第7章 7.1 7.1.1 相対論的量子論(入門) 特殊相対性理論 4元ベクト ル Einstein は 1905 年,Lorentz 変換に対する光速度不変性と電磁場に関する Maxwell 方 程式の共変性に基づいて特殊相対性理論を構築した.相対性理論によると,どの慣性系にお いても,光速度 c が一定であるだけでなく,物理法則は同じ形で表される. 4元ベクト ル 粒子のエネルギー E と運動量 p は,異なる慣性系においては異なる値をとる.しかし,両 者の2乗の差 E 2 − (pc)2 = m2 c4 (7.1) は,どの慣性系で観測しても同じ値になる.ここで,m は粒子の質量で,粒子が静止して いる慣性系におけるエネルギー E を光速度の2乗で割ったものである.すなわち,慣性系 のあいだの変換によってエネルギーと運動量は値を変えて見えるが,両者を合わせた量は変 換に対して不変であるので,ひとまとまりの量と考えた方が合理的である: pµ = ( p0 , p1 , p2 , p3 ) = ( p0 , p ) = E ,p c (7.2) これを4元運動量と呼ぶ.同様に,時間座標と空間座標を合わせて xµ = ( x0 , x1 , x2 , x3 ) = ( x0 , x ) = ( ct, x ) (7.3) とする.4元運動量の時間成分は E/c とし,時間座標は ct とするが,これによって4元ベ クトルの成分が同じ次元をもつ.このような量を4元ベクトルという.一般に,4元ベクト ルの成分を表すときにはギリシャ文字の添字が用いられる. 4元運動量の時間成分は質量を含むエネルギーである.非相対論の場合との対応から,運 動エネルギーを K = E − mc2 (7.4) で定義する.(7.1) より, E = m2 c4 + p2 c2 = mc 123 2 1+ p2 m2 c 2 (7.5) 124 第 7 章 相対論的量子論(入門) であるから,運動量が質量に比べて十分小さいときは p2 /(mc)2 について展開して 1 p2 1 E = mc2 1 + − 2 2 2m c 8 1 1 = mc + mv2 1 − 2 4 2 p2 m2 c2 2 v c 2 1 + 8 1 + 16 4 v c p2 m2 c2 3 + · · · (7.6) −··· が得られる.ここで,p = mv を用いた.(7.4) で定義した運動エネルギーは,v/c が小さい 極限で古典論に一致する. 反変ベクト ルと共変ベクト ル 4元ベクトルの内積は通常の3次元のベクトルの内積と異なり,たとえば,4元運動量の内 積は E2 p · p = p0 p0 − (p1 p1 + p2 p2 + p3 p3 ) = 2 − p2 (7.7) c で定義される.そこで,4元ベクトルの空間成分の符号を変えたベクトルを新たに定義し, 上で定義した4元ベクトルと区別するために添字を下につける.たとえば,4元運動量は pµ = ( p0 , p1 , p2 , p3 ) = E , −p c (7.8) である.内積は上付き添字と下付き添字について和をとると約束する.すなわち,2つの4 元ベクトルの内積は次のように書ける: a·b = 3 µ a bµ = µ=0 3 aµ bµ = a0 b0 − a · b (7.9) µ=0 上付きの添字がある4元ベクトルを 反変ベクトル( contravariant vector ),下付き添字 がある4元ベクトルを 共変ベクトル( covariant vector ) と呼ぶ.たとえば,座標 xµ の 内積は x·x = 3 xµ xµ = µ=0 3 xµ xµ = (ct)2 − x2 (7.10) µ=0 である. 4元ベクトルの内積は,4行4列の Minkowski 計量テンソル gµν = g を導入して, a·b = µν = µν 1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1 gµν aµ bν = µν g µν aµ bν (7.11) (7.12) 特殊相対性理論 7.1 125 と表すこともできる.すなわち,計量テンソルを用いて4元ベクトルの添字の上げ下げがで きる: aµ = 3 gµν aν aµ = ν=0 3 gµν aν (7.13) ν=0 なお,繰り返し現われる添字については和をとるという約束が用いられることが多い.これ を Einstein の規約 という.たとえば,上の式を aµ = g µν aν aµ = gµν aν (7.14) と書き,ν について 0 から 3 までの和があると解釈する. 7.1.2 4元ベクト ルの変換 2つの慣性系のあいだの変換を与えるのが Lorentz 変換である.これは,Newton 力学に おける Galilei 変換に対応する.Newton 力学においては,時間は全ての慣性系で同じであ るが,相対論では時間座標と空間座標は独立ではない. ある慣性系における4元ベクトルが aµ であるとき,この慣性系に対して z 軸方向に速 度 −v で運動している別の慣性系からみた同じ4元ベクトルの値 a µ は変換 a 0 a 1 a 2 a 3 = 1/ 1 − β 2 0 0 β/ 1 − β 2 0 1 0 0 で与えられ,ここで, β = 0 β/ 1 − β 2 0 0 1 0 0 1/ 1 − β 2 v c a0 a1 a2 a3 (7.15) (7.16) である.あるいは, β = tanh θ (7.17) とおくと, cosh2 θ − sinh2 θ = 1 を用いて, sinh θ cosh θ (7.18) β = sinh θ 1 − β2 (7.19) tanh θ = 1 = cosh θ 1 − β2 となる.従って,Lorentz 変換 (7.15) は a 0 a 1 a 2 a 3 = cosh θ 0 0 sinh θ 0 1 0 0 0 sinh θ 0 0 1 0 0 cosh θ a0 a1 a2 a3 (7.20) 126 第 7 章 相対論的量子論(入門) と表せる. 4元ベクト ル xµ 4元ベクトル xµ に対する Lorentz 変換は ct x y z = 1/ 1 − β 2 0 0 β/ 1 − β 2 0 β/ 1 − β 2 0 0 1 0 0 1/ 1 − β 2 0 1 0 0 ct x y z (7.21) と書ける.ここでは,z 軸方向の運動を考えているので,空間座標の x 成分と y 成分は変 化しない.時間成分と空間座標の z 成分は t = z = t vz/c2 + 1 − β2 1 − β2 v z + 1 − β2 1 − β2 (7.22) と変換される.ここで,β = v/c → 0 の極限をとると, t x y z = 1 0 0 v 0 1 0 0 0 0 1 0 0 0 0 1 t x y z (7.23) となり,Galilei 変換が得られる. 4元運動量 4元運動量 pµ に対する Lorentz 変換は,同様に E /c p 1 p 2 p 3 = 1/ 1 − β 2 0 0 β/ 1 − β 2 0 β/ 1 − β 2 0 0 1 0 0 1/ 1 − β 2 0 1 0 0 E/c p1 p2 p3 (7.24) で与えられる.