平成 22 年度厚生労働科学研究費補助金 循環器疾患・糖尿病等生活習慣疾病対策総合研究事業 循環器疾患等の救命率向上に資する効果的な救急蘇生法の普及啓発に関する研究 (H21-心筋-一般-001) (研究代表者 丸川征四郎) 平成 22 年度研究報告 分担研究報告 小児心停止救命率向上のための AED を含めた包括的研究 研究分担者 清水 直樹 東京都立小児総合医療センター救命・集中治療部 平成 23(2011)年 3 月 医長 目 1.研究者名簿 次 ················································ 2 ················································ 3 2.研究報告書 研究要旨 課題1.小児「院内」「院外」心肺停止症例登録基盤の確立に関する研究 A.研究目的、B.研究方法、C.研究結果、D.考察 ················ 3 課題2.小児に対する胸骨圧迫の強さと心肺蘇生の品質モニタリングに関する研究 A.研究目的、B.研究方法、C.研究結果、D.考察 ·················· 5 課題3.Heart rate variability(HRV)を用いた小児心肺停止予測に関する研究 A.研究目的、B.研究方法、C.研究結果、D.考察 ·················· 7 E.結論 ·········································· 9 F.健康危険情報 ·········································· 9 G.研究発表 ·········································· 9 H.知的財産権の出願、登録情報 ·········································· 9 3.資料 清水 1 研究者名簿 研究分担者 清水 直樹 研究協力者 黒澤 茶茶 本間 順 太田 邦雄 新田 雅彦 斉藤 修 新津 健裕 井上 信明 池山 貴也 帯包エリカ 丸川征四郎 清水 東京都立小児総合医療センター救命・集中治療部 国立成育医療センター研究所成育政策科学研究部 東京都立小児総合医療センター救命・集中治療部 国立成育医療センター研究所成育政策科学研究部 静岡県立こども病院救急総合診療科 東京都立小児総合医療センター救命・集中治療部 千葉大学医学部小児病態学 金沢大学医薬保健研究域医学系血管発生発達病態学 大阪医科大学救急医学 東京都立小児総合医療センター救命・集中治療部 東京都立小児総合医療センター救命・集中治療部 東京都立小児総合医療センター救命・集中治療部 東京都立小児総合医療センター救命・集中治療部 国立成育医療センター研究所成育政策科学研究部 フィラデルフィア小児病院集中治療部 亀田総合病院小児科 医誠会病院 2 小児心停止救命率向上のための AED を含めた包括的研究 清水直樹 1)2)、黒澤茶茶 1)2)3)、本間順 4)1)、太田邦雄 5)、新田雅彦 6)、斉藤修 1)、 新津健裕 1)、井上信明 1)、池山貴也 1)2)7)、帯包エリカ 8)、丸川征四郎 9) 1) 東京都立小児総合医療センター救命・集中治療部、2)国立成育医療センター研究所成育政策 科学研究部、3)静岡県立こども病院救急総合診療科、4)千葉大学医学部小児病態学、5)金沢大 学医薬保健研究域医学系血管発生発達病態学、6)大阪医科大学救急医学、7)フィラデルフィア 小児病院集中治療部、8)亀田総合病院小児科、9)医誠会病院 研究要旨: 平成 18−20 年度の厚生労働科学研究費補助金「循環器疾患等生活習慣疾病対策総合 研究事業」「自動体外式除細動器 AED を用いた心疾患の救命率向上のための体制構築に関する研 究」 (代表研究者:丸川征四郎)の「小児心肺停止例への AED 普及にかかわる研究」の継続として、 「小児心停止救命率向上のための AED を含めた包括的研究」を行った。今年度研究としては、主 に以下3課題を更に発展させ、最終年度研究へ継続することとした。 課題1: 小児「院内」「院外」心肺停止症例登録基盤の確立に関する研究 課題2: 小児に対する胸骨圧迫の強さと心肺蘇生の品質モニタリングに関する研究 課題3: Heart rate variability; HRV を用いた小児心肺停止予測に関する研究 小児「院内」心停止症例登録基盤については、小児 ECPR 症例登録をも包括するかたちで、全国展 開準備が完了した。