -9 -8 -7 log(f [Hz]) -6 -5 -17 -10 -9 -8 -7 -6 -5 log(f [Hz]) a = 0 .5 × 10 −2 × ( M / 10 8 M sun )1 / 3 ( f p / 10 −8 Hz ) −2 / 3 pc *GWBG Spectrum from SMBH Binaries 3 (a) total 0<z<1 1<z<2 2<z<3 3<z -12 log(hc) -14 ・ f < 10-6 Hzでは hc~10-16×( f / 1 μHz) -2/3 -16 ・ 0<z<1 にあるSMBH binaryからの寄与がほとんど -18 limit from pulsar timing -20 -10 -8 -6 -4 log(f [Hz]) -2 *銀河形成過程の影響 SMBHの成長 <= cold gas の降着が主 <= cold gas の量を左右する過程に依存 <= Star formation & SNe feedback SNe feedback strength: -13 -13 -14 -14 -15 -15 log(hc) log(hc) Star formation time-scale: -16 -17 -18 -10 -9 -8 -7 -6 -5 log(f [Hz]) -17 -18 τ *,0 = 4.5 Gyr τ *,0 = 1.5 Gyr (fiducial) τ *,0 = 0.5 Gyr -19 -16 V hot= 0 km/s V hot= 280 km/s (fiducial) V hot= 420 km/s -19 -4 -3 -10 -9 -8 -7 -6 -5 log(f [Hz]) -4 -3 *GWBG energy density from SMBH Binaries M BH=10 9-10 10 Msun M BH=10 8-10 9 Msun M BH=10 7-10 8 Msun M BH=10 6-10 7 Msun total 10 -7 ΩGW 10 -8 e0 =0.8 fp,0/fmax=1/103 10 -9 fmax ∝ 1/MBH 10 -10 -9 -8 -7 -6 -5 -4 log(f [Hz]) -3 -2 *GWRB detection limit Smith et al. astro-ph/0506422 (Phys. Rev. D 73, 023504 (2006) ) §3-1.のまとめ ・準解析的銀河形成+SMBH形成モデルを用いて、GW BR spectrumを計算した。 Spectrumの全体的な振幅 <= 銀河形成過程に大きく依っている。 連星の軌道が楕円であると、高調波が出るため、 低周波数側のspectrumの振幅が小さくなる。 ・pulsar timingにより離心率の影響の測定可能性あり。 ・離心率分布を求めることが重要! §3-2. GW burst from SMBH coalescence (Enoki et al. 2004) *Gravitational Wave Burst coalescenceの最後にエネルギー ε MBH c2の重力波 をバースト的に出す(Thorne & Braginsky 1976)。 --The GW amplitude --The observed characteristic frequency --The GW energy flux --The expected event rates of GW burst *SA model ⇒ the SMBH coalescence rate; nc(M1,M2, z) ⇒ GW burst の rate; ν(h,f) *Integrated GW burst rate Integral event rate of GW burst; ν(log[h]) (a) total 0<z<1 1<z<2 2<z<3 3<z 10 0 10 -1 -18 -16 -14 10 ν [log(hburst)] [yr-1] ν [log(hburst)] [yr-1] 10 1 1 (b) total M tot/M SUN < 1076 6 107 < M tot/M SUN < 108 108 < M tot/M SUN < 10 10 < M tot/M SUN 10 0 10 -1 -18 log (h burst) h -17 ; MBH < 10 6 Msun from z > 3 h -15 ; MBH ~10 7 - 10 8 Msun from z < 3 -16 log (h burst) -14 *GW burst rate Expected signals of GW burst; ν(log[h], log[f]) -14 (a) (b) ν > 1 yr-1 -16 log(hburst) ν > 3 yr-1 -18 ν > 1/5 yr-1 -20 -22 hinst (1/3 yr) hinst (5 yr) LISA noise (1 yr) -5 -4 -3 -2 log(fc [Hz]) -1 0 -5 -4 -3 -2 -1 log(fc [Hz]) We adopt ε = 0.1 Note; h ∝ ε1/2 0 §3-2. のまとめ *準解析的銀河+SMBH形成モデル(SA model)を用いて、 SMBH coalescence rate を求め、SMBH coalescenceによる ・Gravitational wave burst rate を計算した。 *GW background ⇒ z < 1 のSMBHからの寄与が主 *GW burst rate ⇒ z > 2 のSMBHからの寄与が主 LISAで 0.1~1/ yr の割合で見つかる可能性あり 観測⇔理論予言 → SMBH合体形成モデルへの制限 §3-3. Gravitational Radiation Recoil 等質量ではない連星の出す重力波 => 重力波は非等方に放射される => 連星は非等方重力波放射による反跳を受ける 反跳 × net GW 反跳によってSMBH連星が得た速度(Kick Velocity)が、銀 河の脱出速度より大きいと、SMBH連星は銀河から飛び出し てしまう。 => SMBHの成長にも影響を与える可能性あり。 (e.g. Merritt et al. 2004, Madau & Quataert 2004, Libeskind et al.2006) そこで、 準解析的銀河+SMBH形成モデル (SA-model) (Nagashima et al 2001, Enoki et al 2003) Kick Velocity > Circular Velocity なら、SMBH連星は反跳で飛び去る SMBHの質量函数がどのようなものになるか? * Gravitational radiation recoil from SMBH binaries Kick velocity (Fitchett 1983) ⎡ f (q ) ⎤ ⎡ 2G ( M 1 + M 2 ) / c ⎤ = 1480 ⎢ ⎥⎢ ⎥ f a ⎦ ⎣ max ⎦ ⎣ 2 V kick 4 km/s q = M1 / M2 : mass ratio (M1 < M2) f(q) = q2(1-q)/(1+q)5 fmax ~ 0.0179 @ q ~ 0.382 *近似(quasi-Newtonian)を使っており、不定性が大きい V kick ⎡ f (q ) ⎤ = V pf ⎢ ⎥ f ⎣ max ⎦ Vpfをパラメータとする。 Vkick > Vc なら、 SMBH binaryは銀河から飛び出し戻ってこない、と仮定 * SMBH mass function 1 dn / dlog MBH [ Mpc-3] 10 -2 V kick 10 -3 Vpf= 0 km/s Vpf= 100 km/s Vpf= 300 km/s Vpf= 500 km/s Vpf= 700 km/s Vpf=1000 km/s 10 -4 10 -5 106~109 Msun のBHが減少する Salucci et al. (1999) 6 7 8 log[M BH/M SUN ] ⎡ f (q ) ⎤ = V pf ⎢ ⎥ f ⎣ max ⎦ 9 10 * SMBH mass function 2 上限: 109 Msun ? Scaling V kick = V pf dn / dlog MBH [ Mpc-3] 10 -2 ⎡ f (q ) ⎤ ⎥ ⎢ f ⎣ max ⎦ V kick = V pf No-scaling 10 -3 M BH = f M bulge Ωb = f M DH Ω0 10 -4 Vpf= 0 km/s Vpf= 300 km/s Vpf= 300 km/s (No scaling) 10 -5 6 7 8 log[M BH /M SUN ] 9 3 10 M BH ⎡ Vc ⎤ ~ 10 ⎢ M Sun ⎥ ⎣ 300 km/s ⎦ 9 * SMBH mass function 3 下限: 106 Msun ? 一度合体を経験した SMBHを取り除く dn / dlog MBH [ Mpc-3] 10 -2 10 -3 合体をしてない SMBHのみ残る 10 -4 Vpf= 0 km/s Vpf= 300 km/s No coalesence 10 -5 6 7 8 log[M BH /M SUN ] 9 10 MBH <106MsunのSMBH は殆ど合体を経験して いない * SMBH mass density log [ ρBH(z) ] -7 Vpf= 0 km/s Vpf= 100 km/s Vpf= 300 km/s Vpf= 500 km/s Vpf= 700 km/s Vpf=1000 km/s V kick ⎡ f (q ) ⎤ = V pf ⎢ ⎥ ⎣ f max ⎦ Vpf =300km/sの場合、 z=0で、36%減っている。 -8 -9 0 2 4 z 6 8 §3-4. のまとめ *準解析的銀河+SMBH形成モデル(SA model)を用いて SMBH合体時の重力波放射の反跳の効果を考慮した場合、SMBH の質量函数がどのような影響を受けるか解析した。 仮定 「Vkick > Vc なら、SMBH連星は銀河から飛び出し戻ってこない」 結果:106~109 Msun のBHが減少する ・ 109 Msun ? 