特に,粒子の静止系では p = 0 であるから,エネルギーは質量に等しい: E = mc2 .この4元運動量に Lorentz 変換をほどこすと, mc2 E = , 1 − β2 p = p = 0, 1 2 mv 3 p = 1 − β2 (7.25) が得られる.E は速度 v で運動する質量 m の粒子のエネルギーである.すなわち,エネ ルギーは m2 c 4 E 2 = p2 c2 + m2 c4 = (7.26) v2 1− 2 c 7.1 特殊相対性理論 127 と表せる.これより,3次元運動量の大きさとエネルギーの関係式 |p| = Ev c2 (7.27) が得られる. 内積 慣性系の変換( Lorentz 変換)に対して,内積は不変量になる.実際,2つの4元ベ µ µ クトル aµ と bµ を Lorentz 変換 (7.15) して得られる a と b の内積をつくると, a · b = a 0 b 0 − a 1 b 1 − a 2 b 2 − a 3 b 3 a0 − βa3 b0 − βb3 −βa0 + a3 −βb0 + b3 1 1 2 2 − a b − a b − 1 − β2 1 − β2 1 − β2 1 − β2 = a0 b0 − a1 b1 − a2 b2 − a3 b3 = a · b = であり,不変であることが確かめられる. (7.28) 128 第 7 章 相対論的量子論(入門) 7.2 Dirac 方程式 7.2.1 自由粒子の基本方程式 非相対論的古典論 質量が m の自由粒子のエネルギー(運動エネルギー)は,古典力学で は次の式で与えられる: p2 E = (7.29) 2m 非相対論的量子論( Schrödinger 方程式) 古典力学から量子力学への移行は,エネルギー E と運動量 p を微分演算子に置き換えるこ とによって行われる: ∂ h̄ E −→ ih̄ p −→ ∇ (7.30) ∂t i この置き換えにより,(7.29) に対応した自由粒子の Hamiltonian H = p2 2m (7.31) から,自由粒子の Schrödinger 方程式 ih̄ ∂ψ(t, x) h̄2 2 = − ∇ ψ(t, x) ∂t 2m (7.32) が得られる.この方程式は波動関数 ψ(t, x) の時間発展を規定する. (7.32) に ψ ∗ をかけたものから,(7.32) の複素共役に ψ をかけたものを引くと,連続の 方程式(確率の保存) ∂ρ +∇·j = 0 (7.33) ∂t が得られる.ここで, ρ = ψ ∗ ψ = | ψ |2 (7.34) 1 h̄ ∗ j = [ψ (∇ψ) − (∇ψ∗ ) ψ] 2m i は,それぞれ,確率密度と確率の流れの密度であり,(7.33) は確率の保存を表す.ρ は正値 であり確率密度と解釈することができる. 相対論的量子論( Klein-Gordon 方程式) Schrödinger 方程式 (7.32) は非相対論的であり,相対論的なエネルギーと運動量の関係 E 2 = p2 c2 + m2 c4 (7.35) に対応していない.また,そのため,Lorentz 変換に対して左辺と右辺の変換は異なる.相 対論的量子論における自由粒子の方程式は,エネルギーと運動量の関係式 (7.35) に,演算 Dirac 方程式 7.2 129 子による置き換え (7.30) をして得られる: 2 h̄ ∂2 − c2 ∇2 + m2 c4 ψ = 0 ∂t2 (7.36) この方程式は Klein-Gordon 方程式 と呼ばれる. 相対論では,エネルギーと運動量は4元ベクトル(4元運動量)の成分として変換する. 従って,上に示した方程式は4元ベクトルを用いて表すことができる.ただし,反変ベクト ルと共変ベクトルに注意が必要である.次の4つの成分 1 ∂ , −∇ c ∂t = 1 ∂ ∂ ∂ ∂ , − 1, − 2, − 3 c ∂t ∂x ∂x ∂x (7.37) は,Lorentz 変換に対して,上付き添字の反変ベクトル ( ct, x1 , x2 , x3 ) と同じように変換し, 1 ∂ ,∇ c ∂t = 1 ∂ ∂ ∂ ∂ , , , 1 2 c ∂t ∂x ∂x ∂x3 (7.38) は下付き添字の共変ベクトル ( ct, −x1 , −x2 , −x3 ) = ( ct, x1 , x2 , x3 ) と同じように変換す る.従って,4元運動量の反変ベクトル pµ と共変ベクトル pµ は,それぞれ,次のように 表すことができる: ∂ ∂xµ ∂ = ih̄ µ ∂x pµ = ih̄∂µ = ih̄ pµ = ih̄∂µ ih̄ c ih̄ = c = ∂ h̄ ∂ , ∂t i ∂x ∂ h̄ ∂ ,− ∂t i ∂x (7.39) エネルギーと運動量の関係式は4元運動量の内積を用いて pµ pµ − m2 c2 = 0 (7.40) と書けるので,Klein-Gordon 方程式は [ h̄2 ∂ µ ∂µ + m2 c2 ] ψ = 0 (7.41) と簡単に表せる. 確率解釈の問題 非相対論的 Schrödinger 方程式の解に対して確率の保存 (7.33) を求めた のと同様な計算を,Klein-Gordon 方程式の解に対して行うと,全く同じ形の連続の方程式 ∂ρ +∇·j = 0 ∂t が得られる.ただし, ρ = j = (7.42) ∂ψ∗ ih̄ ∗ ∂ψ ψ − ψ 2mc2 ∂t ∂t 1 h̄ ∗ [ψ (∇ψ) − (∇ψ ∗ ) ψ] 2m i (7.43) 第 7 章 相対論的量子論(入門) 130 である.空間成分 j は非相対論的な場合と同じであるが,時間成分 ρ は時間微分を含んで いる.従って,ρ が正値である保証はなく,ρ を確率密度とみる解釈ができない.これは, Klein-Gordon 方程式が時間についての2階微分を含んでいることに起因する. 簡単な例として,Klein-Gordon 方程式の平面波解 i ψ = N exp − (Et − p · x) h̄ (7.44) を考えると,(7.43) から ρ = となる.エネルギー 1 | N |2 E mc2 (7.45) E = ± p2 c2 + m2 c4 (7.46) の符号に応じて,ρ は正にも負にもなることがわかる. この段階では,Klein-Gordon 方程式の解に対する確率密度の問題は解決できない.実際 には,場の量子論に基づいて確率密度を定義することができ,Klein-Gordon 方程式はスピ ンが 0 であるスカラー粒子が満たす方程式であることが示せる. 7.2.2 Dirac 方程式 時間微分について線形な方程式 P.A.M. Dirac は,Lorentz 変換に対して不変( E 2 = 2 2 2 4 p c + m c を満たす)であり,しかも,Schrödinger 方程式のように時間微分に関して線 形である方程式を求め,いわゆる Dirac 方程式に至った. エネルギーと運動量は4元ベクトルの成分として変換されるので,時間微分に関して線 形であるならば,空間座標についての微分も線形でなければならない.