前年度課題として見出されたデータクリーニングと解析のプロセスを解決し、 最終年度には全国登録システムとしての運用を開始、海外との共同研究へとつなげたい。小児「院 外」心停止症例登録基盤については、総務省全国データなど別の研究スキームで実施した。小児 心肺蘇生における胸骨圧迫の新しい指標として、新たな絶対値指標を提唱し、ガイドライン 2010 作成過程において国際的貢献を果たした。これらの目標値に対して実際の圧迫の深さをモニタリ ングすることが必須であると考えられ、それを可能とする小児用の各種器機開発に結びつける研 究も行った。最終年度にはこれらを基盤として、PBLS 指導対象となる市民への啓蒙方略、救急隊 による小児への AED 使用状況や AED ホームユースに関する研究を進め、さらに小児病院前救護に 関する国際比較研究にもとづき、コンセンサス 2010 を前提とした教育体制と併せた提言をはかっ てゆく。小児院内心停止においては、その直接的原因に関する分析結果より、MET 導入による早 期の介入で、小児院内心肺停止の救命率向上を期待することができると考えられた。これを目的 として、パルスオキシメーターを用いた heart rate variability; HRV 解析による小児心肺停止 予測と合わせたデータ収集をさらに進め、最終年度研究で総括報告を行うこととした。 課題1: 小児「院内」「院外」心肺停止症 担者:清水直樹)において、わが国における 例登録基盤の確立に関する研究 小児 AED の効果的な普及法を検討するにあた っては、小児心原性心停止の国内疫学調査が 1−A. 研究目的 不可欠であると考えた。 平成 18−20 年度の厚生労働科学研究費補助 日本全国の小児心停止症例の疫学調査を目 金「循環器疾患等生活習慣疾病対策総合研究 的として、小児心肺蘇生レジストリの web 登 事業」 「自動体外式除細動器 AED を用いた心疾 録基盤を完成させた。昨年度は試験的に数施 患の救命率向上のための体制構築に関する研 設からのデータ入力と一部のデータ解析を行 究」 (研究代表者:丸川征四郎)の「小児心肺 い、様々な問題点が認識された。今年度はそ 停止例への AED 普及にかかわる研究」 (研究分 れらの解決を図り、システムの齟齬を解決し 清水 3 たうえで、全国展開の準備を整え、海外との 例であった。年齢は 0−31 歳(平均値 3.9 歳、 共同研究への展開に備えた。 中央値 1 歳)で、性別は、 男性 64 例(41.0%)、 女性 88 例(56.5%)、不詳/記載なし4例 小児においては MET(Medical Emergency (2.6%)であった。 Team)の重要性が再認識されたことから、MET 事例発生時の波形とその予後に関しての検 対応となった症例の登録フォームの作成にも 討を行ったところ、156 例中 39 例はデータ欠 着手した。 損のため解析対象となった症例は、117 例で、 また、成人領域(平成 19-21 年度厚生労働 科学研究費補助金 循環器疾患等生活習慣病 全体の生存退院率は 35%であった。脈拍が触 対策総合研究事業 「急性心筋梗塞症と脳卒 れない症例は 56 例(生存退院率 25%)、脈拍 中に対する超急性期診療体制の構築に関する は触れるが循環不全を伴う症例は 61 例(生存 研究」主任研究者野々木宏:国立循環器病セ 退院率 38%)で、脈拍は触れるが循環不全が ンター心臓血管内科)との連携も継続した。 ある症例の方が予後が良い結果となった。CPA なお、小児院外心肺停止の疫学調査につい 前の既往(基礎疾患)では、呼吸障害が最も ては、総務省ウツタイン全国調査データを利 多く(約 40%)、その他、心血管系の問題や、 用することで、別の研究スキームで進めるこ 中枢神経障害、先天奇形が続いた。心停止の ととなった (日本循環器学会 蘇生科学委員 直接の原因としは、循環不全(47%)が最も 会調査研究) 。 多く、呼吸不全、不整脈、代謝電解質異常の 順となっていた。 1−B. 発生時の状況は、目撃のある心停止が多く、 研究方法 昨年度は、対象施設 4 施設(国立成育医療 110 例(70.5%)、反対にコード発令なしが 32 センター、長野県立こども病院、静岡県立こ 例(20.5%)であったが、今回の登録施設は ども病院、兵庫県立こども病院)から小児心 すべて PICU を持つ小児病院であり、PICU で 肺蘇生レジストリに登録した。今年度はさら の発生が多いことに起因していると考えられ にデータ集積を重ね、登録されたデータ(2002 る。経過中に VF/VT になった症例は 28 例 年 3 月〜20010 年 12 月)を解析した。 (18%)、そのうち 18 例に除細動が行われて いた。 さらにデータの一部を成人主体のデータベ ースに登録し、その枠組みにおいて小児と成 自己心拍再開は 88 例(56.4%)で、発見か 人における違いを検討することは昨年度と同 ら循環再開までの時間は 1-144 分(平均 20.8 様である。 分、中央値 10 分)であった。 今年度は、データ収集のプロセスにおける Web 登録画面の主な改良点は、①必須項目 デ ー タ 欠 損 の 問 題 を 解 決 す る た め 、 we b (項目を入力していなければ、データの保存 登録画面に工夫を加え良質なデータが収集さ が行えない)を設定することによりデータの れやすい環境を整えた。また、入力に際して 欠損を少なくした。②時間軸の間違いを少な の解釈の相違が発生しないように、データ入 くするため、日付や時刻を自動計算で入力出 力ガイドのマニュアルも邦語で作成した。 来るようにした。③事例発症と時間経過が合 わないものに関しては、アラートを出す。④ 1−C. 予想される入力値から極端に外れた値に関し 結果 ては、確認のアラートを出す。といった点で 2002−2009 年のデータの集計、解析結果を ある。 添付に示す(第38回日本集中治療医学会学 術集会発表スライド)。登録された症例は 179 新しい登録画面を用いて、2010 年の症例の 例であったが、解析の対象となった症例胸骨 入力を依頼した(都立小児総合医療センター、 圧迫または除細動が実施された症例)は 156 静岡県立こども病院、長野県立こども病院、 清水 4 兵庫県立こども病院)。登録された症例は、44 は、各地域独自のデータを包括的に収集する 例。事例発生時の波形とその予後に関しての 作業に加えて総務省全国データの併用が望ま 検討を行ったところ、データ欠損はなく、44 しく、病院外心停止記録活用研究会との協力 例全てが解析対象となった。 体制を確立しつつある。次年度以降はこれを 解析を行った一部のデータの結果は、添付 基盤として、救急隊による小児への AED 使用 に示す。全体(44 例)の生存退院率は 51%と 状況に関する研究を進め、さらには小児病院 高く、脈拍が触れない症例は 13 例(生存退院 前救護に関する国際比較研究にもとづき、コ 率 62%)、脈拍はあるが循環不全を伴う症例が ンセンサス 2010 を前提とした提言と、遠隔シ 31 例(生存退院率 45%)であった。 ミュレーションシステムを含めた教育体制の 提言とをはかってゆきたい。 また、データの入力が一時保存のままで放 置されることのないよう、さらに未入力項目 を極力減らせるよう定期的にデータ管理を行 課題2: 小児に対する胸骨圧迫の強さと心 う方向とした。 肺蘇生の品質モニタリングに関する研究 また、Web 登録画面の改良が終わったと 2−A. ころで、対象施設を広げるにあたって、デー 研究目的 タ入力に関するマニュアル(添付)の作成を 平成 18−20 年度の厚生労働科学研究費補助 行い、不明点等を減らし、データの質を上げ 金「循環器疾患等生活習慣疾病対策総合研究 るよう努めた。 事業」 「自動体外式除細動器 AED を用いた心疾 患の救命率向上のための体制構築に関する研 1−D. 究」 (研究代表者:丸川征四郎)において、小 考察 児心肺蘇生における至適な胸骨圧迫の深さに 今回の研究から、登録 Web 画面の改良によ 関する検討を行った。 り、データの欠損が明らかに少なくなった。 1−8 歳の胸部 CT 画像から検討した結果より、 2010 年の結果は、2002−2009 年のデータと解 離があるが、今回は症例数も少なく、重複例 小児における至適な胸骨圧迫の深さは、 「胸の もみられたことが要因と考えられた。今後は 厚みの1/3」と考えられたが、その後行った 対象施設を拡大し、症例集積を行う予定であ 人形を用いた「胸骨圧迫の深さの検証」に関 る。 する研究では、実際の圧迫の深さは目標値よ さらにはデータ解析のためのソフト開発、 りも浅くなることが示された。以上2つの論 あるいはデータ解析の方法を明確にすること 文は、日本集中治療医学会雑誌に掲載された が必要であると考えられ、今後の課題として (日本集中治療医学会雑誌 2009;16:27-31、 残っている。 2010;17:173-177)。 昨年度は、1-8 歳の年齢範囲をひろげて、0 心停止の直接原因に関する分析の結果より、 小児では、循環不全、呼吸不全を経て心停止 歳から 15 歳までの胸部 CT 画像からの検討結 に至る経路が容易に推察される。