大きなSMBHはVc の大きな銀河にいる。 → 反跳を受けても、銀河から飛び出さない。 ・ 106 Msun ? 小さなSMBHは最近できる。 → 合体を殆ど経ていない。 → 反跳を受けない §4. QSO environments Formation of spheroid Interaction of galaxies Growth of SMBHs QSO activity 銀河同士の衝突合体がQSOの活動性を引き起こすなら、 QSOがどん な所にいるのか(環境)を明らかにすることは重要。 *QSO-QSO空間相関 (large scale) *QSO-galaxy空間相関 (small scale) *QSO auto-correlation & QSO-galaxy cross-correlation 銀河とクェーサーの相互相関 small scale (< 1Mpc) なら、 一つのdark halo中での銀河とクェーサーの分布を反映 small scale large scale merger がQSOの活動性の原因? host galaxy ? QSO周囲の銀河の分布を知ることが重要 cluster ? group ? field? §4-1. QSO auto-correlation QSO-QSO空間相関函数から何が分かるのか? Correlation function ξ QSO = b 2 QSO ξ DM 7 dark halo のバイアス (Jing 1998) bhalo(Mhalo, z) 6 5 DM halo bias (1011.5 Msun) DM halo bias (1012.0 Msun) DM halo bias (1012.5 Msun) DM halo bias (1013.0 Msun) 4 3 2 1 0 1 2 z 3 4 観測より求めた bQSO と, bhalo と比べると、 QSOのいる典型的なdark halo (host halo) 5 の質量が分かる。 *QSO auto-correlation QSO形成モデルとの比較 Halo Model の利用 Effective bias (Baugh et al. 1999) bQSO,eff b (M ) N (M ) n(M )dM ∫ = ∫ N (M ) n(M )dM halo QSO QSO * bhalo(M) : 質量Mのdark halo のbias *n(M) : dark halo の mass function * <NQSO(M)> : 質量Mのdark haloに存在するQSOの平均個数 QSO 形成モデルから予言されるべき量 *QSO のlife time、放射効率、などに依存 *QSO auto-correlation function; z > 3 ξ (r) 10 M B > -23 1 M B > -24 101 100 100 10-1 10-1 10-2 0 10 r [ Mpc] high-zに行くほど t03 z=3 t03 z=4 t03 z=5 10 1 10 0 t30 z=3 t30 z=4 t30 z=5 10 1 r [ Mpc] DM z=3 DM z=4 DM z=5 1.dark matterの相関は弱くなる 2. QSOのバイアスは強くなる となるので、QSO(や銀河)の相関長の進化は見られなくなる(強くなる) 10-2 *QSO effective bias t03 t03 t30 t30 beff 7 MB > MB > MB > MB > -23 -24 -23 -24 7 6 6 5 5 4 4 3 3.5 4 z 4.5 5 3 3.5 4 z 4.5 5 DM halo bias (1011.5 Msun) DM halo bias (1012.0 Msun) DM halo bias (1012.5 Msun) DM halo bias (1013.0 Msun) QSOは主に Mhalo = 1012-13 Msun のdark haloにいる。 *dark halo 中でのgalaxy の merger rate => Mhalo = 1012-13 Msun_ (group ぐらい)で最大 §4-2. QSO-Galaxy cross correlation small scaleまで見たい => 銀河・クェーサーの位置情報が必要 => N体計算との結合 Semi-analytic model of galaxy formation and QSO/SMBH formation +Cosmological N-body simulation Numerical Galactic Catalog : nGC Numerical Galactic Catalog N-body simulation Yahagi’s Adaptive Mesh Refinement code Carried out on the VPP5000@ADAC/NAOJ - Cosmology ΛCDM; Ω M = 0.3, Ω Λ = 0.7, h = 0.7, σ 8 = 0.9, Ω b = 0.048 - Box size: 70 Mpc/h - Number of particles: 5123 - Effective halo mass resolution: 1011 Msun Galaxy formation model parameters 近傍の銀河の観測結果と比較して決定。 * SMBH growth M acc = f BH M *, burst SMBH 質量函数の計算結果 MBH = 0.01 * Mbulge MBH = 0.005 * Mbulge SFB Salucci et al. 1999 (z=0) 9 10-2 dn/dlogMBH [Mpc-3] log[MBH / Msun] 10 8 7 6 9 10 11 log [ Mbulge /Msun] 10-3 10-4 SFB z=0 SFB z=1 SFB z=2 10-5 7 8 9 log(MBH/Msun) fBH = 0.01とした 10 *QSO Luminosity function QSO light curve (B-band) L B (t ) = t life ⎛ t ⎞⎟ ⎜ exp − ⎜ t ⎟ ⎝ life ⎠ εΒ : B-bandでの放射効率 t life = t life ( z ) ∝ t dyn :QSO lifetime scale (a) z= 1.69 10-5 10-6 2dF (1.5 < z < 2) SFB 10-7 -26 -24 -22 MB - 5 log[h] SFB : tlife(0) = 1.0 x 107 yr, εB = 0.0045 Φ [ h3Mpc-3mag-1 ] Φ [ h3Mpc-3mag-1 ] 10-5 ε B M acc c 2 (b) z= 1.24 10-6 10-7 2dF (1 < z < 1.5) SFB -26 -24 MB - 5 log[h] -22 QSO environments Projected distributions of galaxies and QSOs in νGC. 70 SFB @z=1.5 y [ h-1 Mpc] 60 50 40 ×: QSO ・ : galaxy MB < -18.0 30 20 10 0 10 20 30 40 50 x [ h-1 Mpc] 60 70 *Clustering of galaxies around QSOs QSOgalaxyの空間相関函数 と 銀河同士の空間相関函数 z=1.5 104 z=2.04 ξ [r] 103 102 101 100 10-1 10-2 10-1 100 r [h-1 Mpc] 101 10-2 10-1 100 r [h-1 Mpc] galaxy-galaxy with MB < -15 QSO-galaxy with MB < -15 101 *The mean occupation functions 1つのdark haloにある、平均の銀河個数と QSOの個数 <N[log(Mhalo)]> 104 (b) z=2.04 (a) z=1.01 (c) z=3.09 102 100 10-2 10-4 10 11 12 13 log [ Mhalo / Msun] 14 10 11 12 13 log [ Mhalo / Msun] galaxy MB < -15, 14 10 11 12 13 log [ Mhalo / Msun] QSO QSOは質量が1012~1013 Msun のdark halos にいる傾向がある。 *galaxy merger rate ・1つの dark halo 中の銀河の個数が増えれば、増大。 ・dark haloの速度分散が大きくなれば、減少。 ⇒ 最大になるのは 、Mhalo~1013 MSUN 14 §4のまとめ Environments of QSO (QSOはどこにいるのか?) - QSO-QSOの空間相関函数 - 1つのdark halo中のQSOの平均個数 - QSO-Galaxy 空間相関函数 このモデルでは QSO activity ← galaxy major merger ← merger rate は 質量が1012 -1013Msun のdark haloで最大。 => QSOはGroups of galaxiesにいる傾向がある。 モデル結果と観測結果との比較により, galaxy merging process QSO formation scenarios に制限が加えられる。 §5.議論 このSMBH/QSOモデルの問題 ・SMBHの合体をちゃんと解いていない。 本当に合体するのか? 銀河中心部の構造?、3体相互作用が必要? etc ・ガスの降着過程を解いていない。 → QSOのlight curve のモデル化に影響 ・QSOがガスを加熱することによるfeedback → ガスの降着だけでなく、星形成にも影響大? どこまで効くの? どう入れる? 禁断の果実! ・QSOのトリガーは銀河のmergerだけ? → QSO環境の観測で、本当に制限できる? ・ Dark halo の merger tree (EPS vs N-body) → どっちが正しいの?
© Copyright 2026 Paperzz