すなわち,次のよう な方程式が考えられる: ∂ψ H ψ = ih̄ ∂t ∂ψ ∂ψ ∂ψ h̄c α1 1 + α2 2 + α3 3 = i ∂x ∂x ∂x h̄c k ∂ + βmc2 ψ = α i ∂xk + βmc2 ψ (7.47) ここで,3つの空間成分についての和( k = 1, 2, 3 )を暗に表した. 微分演算を2回行うと2階の微分方程式 ih̄ ∂ c ∂t 2 ψ = h̄c j ∂ + βmc2 α i ∂xj = − (h̄c)2 + 3 h̄c k ∂ + βmc2 ψ α i ∂xk ∂ 2ψ ∂2ψ 2 j k k j − (h̄c) (α α + α α ) (∂xk )2 ∂xj ∂xk 1=j<k 3 (αk )2 k=1 3 h̄cm ∂ψ (αk β + βαk ) k + β 2 m2 c4 ψ i k=1 ∂x (7.48) 7.2 Dirac 方程式 131 になるが,この式が,4元運動量の関係式 (7.35) から導かれる Klein-Gordon 方程式 ih̄ ∂ c ∂t 2 ψ = h̄c ∂ i ∂xk 2 ψ + m2 c4 ψ (7.49) に一致しなければならない.そのためには,αk と β が反交換関係 αj αk + αk αj = 2δ ik αk β + βαi = 0 (7.50) を満たすことが要請され,また, β2 = 1 (7.51) である.さらに,Hamiltonian の固有値であるエネルギーは実数であるから,Hamiltonian は Hermite であり,従って,αk と β も Hermite でなければならない: † β† = β αk = αk (7.52) このような条件を満たす αk と β は単なる数ではなく,正方行列(行の数と列の数が等し い行列)で表される.従って,波動関数 ψ は幾つかの成分をもつことになる. ガンマ行列 上で導入した4つの行列 αk と β の代わりに,相対論的な形式に合ったガン マ行列を次のように定義する: γ0 = β γ k = βαk ( k = 1, 2, 3 ) (7.53) αk と β が満たすべき条件 (7.50), (7.51), (7.52) は γ µ γ ν + γ ν γ µ = 2gµν † γ0 = γ0 † γk = − γk (7.54) (7.55) と書き直される.gµν は4元ベクトルの添字の上げ下げをする計量テンソルである.また, ガンマ行列の時間成分 γ 0 は Hermite であるが,空間成分 γ k は反 Hermite になる. 波動関数 ψ の成分の数は以下のように考えられる.第1に,4つの行列が互いに反交換 しなければならないので,成分の数は3以上である.成分の数が2であると仮定すると,2 行2列の行列で互いに反交換するものが4つなければならない.しかし,2行2列の行列は Pauli のスピン行列(3個)と単位行列で表すことができるが,反交換するのは3つである. 第2に,ガンマ行列の反交換関係 (7.54) から,波動関数の成分の数は偶数でなければなら ないことが示せる.まず,µ = ν = 0 のとき,(γ 0 )2 = 1 から,γ 0 の固有値は ±1 であり, k = µ = ν = 0 のとき,(γ k )2 = −1 から,γ k の固有値は ±i である.また,ガンマ行列の 積の対角成分の和(トレースという)は,µ = ν のとき Tr (γ µ γ ν γ ν ) = −Tr (γ ν γ µ γ ν ) = −Tr (γ µ γ ν γ ν ) = 0 (7.56) となる.ここで,(γ ν )2 = ±1 より, Tr (γ µ ) = 0 (7.57) 132 第 7 章 相対論的量子論(入門) が得られる.このような条件を満たす行列の行数(列数)は偶数でなければならない.上で 得られた「3以上」で「偶数」という条件から,以下では,波動関数の成分の数は4である とする: ψ1 (t, x) ψ2 (t, x) ψ(t, x) = (7.58) ψ3 (t, x) ψ4 (t, x) 反交換関係を満たす4行4列の行列として,ここでは,次の形を採用する: γ0 = I 0 0 −I 0 σk −σ k 0 γk = (7.59) I は2行2列の単位行列で,σk は Pauli のスピン行列である: 1 σ = 0 1 1 0 2 σ = 0 −i i 0 3 σ = 1 0 0 −1 (7.60) ここで採用した形を Dirac-Pauli 表示 と言う.一般に,上に示した行列を unitary 変換し て得られる行列も反交換関係を満たす.別の表示としては,たとえば, 0 γ = 0 I I 0 k γ = 0 −σ k σk 0 (7.61) が用いられる.これを Wyle 表示 あるいは Chiral 表示 という. Dirac 方程式 ガンマ行列を用いると (7.47) は ∂ ∂ ∂ ∂ ih̄ γ + γ 1 1 + γ 2 2 + γ 3 3 ψ − mc ψ = 0 ∂x0 ∂x ∂x ∂x 0 (7.62) と書ける.これが,スピンが 12 の自由な粒子の波動関数が満たすべき Dirac 方程式である. また,波動関数は(4成分)スピノールと呼ばれる.上の Dirac 方程式は,繰り返し現われ る添字について和をとると約束して ( ih̄γµ ∂µ − mc ) ψ = 0 (7.63) と簡単に表すことが多い. 確率密度 Klein-Gordon 方程式で問題になった確率密度(及び,確率の流れの密度)は, Dirac 方程式 (7.47) から導ける.ただし,波動関数は4成分をもつので,複素共役の代わり に Hermite 共役をとる.(7.47) の Hermite 共役は ∂ψ† −ih̄ = ψ† ∂t h̄c ← − − α · ∇ + βmc2 i (7.64) 7.2 Dirac 方程式 133 ← − であり,ここで,∇ は左にある ψ† に作用する微分演算子で,たとえば,x 成分は を意味する.確率の保存は ∂ψ† ← − ψ † ∇x = ∂x (7.65) ∂ρ +∇·j = 0 ∂t (7.66) と表され,ここで, ρ = ψ† ψ (7.67) j = cψ † α ψ = c( ψ † α1 ψ, ψ† α2 ψ, ψ† α3 ψ, ) である.4元ベクトルでは次のように表される: ∂j µ = ∂µ j µ = 0 ∂xµ 確率密度 ρ は,波動関数の4成分で陽に表すと ρ = ( ψ1∗ , ψ2∗ , ψ3∗ , ψ4∗ ) ψ1 ψ2 ψ3 ψ4 j µ = ( cρ, j ) (7.68) 4 = | ψk |2 > 0 k=1 (7.69) より,常に正値であり,確率解釈が可能である. 7.2.3 Dirac 方程式の解 4成分からなる Dirac 方程式は,独立な4つの解をもつ.