それゆえ、 果に関して、引き続き解析を行った。 MET 導入による早期の介入が予後を改善させ 歳から 15 歳までの CT 画像から胸郭前後径を る可能性が期待される。 計測し、各年齢における胸郭前後径の平均値 0 MET 導入に際しては、研究課題3の heart を算出し、各年齢層(1歳未満、1−8 歳、8 rate variability; HRV を用いた小児心肺停 歳以上)における胸骨圧迫の指標を検討する 止予測と合わせて検討を進めることにより、 こととした。 今年度は、この結果をもってして国際蘇生 小児院内心肺停止の救命率向上を期待するこ 連絡委員会(ILCOR)の 2010 Consensus on とができると考えている。 Science なお、小児院外心停止の疫学研究について 清水 5 with Treatment Recommendation (CoSTR)に対して、国際的影響を与えた。 ま ける胸骨圧迫の至適な深さを胸郭前後径と た、わが国の JRC(日本版)ガイドライン 2010 1/3 であると考え、各年齢の胸郭前後径の 1/3 へ反映させることができた。 に相当する深さを算出した。算出されたデー タより、各年齢層(1歳未満、1−8 歳、8 歳以 現行のコンセンサス 2010 や各地域のガイ ドラインにおける小児の胸骨圧迫の深さの指 上)における適切な数値での指標を検討した。 標は「胸の厚みの 1/x」で示されている。そ 今年度は、これらの研究結果を ILCOR の国 の至適な深さは「胸の厚みの 1/3」と考えら 際会議、ならびに JRC(日本版)ガイドライ れるが、今後は、実際の現場における胸骨圧 ン作成合同委員会の場で発表し、CoSTR やガ 迫の質に関するモニタリングが必須であり、 イドライン作成への影響を与えた。 また、胸骨圧迫深度測定機器開発について その際には、成人同様の数値での指標が必要 も、各種企業との共同開発を始めた。 であると考えられ、各種医療機器の開発基盤 を整えた。 2−C. 2−B. 結果 0−15 歳の小児 447 例の内訳と、胸郭前後径 研究方法 (①)および胸骨後面-椎体前面間距離(②) 対象は、2002 年 3 月から 2008 年 8 月まで に国立成育医療センター(現国立成育医療研 の計測結果を、各年齢の身長・体重の平均値 究センター)で胸部 CT を施行した0歳から ならびに SD 値と共に Table 1 に示した。身 15 歳までの小児患者 3068 名。このうち胸郭 長・体重は各年齢標準値より小さい傾向がみ 内に病変を有するもの、胸郭の形態に影響を られたが、対象症例には血液腫瘍疾患等の全 及ぼす可能性のある基礎疾患を有するもの、 身消耗性疾患が含まれており、その影響も一 年齢および身長が各年齢の標準偏差から外れ 因と考えられた。 胸郭前後径の 1/2 ならびに 1/3 の深さで胸 るものを除外し、最終的に、447 例について 骨圧迫したと仮定して算出された、残存する 検討を行った。 計測対象 447 例の計測にあたっては、胸部 胸骨後面-椎体前面間距離を Fig. 2 に記載し CT 検査結果で乳頭線上に一致する断面の画 た。また、胸郭前後径の 1/2 ならびに 1/3 の 像を選択し、この画像上で胸郭前後径と胸骨 深さで圧迫したと仮定した際に、残存する胸 後面—椎体前面間距離を計測した。胸郭前後径 骨後面-椎体前面間距離が 0mm 未満および とは胸骨正中線上での皮膚表面から背面の皮 10mm 未満となる頻度を Table 2 に記載した。 膚表面までの距離とし(Fig. 1 ①)、胸骨後 次に、胸郭前後径とその 1/2 ならびに 1/3 面—椎体前面間距離とは、この正中線上での胸 に相当する深さの平均を計算した(Fig.3, 骨後面から椎体前面までの距離とした(Fig. Table 3)。さらに、1/3 に相当する深さに関 1 ②)。 しては、各年齢層(1歳未満、1−8 歳、8 歳以 更に、胸郭前後径の 1/2 ならびに 1/3 の深 上)でその分布を表に示した(Fig.4)。これ さで胸骨圧迫したと仮定し、その際に残存す らの結果より、胸骨圧迫の深さの目標値は、1 る胸骨後面-椎体前面間距離を①・②から 歳未満の乳児では 30±5mm(25-35mm)、1−8 各々推計して、年齢毎に解析した。また、胸 歳では 40±5mm(35-45mm)、8 歳以上では 50 郭前後径の 1/2 の深さで圧迫したと仮定した ±5mm(45-55mm)が適当であると考えられた。 際に、残存する胸骨後面-椎体前面間距離が 2−D. 0 mm 未満および 10 mm 未満となる頻度を算出 CoSTR 作成にあたり、胸骨圧迫の深さに した。これらの算出では胸郭の変形や組織の 関する話題は小児のみならず成人においても 圧縮性などは考慮していない。 大きくとりあげられた。その中では、指標を 次に、これまでの研究結果より、小児にお 清水 考察 6 価することを目的とする。 決めることも大切であるが、今後はその決め られた目標値に対して適切な圧迫が行われて 昨年度研究をふまえ、今年度はさらに症例 いるかどうかのモニタリングが重要視されて 数を蓄積し、最終年度の結論につなげること いる。 とする。 CoSTR2005 においては、胸骨圧迫の深さは、 3−B. 成人では「1.5-2 インチ(38−51mm)」 、「小児 研究方法 パルスオキシメーター(OxiMax®、N-600x) では胸の厚みの 1/3」と推奨されていたが、 議論の結果、CoSTR2010 では、 「乳児では胸の によるプレチスモグラフより算出された心拍 厚さの少なくとも 1/3、あるいは 4cm、小児で 信号を、心電図信号とを合わせて は胸の厚さの少なくとも 1/3、あるいは 5cm」 Memcalc/Tonam®(GMS Co., Ltd.)で両者同時 と改定された。 に心拍変動解析を行う。その両者の相関関係 今回の研究では、心肺蘇生時に胸骨圧迫の 評価するべく、健常者を対象とした研究設計 深さのモニタリングを行うことを前提として、 を行う。 Memcal®とは、時系列解析システムの一つで 小児においても数値での指標を検討した。そ の結果、その目標値は、1 歳未満の乳児では 以下のような特徴を有する。 30± 5mm( 25-35mm )、 1− 8 歳 で は 40± 5mm 時系列として生体情報を処理解析する場合、 (35-45mm)、8 歳以上では 50±5mm(45-55mm) 時間ドメインのみではその解析は不十分で、 が適当であると考えられた。この結果より、 その解析には周波数ドメインを用いて、出力 日本人小児に対して CoSTR2010 をそのまま適 機序の解明を行うことが重要である。そのた 応することは圧迫が深くなりすぎる可能性が めに最大エントロピー法(Maximum Entropy 示唆され、JRC ガイドラインでは「胸の厚さ Method ; mem)を用いた Memcal®は、生体情 の約1/3」が推奨されることとなった。 報を有限長離散データおよび特性ゆらぎを有 今後は、この目標値を使って、現在成人に する多重周期構造としたみた場合に、高い分 使用されている心肺蘇生モニタリング機器を 解能をもつ時系列解析方法として確立した方 小児に対して応用可能であるかの検討や、小 法である。従って、従来の FFT や RA といった 児に使用出来るモニタリングシステムの開発 解析法よりも有用といわれている。 が必要であると考えている。 3−C. 研究課題3: Heart rate variability; HRV 小児 22 症例で心電図およびパルスオキシ を用いた小児心肺停止予測に関する研究 メーターの 2 チャンネルで HRV 解析を行った (後述 3−A. 結果 研究目的 研究結果 頁 1-5)。 パルスオキシメーターは HRV 解析を行うこと 小児においてパルスオキシメーターを用い ができる可能性が高いと考えられ、今後心肺 た経皮酸素飽和度測定は、その非侵襲性から 停止予測モニターとして有効である可能性が 広く適応を有した生体情報モニターとして認 示唆された。 められている。 一 方 で 、 心 拍 変 動 ( Heart rate 3−D. variability ; HRV)が、成人の突然死を予測 考察 はじめに、パルスオキシメーターで得られ する因子として注目を集めている。 た PP データおよび心電図で得られた RR デー この二つの方法を用いて、パルスオキシメ タそれぞれの外れ値に対して外れ値処理を ーターから HRV 解析可能か、またそれが小児 Memcalc/Win で施行した。その上で双方の除 心肺停止の予測パラメーターとなりうるか評 外データがない部分で 300sec をセグメント 清水 7 長として解析を行った。このような処理の上 る小児用自動胸骨圧迫装置と、その品質モニ では、上記の結果を得ることができ、今後パ タリング器機開発を開始した。 ルスオキシメトリーの波形取得改善が得られ れば、より一層心肺停止予測モニターとして 最終年度にはこれらを基盤として、PBLS 指 の有用性が示していけることと考えられた。 