エネルギー E と運動量 p の固 有状態は i ψ(t, x) = w exp − (Et − p · x) (7.70) h̄ と書くことができる.w は4成分をもつ: w = u1 u2 u3 u4 (7.71) (7.71) を Dirac 方程式 (7.62) に代入し,Dirac-Pauli 表示のガンマ行列の表示 (7.59) と (7.60) を用いると,uk (p)( k = 1, 2, 3, 4 )に関する連立方程式が得られ,行列の形で書くと E − mc2 0 −cp3 −c(p1 − ip2 ) 0 E − mc2 −c(p1 + ip2 ) cp3 −cp3 −c(p1 − ip2 ) E + mc2 0 1 2 3 −c(p + ip ) cp 0 E + mc2 u1 u2 u3 u4 = 0 (7.72) 第 7 章 相対論的量子論(入門) 134 となる.この連立方程式が解をもつのは,uk の係数行列の行列式が 0 になるとき E 2 − (pc)2 − m2 c4 2 = 0 (7.73) すなわち,エネルギーと運動量の関係式が成り立つときである.運動量 p が指定されたと き,エネルギーは E± = ± p2 c2 + m2 c4 (7.74) の2つの値が許される.絶対値は等しく,一方は正であり,他方は負である.これは,KleinGordon 方程式の場合と同じである.正のエネルギー E+ に対して2つの独立な解が存在 する: 1 0 0 1 3 1 2 cp c(p − ip ) w = N w = N (7.75) E+ + mc2 E+ + mc2 c(p1 + ip2 ) cp3 − 2 2 E+ + mc E+ + mc 同様に,負のエネルギー E− に対しても2つの独立な解が存在する: w = N cp3 E− − mc2 c(p1 + ip2 ) E− − mc2 1 0 規格化因子は w = N p2 c2 N = 1+ (| E± | + mc2 )2 c(p1 − ip2 ) E− − mc2 cp3 − E− − mc2 0 1 (7.76) −1/2 (7.77) で与えられる. 4成分スピノール w は,しばしば,2成分ずつに分けて w = φ χ u1 φ = u 2 u3 χ = u4 (7.78) と表される.(7.70) を Dirac 方程式 (7.62) に代入し,(7.59) を用いると, E c I 0 0 −I φ χ + 0 σ·p −σ · p 0 φ χ − mc I 0 0 I φ χ = 0 (7.79) 7.2 Dirac 方程式 135 より,2成分スピノール φ と χ の連立方程式 (E − mc2 ) φ − c σ · p χ = 0 (E + mc2 ) χ − c σ · p φ = 0 (7.80) が得られる.後者を χ について解いて,4成分スピノール w は φ w = N cσ · p φ 2 E + mc (7.81) と表される.エネルギーと運動量の関係は,(7.80) の下の式を χ について解いて上の式に 代入すると,Pauli 行列の関係式 (σ · p) (σ · p) = p2 I (7.82) (E − mc2 ) (E + mc2 ) φ = (pc)2 φ (7.83) を用いて が得られる.この結果は,4成分に分けて計算した場合 (7.73) に一致する. 136 第 7 章 相対論的量子論(入門) 7.3 Dirac 波動関数の変換 7.3.1 Lorentz 変換 この章の始めに Lorentz 変換について簡単に述べたが,ここでは,広い意味での Lorentz 変換について説明する. 4元ベクト ルの線形変換 一般に,Lorentz 変換とは,4元ベクトル xµ の線形変換 xµ −→ x = Λµν xν (7.84) x · x = x µ xµ (7.85) x xµ = xµ xµ (7.86) µ で, を不変に保つもの,すなわち, µ が成り立つものをいう. (7.86) の左辺にある4元ベクトルの内積において,計量テンソル gµν を用いて共変ベクト ル xµ を反変ベクトル x µ で表し,x µ を (7.84) によって書き換える: x xµ = gµν x x = gµν (Λµρ xρ ) (Λνσ xσ ) = gµν Λµρ Λνσ xρ xσ µ µ ν (7.87) 一方,(7.86) の右辺は xρ xρ = gρσ xρ xσ (7.88) と表せる.両者が一致するためには,Lorentz 変換を表す Λµν が gµν Λµρ Λνσ = gρσ (7.89) を満たさなければならない. 連続的な変換と離散的な変換 gµν 及び Λµν は4行4列の行列で表される.そこで,(7.89) の行列式を計算する.行列の積 の行列式は,個々の行列の行列式の積に等しいので,(7.89) より ( det Λ )2 = 1 (7.90) det Λ = ±1 (7.91) が得られる.すなわち, である.例として,z 軸方向の並進運動を表す Lorentz 変換 (7.15) の場合は, 1/ 1 − β 2 0 det Λ = 0 β/ 1 − β 2 0 1 0 0 0 β/ 1 − β 2 0 0 1 0 0 1/ 1 − β 2 = 1 (7.92) 7.3 Dirac 波動関数の変換 137 である. 一般に,恒等変換から微小変換の積み重ねで到達できる Lorentz 変換の場合は det Λ = +1 である.行列式が det Λ = −1 である Lorentz 変換は離散的な空間反転と時間反転( Λ をそ れぞれ P , T と表す) : 空間反転 P = 時間反転 T = +1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1 −1 0 0 0 0 +1 0 0 0 0 +1 0 0 0 0 +1 (7.93) (7.94) 及び,そこから微小変換の積み重ねで到達できる場合である. 共変ベクト ルの変換 (7.89) の両辺に gτ ρ をかけて τ と ρ について和をとる.左辺は計量テンソルによる添字の 上げ下げの規則により g τρ gµν Λµρ Λνσ = g τ ρ Λνρ Λνσ = Λντ Λνσ (7.95) gτ ρ gρν = δστ (7.96) Λντ Λνσ = δστ (7.97) 右辺は より, が得られる.ここで,δστ は Kronecker のデルタである.(7.97) は Λµν の添字を上げ下げし て得られる Λµν が,もとの行列 Λ の転置逆行列 (Λ−1 )T になっていることを表している: Λµν = ( Λ−1 )νµ (7.98) 共変ベクトルの変換 xµ → xµ は,添字の上げ下げを用いて次のようにして求められる: xµ = gµν x = gµν Λνρ xρ = gµν Λνρ g ρσ xσ = Λµσ xσ ν (7.99) 最後の等号では計量テンソルによる Λ の添字の上げ下げを用いた.この結果,及び (7.98) の関係より,共変ベクトルの変換 xµ −→ x µ = Λµν xν = xν ( Λ−1 )νµ が得られる. (7.100) 138 第 7 章 相対論的量子論(入門) 2階のテンソル 一般に,任意の階数のテンソルの Lorentz 変換は,上付き添字は反変ベクトルとして,下付 き添字は共変ベクトルとして変換するものとして定義する.