導対象となる市民への啓蒙方略、救急隊によ る小児への AED 使用状況や AED ホームユース に関する研究を進め、さらに小児病院前救護 E.結論 小児「院内」心停止症例登録基盤について に関する国際比較研究にもとづき、コンセン は、小児 ECPR 症例登録をも包括するかたちで サス 2010 を前提とした遠隔シミュレーショ 国内データ収集基盤がほぼ整ったが、昨年度 ンシステムを含めた教育体制教育体制と併せ 研究において、データクリーニングと解析の た提言をはかってゆく。 プロセスに課題が残った。 小児心停止の直接原因に関する分析の結果 より、小児では、循環不全、呼吸不全を経て 今年度はこの点を様々な方略で解決し、東 収集 心停止に至る経路が容易に推察される。それ に参画することでデータ規模を飛躍的に拡張 ゆえ、MET 導入による早期の介入が予後を改 し、最終的には小児集中治療ネットワークに 善させる可能性が期待された。その際には、 重畳することで、全国症例登録基盤の完成に heart rate variability; HRV を用いた小児 向かう準備も整った。今後は、海外との共同 心肺停止予測と合わせて検討を進めることに 研究へとつなげたい。 より、小児院内心肺停止の救命率向上を期待 京都立小児総合医療センターもデータ することができると考えた。 小児「院外」心停止症例登録基盤について は、各地域独自のデータを包括的に収集する これを目的として、パルスオキシメーター 作業を継続的に進める努力に加え、総務省全 を用いた heart rate variability; HRV 解析 国データの併用が望ましいため、別の研究ス による小児心肺停止予測と合わせたデータ収 キームで実施することとなった。 集をさらに進め、最終年度研究で総括報告を 行うこととした。 小児心肺蘇生における胸骨圧迫の新しい指 F.研究危険情報 標として、新たな絶対値指標を提唱し、ガイ なし ドライン 2010 作成過程において国際的貢献 を果たした。これらの目標値に対して実際の 圧迫の深さをモニタリングすることが必須で G.研究発表 あると考えられ、それを可能とする小児用の Comparison of North American and Japanese 各種器機開発に結びつける研究が必要とされ pediatric chest depths during simulated た。 chest compressions using computer Care Medicine tomography Society このための具体的数値として、1 歳未満の of Critical 乳児では 30±5mm(25-35mm)、1−8 歳では 40 Scientific Meeting, Miami, USA, January ± 5mm ( 35-45mm )、 8 歳 以 上 で は 50 ± 5mm 2010 (45-55mm)を提唱した。これらの目標値に対 (Braga M) して実際の圧迫の深さをモニタリングするこ 小児の心肺蘇生 〜予防から PCAS まで〜 とが必須であると考えられ、それを可能とす 清水 8 日本集中治療医学会学術総会(第38回)、横 栃木、2010 年 9 月【シンポジウム】 浜、2011 年2月【シンポジウム】 (演者:新津健裕) (演者:清水直樹) 公表されている Work Sheet について 新生児・小児集中治療委員会 日本蘇生科学シンポジウム(第 3 回)、 委員会報告(3) 小児の院内心停止症例レジストリ 埼玉、2010 年 9 月 日本集中 (演者:黒澤茶茶) 治療医学会新生児小児集中治療委員会・ JSICM-PICU network・小児院内心停止レジス トリグループ 小児心肺蘇生レジストリ始動 〜日本からの 日本集中治療医学会学術総会(第38回)、横 エビデンス創出に向けて〜 浜、2011 年2月【シンポジウム】 日本小児科学会総会(第 113 回)、 (演者:黒澤茶茶) 岩手、2010 年 4 月 (演者:黒澤茶茶) 東京都立小児総合医療センターにおける小児 ECMO 管理の展開 ガイドライン 2010 から 2015 へ 〜日本から 日本集中治療医学会学術総会(第 38 回)、 の情報発信をめざして〜 横浜、2011 年 2 月【シンポジウム】 日本小児科学会総会(第 113 回)、 (演者:本間順) 岩手、2010 年 4 月【シンポジウム】 (演者:新田雅彦) 開院 10 ヶ月間の院内蘇生の検討 千葉集中治療研究会、 ガイドライン 2005 から 