たとえば,上付き添字を2つも つ2階のテンソル T µν は次のように変換される. T µν −→ T µν = Λµρ Λνσ T ρσ (7.101) 特に,計量テンソル g µν の場合は g µν −→ g µν = Λµρ Λνσ g ρσ = Λµσ Λνσ = gµρ Λµσ Λνσ = gµρ δρν = gµν (7.102) と変換されるので,Lorentz 変換に対して不変である(不変テンソル)ことがわかる. Dirac 方程式は Lorentz 変換に対して形を変えないことが確かめられる. ( それを示すこと はここではしない. )慣性系によらずに同じ形になることを 相対論的に共変 であるという. 以下では,連続的な変換として簡単な例を示し,また,離散的な変換と関連した事項につい て述べる. 7.3.2 連続的な変換 空間座標軸のまわりの回転 例として k 軸( k = 1, 2, 3 )のまわりの角度 θ の回転を考える.非相対論において,k 軸の まわりの角度 θ の回転に対するスピン s 状態の変換は,角運動量演算子 Jk の 2s + 1 表現 を用いて ψs −→ ψs = S(θ)ψs (7.103) S(θ) = exp (iJk θ) (7.104) と書ける.スピンが 12 のとき,角運動量演算子は Pauli 行列で表される( Jk = 12 σ k )ので, 2成分スピノールに作用する変換行列は σk S(θ) = exp i θ 2 (7.105) と表すことができる.2行2列の行列 σ k を含む exp(iσk θ/2) は級数展開 σk exp i θ 2 で定義される.Pauli 行列の性質 ∞ 1 σk = i θ n! 2 n=0 σk 2 n =I (7.106) (7.107) を用いると,偶数次の項は単位行列になり,その結果, σk exp i θ 2 = I cos θ θ + i σ k sin 2 2 (7.108) Dirac 波動関数の変換 7.3 139 と表される. Dirac 波動関数はスピンが 12 の粒子の相対論的波動関数である.非相対論的な場合との 違いは Dirac 波動関数 ψ が4成分スピノールで表されることである.実際には,4成分の うち,上の2成分と下の2成分が非相対論的な場合と同様に変換する.すなわち, ψ(x) −→ ψ (x ) = S(θ) ψ(x) (7.109) と表すことができ,S(θ) は4行4列の変換行列で与えられる: S(θ) = I 0 0 I σk exp i θ 2 (7.110) σ k は k 軸のまわりの無限小回転を生じる Hermite 行列であるので,変換行列は unitary 行 列である. 並進(狭義の Lorentz 変換) 例として x 軸(1軸)方向への速度 v の並進運動を考える.このとき,時間座標 x0 と1軸 座標 x1 は,β = v/c = tanh θ として次のように変換する( Lorentz 変換 (7.20) において, 速度の符号を変えて) : x0 −→ x = + x0 cosh θ − x1 sinh θ x1 −→ x = − x0 sinh θ + x1 cosh θ 0 0 (7.111) この Lorentz 変換のもとで,4成分スピノール ψ(x) の変換は ψ(x) −→ ψ (x ) = S(θ) ψ(x) (7.112) と書ける.S(θ) は4行4列の行列で,空間座標の回転の場合と良く似た形で表される: σ S(θ) = exp −i 01 θ 2 ここで, σ01 = (7.113) 0 0 0 −i 0 0 −i 0 0 −i 0 0 −i 0 0 0 (7.114) である.σ01 の2乗は4行4列の単位行列に −1 をかけたものになるので, S(θ) = I4 cosh θ θ − i σ01 sinh 2 2 (7.115) と書ける.I4 は4行4列の単位行列である.無限小変換を生じる行列 σ01 は Hermite では ないので,変換行列は unitary 行列ではない. 140 第 7 章 相対論的量子論(入門) スカラー・ベクト ル・テンソル 4元ベクトルに対して定義される Lorentz 変換 xµ −→ x = Λµν xν µ (7.116) のもとで,Dirac 方程式の解 ψ は次のように変換される: ψ −→ ψ = S ψ (7.117) しかし,Lorentz 変換 (7.111) の場合,Dirac 波動関数の変換 (7.112) において,変換行列は unitary でない.従って,波動関数 ψ の Hermite 共役 ψ † は Lorentz 変換に対する良い変換 性を示さない.相対論的に共変であることを見やすくするには,Dirac 波動関数の Hermite 共役の代わりに,Hermite 共役に右から γ 0 をかけた波動関数を導入すると便利である.こ れを ψ の上に横線を付けて表す: ψ = ψ† γ 0 (7.118) 4成分を陽に書くと ψ = ( ψ1∗ , ψ2∗ , ψ3∗ , ψ4∗ ) γ 0 = ( ψ1∗ , ψ2∗ , −ψ3∗ , −ψ4∗ ) (7.119) である.上に横線を付けた波動関数は,Lorentz 変換に対して S(θ) の逆行列で変換される: ψ(x) −→ ψ (x ) = ψ(x) S(θ)−1 (7.120) 関係式 (7.120) を考慮すると,波動関数 ψ 1 と ψ2 の積の変換は ψ 1 ψ2 −→ ψ 1 ψ2 = ψ 1 S −1 Sψ2 = ψ 1 ψ2 (7.121) となり,Lorentz 変換に対して不変であることがわかる.添字 1 と 2 は異なる波動関数に対 しても成り立つことを表す.このように Lorentz 変換に対して不変な量を スカラー と呼ぶ. ガンマ行列 γ µ をはさんだ量 ψ 1 γ µ ψ2 の変換は ψ 1 γ µ ψ2 −→ ψ 1 γ µ ψ2 = ψ 1 S −1 γ µ Sψ2 (7.122) と書ける. ( ここでは導出しないが )変換行列 S に対して, S −1 γ µ S = Λµν γ ν (7.123) が成り立つ.従って,上の変換は ψ 1 γ µ ψ2 −→ ψ 1 γ µ ψ2 = Λµν ψ 1 γ µ ψ2 (7.124) となり,4元ベクトルと同じ変換をすることがわかる.このように4元ベクトルと同じよう に変換する量を ベクト ル という. 7.3 Dirac 波動関数の変換 141 ガンマ行列の変換 (7.123) を考えると,2つのガンマ行列の積をはさんだ量はテンソルとし て変換する: ψ 1 γ µ γ ν ψ2 −→ ψ 1 γ µ γ ν ψ2 = Λµρ Λνσ ψ 1 γ ρ γ σ ψ2 (7.125) 通常,γµ γ ν の代わりに,ガンマ行列の交換関係によって定義される σ µν がテンソルとして 用いられる: i σ µν = [ γ µ , γ ν ] (7.126) 2 なお,計量テンソルを用いて添字を下げた σ01 が,変換行列 (7.113) に現われた4行4列の 行列である. 確率密度 Dirac 波動関数の確率密度は4元ベクトルで j µ = ( cρ, j ) = ( cψ †ψ, cψ † αψ ) (7.127) と表される.ここで,ψ† の右側に単位行列 β 2 = I を挿入し,β = γ 0 ,ψ = ψ † γ 0 ,γ k = βαk の関係式を用いると, j µ = cψγ µ ψ (7.128) と書き直せる.すなわち,確率密度の4元ベクトル j µ は Lorentz 変換に対してベクトルと して変換することが確かめられる. 7.3.3 空間反転とカイラリティ 空間反転 空間反転は次の変換として定義される: t −→ + t x −→ − x (7.129) すなわち,Lorentz 変換を表す Λµν は計量テンソル g µν に等しい.従って,ガンマ行列の変 換は + γ0 (µ = 0) −1 µ µν ν P γ P = g γ = (7.130) k −γ (µ = 1, 2, 3) と表される.変換行列 P は P = eiϕ γ 0 (7.131) と表すことができる.実際,P の逆行列は P −1 = e−iϕ (γ 0 )−1 = e−iϕ γ 0 (7.132) P −1 γ µ P = γ 0 γ µ γ 0 (7.133) であるので, 142 第 7 章 相対論的量子論(入門) から,µ = 0 のときは γ 0 用いて 3 = γ 0 であり,µ = 1, 2, 3 のときはガンマ行列の反交換関係を γ 0γ k γ 0 = − γ k γ 0γ 0 = − γ k (7.134) P †P = γ 0 e−iϕ eiϕ γ 0 = (γ 0 )2 = I (7.135) となる.また,変換行列は を満たすので,明らかに unitary 変換である: P −1 = P † (7.136) 擬スカラー・擬ベクト ル 位置ベクトル x や運動量ベクトル p は空間反転に対して符号を変えるが,角運動量 x × p は符号を変えない.角運動量のように,空間回転に対してはベクトルと同じように変換する が,空間反転に対して符号を変えない量を 擬ベクトル量 と呼ぶ.また,空間回転に対して 変換しないスカラーのなかには,空間反転に対して符号を変えるものがある.このような量 を 擬スカラー量 と呼ぶ. 擬スカラー量や擬ベクトル量をつくるには,次の式で定義される γ 5 を導入すると便利で ある: 0 I 5 0 1 2 3 γ = γ5 = iγ γ γ γ = (7.137) I 0 ここでは,具体的な形として Dirac-Pauli 表示で示した. ψ 1 γ 5 ψ2 は擬スカラーである.すなわち,Lorentz 変換に対してはスカラー ψ 1 ψ2 と同様に符 号を変えないが,空間反転に対してはスカラーと異なって符号を変える.ベクトル ψ 1 γ µ ψ2 に対応して,擬ベクトルは ψ 1 γ 5 γ µ ψ2 である.Lorentz 変換に対してはベクトルと同様に振 るまい,空間反転に対しては符号を変えない. 双一次形式 Dirac 波動関数 ψ と ψ = ψ †γ 0 から作られる ψΓ ψ を双一次形式という.ガンマ行列は4 行4列の行列であるから,独立成分の数は 16 である.従って,双一次形式の Γ をガンマ 行列の組み合わせでつくるとすると,双一次形式の独立な成分の個数も 16 である.それら は,Lorentz 変換と空間反転に対する変換性から,以下のように分類することができる: スカラー 擬スカラー ベクトル 擬ベクトル テンソル S P V A T ψψ ψγ 5 ψ ψγ µ ψ ψγ 5 γ µ ψ ψσ µν ψ 1 1 4 4 6 右端の数字は独立な成分の個数を表している.独立な成分の和は 16 になり,双一次形式の すべてが尽くされている. 7.3 Dirac 波動関数の変換 143 カイラリィ (7.137) で定義した行列 γ 5 を2乗すると恒等変換になる: 5 2 (γ ) = I 0 0 I (7.138) 従って,固有値は ±1 である.Dirac 波動関数は固有値が +1 の成分と −1 の成分をもって いる.前者をカイラリィが正であるといい,後者をカイラリィが負であるという. 2つの成分は,次の行列を用いることによって分離できる: P+ = 1 + γ5 2 P− = 1 − γ5 2 (7.139) (7.138) より, ( P+ ) 2 = P + ( P− )2 = P− P+ P− = 0 (7.140) が容易に導ける.また,明らかに P+ + P− = 1 (7.141) である.すなわち,P± は射影演算子の役割を果たす.P+ は γ 5 の固有値が +1 の成分だけ を取り出し,P− は −1 の成分だけを取り出す: ψ = ψR + ψL ψR = P+ ψ (7.142) ψL = P− ψ カイラリィ正は 右巻き( right-handed )に対応し,カイラリィ負は 左巻き( left-handed ) に対応する.波動関数につけた添字 R と L は頭文字を付けたものである. 7.3.4 Hole 理論 負エネルギー解の問題 Dirac 方程式にはエネルギーが正の解だけでなく,負の解も存在する( Klein-Gordon 方程 式の場合も同様であった).たとえば,運動量が p の電子があるとき,エネルギー E は E = ± p2 c2 + m2 c4 の2つの値をもつ解が存在する.電子が取り得るエネルギーの値は E = 0 に対して対称である(ただし,−mc2 < E < mc2 の範囲の値を取ることはできない). 正のエネルギーをもつ電子はフォトン(光子)を放出して,よりエネルギーが低い負のエネ ルギー状態へと遷移できる.従って,電子は全て負のエネルギー状態へと遷移してしまうこ とになる.これを負エネルギー解の問題という. Dirac の解釈 Dirac は負エネルギー解の問題を次のように解釈した.真空は,負エネルギー状態は全て電 子によって占有されている.Fermi 粒子である電子には Pauli の排他律がはたらき,1つの 144 第 7 章 相対論的量子論(入門) 量子状態には1つの電子しか入ることができない.従って,既に電子によって占有されてい る負のエネルギー状態へ,正エネルギーをもつ電子は遷移できない.このような真空は無限 に大きな負の電荷とエネルギーをもつことになるが,我々が観測するのは,この真空からの ずれだけである. mc 2 mc 2 0 0 − mc 2 − mc 2 図 7.1: 左:陽電子,右:電子と陽電子の対消滅 真空中の負エネルギー状態の電子が1つないとき,真空に1つの hole があると考える. この hole は,真空に対して1つの電子が欠如している状態であるから,電子と等しい大き さで反対符号の正電荷をもつ.従って,真空中の1つの hole を,正エネルギーをもつ状態 に正電荷をもつ粒子(陽電子)が存在すると解釈する(図 7.1 の左図参照).