2010 へ 〜科学が示 千葉、2011 年 1 月 す新しいガイドライン〜 (演者:本間順) 日本小児科学会総会(第 113 回)、 岩手、2010 年 4 月【シンポジウム・座長】 (演者:太田邦雄) 「小児蘇生 2010 からの展望」 小児心肺蘇生法の品質改善に関わる研究 日本蘇生学会(第 29 回大会)、 心肺蘇生に関わる Consensus 2010 最新の話 栃木、2010 年 9 月【シンポジウム】 題 (演者:黒澤茶茶) 日本集中治療医学会総会(第 37 回)、広島、 2010 年 3 月【シンポジウム】 (演者:黒澤茶茶) 小児蘇生の疫学:院内心停止 日本蘇生学会(第 29 回大会)、 栃木、2010 年 9 月【シンポジウム】 Domestic and international comparison of (演者:本間順) pediatric vs. adult in-hospital cardiac わが国の小児蘇生疫学:小児院外心停止の現 arrest 状と課題 日本循環器学会総会(第 74 回)、 日本蘇生学会(第 29 回大会)、 京都、2010 年 3 月 栃木、2010 年 9 月【シンポジウム】 (演者:黒澤茶茶) (演者:新田雅彦) 黒澤茶茶: 小児蘇生の新しい潮流 新しい小児救急医学に向けた変革小児救命・ 日本蘇生学会(第 29 回大会)、 集中治療医学としての再定義:蘇生 清水 9 救急医学、2010; 34(9): 1051-54 H.知的財産権の出願、登録情報 なし 清水 10 代表記入者名 3.事例 4.直接原因 2009/08/11 14:25 身長 白人 女性 日 その他 療養型リハビリ施設 分 尿路感染症 外傷 マグネシウムの使用 前子癇 子癇 糖尿病 内診 介助分 骨盤位 外診 自然経腟分 頭位 胎位 様式 胎児モニタリング 分 経過 不詳/記載なし 帝王切開 不詳/記載なし 計算 時刻記載なし カレンダー その他 不詳 未施行 麻薬依存症またはその治療中 覚醒剤の使用 コカインの使用 アルコール摂取 実施されたが方法が不詳 出後4時間以内の麻薬投与 絨毛膜羊膜炎 母体感染症 母体GBS陽性 なし 妊娠高血圧 あり 帝王切開 特記事項なし 母体の状態 母体の妊婦検診履歴 なし/記載なし 不詳/記載なし 不詳/記載なし/適応外(新生児) その他(以前の入院時) 記載なし 年齢不詳/記載なし 00:00 いいえ 出生日不詳/記載なし 1.2 新生児(入院中の出生、または他院出生後の搬送) 詳細 入院時のCPC/PCPCスコア 院外(今回の入院の原因) 以前の心肺蘇生履歴(該当項目全てをチェック) ホスピス(在宅を含む) 精神医療/福祉施設 身長不詳/記載なし 体重不詳/記載なし 新生児(入院中の出生) cm その他 黒人 推定年齢 急性期医療施設/病院 kg 53 日本人以外の東洋人 日本人 男性 2.172 0 出生時刻(はいの場合のみ記載) はい 自宅 主要な居住先 体重 * 検索画面 人種 性別 * 入院時年齢 * ログアウト 一時保存 管理ユーザー ユーザ名 入院中の出生(または他院出生後の搬送) 2009/08/11 出生日 * カレンダー いいえ/不詳(そうであれば登録適応外) 時刻記載なし はい ※外来患者は外来登録あるいは救急外来受け入れ時刻を記載 静岡県立こども病院 入院日 * 1.1 入院時データ 当事例において、胸骨圧迫または除細動を実施された * 病院名 8.CPRの質の評価と問題点 7.事例の予後 6.治療 1.0 事例 関連データ2 5.事例発生時の状態 ※フリーコメント欄(最大20文字) 施設毎通し番号など。 sch2010-2 関連データ1 2.事例発生前の状態 ※入力データを修正する場合に検索項目として利用できます。 ※システムが自動的に発番する管理番号です。(入力、修正は行えません) 00000003-2011-10 管理コード データ管理 1.入退院時データ CPA 不詳/記載なし 多胎妊娠 先天奇形(非心疾患) 退院時転帰 * 詳細 退院時のCPC/PCPCスコア その他 不詳/記載なし 不詳/記載なし 精神医療/福祉施設 療養型リハビリ施設 時刻記載なし なし 時刻記載なし ホスピス(在宅を含む) なし その他 肩甲難産 前置胎盤 転帰未決(90日以上経過) 急性期医療施設/病院 あり 2010/02/27 あり 07:18 自宅 退院先 生存退院の場合 生命維持療法の終了の有無 死亡症例の場合 DNARの日時 入院中のDNARの有無 退院(死亡)日時 * 転院 胎盤早期剥離 一過性徐脈 2010/03/01 臍帯巻絡 臍帯脱出 1.3 退院時データ 備考 生存 胎便吸引 チアノーゼ性心疾患 死亡 胎児水腫 非チアノーゼ性心疾患 特記事項なし 出生時に存在した特殊な状況(該当項目を全てチェック) 臍帯血pH 不詳/記載なし 不詳/記載なし 2 1 APGAR(5分値) 不詳/記載なし 37 推定在胎週数 APGAR(1分値) カレンダー カレンダー 検索画面 ログアウト 一時保存 管理ユーザー ユーザ名 静岡県立こども病院 病院名 8.CPRの質の評価と問題点 7.