この解釈を応 用すると,電子と陽電子の対消滅 e− + e+ → γ + γ (7.143) は,正エネルギー状態にある電子が負エネルギー状態の hole (陽電子)へ遷移することに 対応する(図 7.1 の右図参照).逆に,電子と陽電子の対生成は,真空中の負エネルギー状 態にある電子がエネルギーを受け取って,正エネルギー状態へ遷移することとして理解で きる. Feynman の解釈 Feynman は負エネルギー解を次のように解釈した: 負エネルギー状態にあり,時間を負の向きに進む粒子は, 正エネルギー状態にあり,時間を正の向きに進む反粒子に等しい. 例として,電子 e− のポテンシャルによる散乱を考える.Feynman によると,図 7.2 の左 図に示すように,粒子が時間の負の向きに散乱されることも可能である.この散乱過程は, 図 7.2 の右図と等価であると考える.すなわち,時間を負の向きに進む e− は負エネルギー 解であり,時間の負の向きにしか進むことができないと考える.そして,これを正エネル Dirac 波動関数の変換 7.3 t 145 t e − e− e e− + e− e− x x 図 7.2: 電子 e− のポテンシャルによる散乱 ギーをもち時間の正の向きに進む陽電子 e+( e− の反粒子)であるとする.一方,正エネル ギーの e− は時間の正の向きにしか進むことはできない. この考えを次のように推し進めることができる.ある系が正エネルギー E の電子 e− を 放出したとする.系のエネルギーは E だけ減少する.また,電荷は −e だけ減少する.つ まり,+e だけ増加する.この電荷の増加は陽電子 e+ の吸収によってももたらされる.し かし,e+ の吸収過程が e− の放出過程と等価であるには,すなわち,e+ の吸収によってエ ネルギーが E だけ減少するには,陽電子 e+ は負のエネルギーをもたなければならない. 反粒子 以上見てきたように,真空状態に1つ hole ができた状態は,1つの粒子として扱うことが できる.この粒子の質量は電子の質量に等しいが,エネルギーは逆符号(負)であり,電子 とは逆符号で等量の電荷をもつ.このような粒子を電子の 反粒子 と呼ぶ.負エネルギー解 の状態が消滅したとき,正エネルギーの反粒子が生成したと解釈する.逆に,正エネルギー の反粒子が消滅したときは,負エネルギー状態に粒子が生成されたと考えられる. Dirac は Dirac 方程式に負エネルギー解が存在することを示し,また,Hole 理論を提唱し て,電子に反粒子があることを予言した.後に,Anderson によって電子と同じ質量をもち, 異符号等量の電荷をもった粒子(反粒子)が発見され,陽電子( positron )と名付けられた. 7.3.5 荷電共役 荷電共役変換 粒子と反粒子を入れ換える変換を荷電共役変換という.粒子の波動関数を ψ とすると,反 粒子の波動関数は複素共役 ψ ∗ で基本的にはよい.しかし,荷電共役変換は内部変換であり Lorentz 変換性を保たなければならない.すなわち,複素変換とともに成分の混合が考えら れる.そこで,成分の混合を表す4行4列の行列を C として,Dirac 波動関数に対する荷 146 第 7 章 相対論的量子論(入門) 電共役を ψc = C ψ T (7.144) と定義する.上付きの横線を引いた ψ = (ψ ∗ )T γ 0 は,ψ に複素共役と転置の操作をして得 られる行ベクトルに,右から γ 0 をかけたものである. 4行4列の行列 C は,反粒子が粒子と同じ Dirac 方程式を満たす要請から求められる. その結果,ガンマ行列は C によって次のように変換される: C −1 γ µ C = − (γ µ )T (7.145) 行列 C は unitary 行列で表すことができ,Dirac-Pauli 表示における具体的な形は 2 0 C = iγ γ = である.ψ の4成分を ψ = と表すと,ψ の荷電共役は ψc = 0 0 0 −1 0 0 1 0 0 −1 0 0 1 0 0 0 ψ1 ψ2 ψ3 ψ4 (7.146) ψ4∗ −ψ3∗ −ψ2∗ ψ1∗ (7.147) (7.148) である.なお,関係式 (7.145) から,行列 C により,γ5 は C −1 γ 5 C = (γ 5 )T (7.149) と変換される. 反粒子のカイラリティ 粒子のカイラリティが負である成分に対して荷電共役変換をすると,反粒子の正のカイラリ ティの成分が得られる.これは次のように示せる.まず,ψ の荷電共役変換は ψc = C ψ T = C ψ† γ 0 T = C (γ 0 )T ψ ∗ (7.150) 1 + γ5 2 (7.151) と表せる.カイラリティの射影演算子は PL = 1 − γ5 2 PR = 7.3 Dirac 波動関数の変換 147 で定義され,γ 5 は実対称行列である( Dirac-Pauli 表示).従って, (ψL )c = C PL ψ T = C (γ 0 )T (PL ψ)∗ (7.150) = C (γ 0 )T PL ψ ∗ PL∗ = PL = C PR (γ 0 )T ψ ∗ γ 0 γ 5 = −γ 5 γ 0 = PR C (γ 0 )T ψ ∗ ガンマ行列の反交換関係 = PR ψ c (7.150) (7.152) となる.カイラリティが正の成分に対する荷電共役変換では,γ 5 にかかる符号が逆になる だけの違いであるので,結果としてカイラリティが逆になる.すなわち, (ψL )c = (ψ c )R が得られる. (ψR )c = (ψ c )L (7.153) 148 第 7 章 相対論的量子論(入門) 7.4 電磁場 7.4.1 Maxwell 方程式 古典電磁気学の基本法則は Maxwell 方程式にまとめられる:電場を E ,磁束密度を B , 電荷密度を ρem ,電流密度を j em として ∇ · E = ρem ∇×E = − (7.154) ∂B ∂t (7.155) ∇·B = 0 (7.156) ∇ × B = j em + ∂E ∂t (7.157) また,電荷に関する連続の方程式 ∂ρem + ∇ · j em = 0 ∂t (7.158) が成り立つ. 電磁場のポテンシャル 古典電磁気学,そして,特に量子力学では,電場と磁束密度の代わりにスカラーポテンシャ ル φ とベクトルポテンシャル A を導入すると便利である: E = −∇φ − ∂A ∂t (7.159) B = ∇×A (7.160) この定義により,(7.155) と (7.156) は自動的に満たされる(勾配の回転,及び回転の発散 は恒等的に 0 である). 相対論的表現 Lorentz 変換に対して,スカラーポテンシャルとベクトルポテンシャルは合わせて4元ベク トルとして変換する.反変ベクトル Aµ と共変ベクトル Aµ は,それぞれ Aµ = φ ,A c Aµ = φ , −A c (7.161) と表される.また,電荷密度 ρem と電流密度 j em も4元ベクトル µ jem = ( cρem , j em ) jem µ = ( cρem , −j em ) (7.162) として変換し,連続の方程式は µ ∂µ jem = µ ∂jem = 0 ∂xµ (7.163) 7.4 電磁場 149 と書ける. 場の強さのテンソル ポテンシャルが4元ベクトルを成すのに対して,電場や磁束密度は次の式で定義される場の 強さのテンソル(2階の反対称テンソル)の成分として現れる: F µν = ∂ µ Aν − ∂ ν Aµ (7.164) このテンソルは4行4列のテンソルであるが,定義から明らかに反対称 F µν = − F νµ (7.165) であるので,対角成分は F µµ = 0 である.非対角成分のうち,µ = 0, ν = 1, 2, 3 の成分は F 0k 1 ∂Ak 1 1 ∂φ = = − c ∂t c ∂xk c ∂Ak ∂φ + k ∂t ∂x 1 = − Ek c (7.166) より,電場 E の k 成分に比例する.残る 1 ≤ µ < ν ≤ 3 の成分は, F jk ∂Ak ∂Ak ∂Aj ∂Aj = − = − − ∂xj ∂xk ∂xj ∂xk (7.167) となる.これは,磁束密度 B の成分であることがわかる.2つをまとめて,場の強さのテ ンソルは 0 −E 1 /c −E 2 /c −E 3 /c 1 E /c 0 −B 3 B2 µν F = 2 (7.168) B3 0 −B 1 E /c E 3 /c −B 2 B1 0 と書ける. F µν は (7.164) の定義から明らかに,Lorentz 変換に対して2階の反変テンソルとして変 換する.従って,計量テンソルによって添字を下げることができ, Fµν = gµρ gνσ F ρσ (7.169) その結果,2階の共変テンソル Fµν = 0 E 1 /c E 2 /c E 3 /c −E 1 /c 0 −B 3 B 2 −E 2 /c B 3 0 −B 1 −E 3 /c −B 2 B 1 0 (7.170) が得られる.反変テンソルと共変テンソルの添字について和をとると 1 1 − F µν Fµν = 4 2 E2 − B2 c2 (7.171) 150 第 7 章 相対論的量子論(入門) は,Lorentz 変換に対してスカラーとして変換する(不変である). Maxwell 方程式のうちの2つはポテンシャルの導入で自動的に成立したが,残る2つの 方程式 (7.154) と (7.157) は,反対称テンソルを用いて, ∂µ F µν = ∂F µν ν = jem ∂xµ (7.172) とまとめられる.ここで,反対称テンソルの定義式 (7.164) を代入して4元ベクトル Aµ で 表すと ν ∂µ ∂ µ Aν − ∂ ν (∂µ Aµ ) = jem (7.173) となる. 7.4.2 ゲージ不変性 ゲージ変換 物理的な場である電場 E と磁束密度 B に対して,ポテンシャル φ と A は一意的には決ま らない.χ(t, x) を任意の関数として,ベクトルポテンシャルを A −→ A = A + ∇χ (7.174) としても,勾配の回転は恒等的に 0 であるので,磁束密度 B は変わらない.このとき,電 場 E も変わらないようにするには,ベクトルポテンシャルと同時に,スカラーポテンシャ ルを ∂χ φ −→ φ = φ − (7.175) ∂t とすればよい.4元ベクトルの形では, Aµ −→ A = Aµ − ∂ µ χ µ (7.176) と表せる. このように,電磁場のポテンシャルには不定性がある.(7.174) と (7.175) を合わせて, あるいは,(7.176) を(電磁場の) ゲージ変換 と言い,χ を ゲージ関数 という.ゲージ変 換に対して,電場や磁束密度は変わらない.これを ゲージ不変性 という.電磁場の強さの テンソル F µν は,電場と磁束密度から構成されるので,F µν は必然的にゲージ変換 (7.176) に対して不変である. 最小作用の原理によると,作用 Sem = cε d4 x − 1 µν F Fµν 4 (7.177) を最小にするように,電磁場のポテンシャル Aµ が実現する.すなわち,この作用をポテン シャルについて変分すると,電磁場の基本方程式である Maxwell 方程式が導かれる.F µν 7.4 電磁場 151 はゲージ変換に対して不変であるので,Maxwell 方程式だけでなく,作用 Sem もゲージ変 換に対して不変である. ゲージ条件 ゲージ変換の不定性を利用して,扱う問題に応じて,適当なゲージを取ることができる.言 いかえると,ある条件を課してゲージの不定性を除くことができる.この条件を ゲージ条 件 といい,ゲージ条件を課してゲージの不定性を除く操作を ゲージ固定 という. Lorentz ゲージ は相対論的共変性を明確にするのに便利なゲージである: ∂µ Aµ = 1 ∂ φ +∇·A = 0 c ∂t c (7.178) この条件を Lorentz 条件という.ただし,Lorentz 条件によって,ゲージ変換の自由度が完 全になくなったわけではない.ゲージ関数 χ が 1 ∂ 2χ − ∇ · (∇χ) = 0 c2 ∂t2 (7.179) を満たす限り,Lorentz 条件が満たされているからである. ゲージ関数を適当に選んで,ベクトルポテンシャル A が ∇·A = 0 (7.180) を満たすとき,これを Coulomb ゲージ という.このとき,真空中( ρem = j em = 0 )では, φ = 0 1 ∂2 −∇·∇ c2 ∂t2 A = 0 (7.181) となる.この式は波動方程式であり,解は電磁波を表す.なお,3成分をもつベクトルポテ ンシャル A には Coulomb ゲージ条件 (7.180) が課せられているので,電磁場の自由度は 2である.すなわち,電磁波は横波であり,縦波成分はない. 152 第 7 章 相対論的量子論(入門) 7.5 第 7 章の参考文献 1. 物理学基礎シリーズ 10 「素粒子物理学」,坂井典佑(培風館,1993年) 2. 「量子力学」,L.I. Schiff, 井上健 訳(吉岡書店,1971年) 3. Advanced Quantum Mechanics, J.J. Sakurai, (Addison-Wesley Publishing Company, 1967) 4. Relativistic Quantum Mechanics, J.D. Bjorken and S.D. Drell, (McGrow-Hill, Inc., New York, 1964) 5. Relativistic Quantum Field Theory, J.D. Bjorken and S.D. Drell, (McGrow-Hill, Inc., New York, 1964) 6. Gauge Theories in Particle Physics, I.J.R. Aitchison and A.J.G. Hey, Graduate Student Series in Physics, (Adam Hilger, Bristol, Philadelphia, 1989) 7. 新物理学シリーズ 23,24 「ゲージ場の量子論」I・II,九後汰一郎, ( 培風館,1 989年)
© Copyright 2024 Paperzz