事例の予後 6.治療 5.事例発生時の状態 4.直接原因 3.事例 2.事例発生前の状態 1.入退院時データ CPA その他 ペーシング その他 不詳 不詳 不詳 17:47 2010/02/12 / 呼吸機能障害 急性脳伷塞、急性脳出血 脳伷塞以外の急性中枢神経障害 慢性的な中枢神経機能低下 肝機能障害 腎機能障害 悪性腫瘍(固形転移または血液腫瘍) 心筋伷塞/狭心症(入院時初発) 心筋伷塞/狭心症(入院前発症) 鬱血性心不全(入院時初発) 鬱血性心不全(入院前発症) 非チアノーゼ性心奇形 チアノーゼ性心奇形 弁膜症 心筋症 外傷 AIDS(HIV陽性なら) HIV陽性 敗血症 代謝疾患/電解質異常 糖尿病 94 94 SpO2(%) TAA/AAA 大動脈解離 肺塞栓 36.5 36.8 なし PartA* 胸骨圧迫や除細動の必要性が最初に認識された時、すでに施工されていた処置(該当するもの全て選択) 2.3 すでに施行されていた処置 先天奇形(心奇形を除く) 肺炎 不整脈(洞性頻拍を除く) 21 26 呼吸(回/分) 低血圧、循環不全 特記事項なし CPA前の既往 * / 35 / 38 カレンダー 65 53 血圧(mmHg) / 112 103 心拍(回/分) カレンダー カレンダー カレンダー 2.2 CPA前の既往(該当項目を全てチェック) 20:51 日時 2010/02/12 体温(℃) 時刻記載なし カレンダー バイタルサイン(CPA前4時間以内に記録された全てのもの、もしくは最後に記載されたもの) 徐脈 頻脈 洞調律 確認時心電図波形 自発呼吸なし(挿管中を含 む) 意識混濁(呼吸・循環あり) 意識清明 意識レベル 鎮静中 その他 病棟内(廊下) 外来(緊急・専門・総合) 検査室 ラウンド(病室) 確認方法 急変前最後の確認時間 分前 いいえ はい 鎮静や全身麻酔後24時間以内のCPA 0 いいえ はい 救急外来受診(滞在)後24時間以内のCPA 急変前の患者:確認方法 いいえ いいえ はい はい 麻酔観察室(PACU)退室後24時間以内のCPA はいの場合、ICU退室日時 ICU退室後のCPA 2.1 心肺停止(CPA)前の状況 (詳細) 他の抗不整脈薬 アドレナリン(エピネフリン) プロカインアミド (詳細) その他 フェニレフリン ノルアドレナリン ニトログリセリン(ノルエピネフ リン) ドパミン( > 3γ) ドブタミン 血管作動薬の持続投与 パルスオキシメーター リドカイン アミオダロン 抗不整脈薬の持続投与 なし PartB ペースメーカー 気管切開チューブ 無呼吸/徐拍 無呼吸 侵襲的気道確保 気管チューブ 心電図 モニタリング 動脈ライン 人工呼吸/補助呼吸(CPAP/BiPAP含む) PGI2製剤 (詳細) 他に施行されていた処置 胃管挿入 酸素投与(鼻カヌラ,マスク,フード, テント) 鎮静薬/麻薬持続投与(PCA含む) 肺動脈カテーテル プロスタグランジン持続静注(新生児) 大動脈バルーンパンピング 埋込型除細動器(ICD) 一酸化窒素吸入療法(新生児) 透析/血液浄化(使用中) 鎮静 胸腔ドレーン 処置 臍帯動脈路 臍帯静脈路 骨髄路 中心静脈路 末梢静脈路 薬剤投与経路 21:47 新生児 精神医療/福祉施設入院中 時刻記載なし 記載なし 時刻記載なし 時刻記載なし 時刻記載なし 記載なし そのコードは、胸骨圧迫または除細動の必要性が認識される前に発令されたものか? そうであれば発令日時 いいえ 14:25 2009/08/11 心電図モニターが装着された日時 はい 21:47 2010/02/12 医師が到着した日時 院内蘇生コードが発令されたか? 21:47 2010/02/12 いいえ 小児ICU (PICU) 手術室 新生児室 目撃の有無 * はい はい いいえ カレンダー カレンダー カレンダー カレンダー 不詳/記載なし 一般病棟 応援要請時刻 集中治療 その他 新生児ICU (NICU) 病棟内廊下 トイレ 救急外来 室 検査室(心カテ室を除く) 分 記載なし 重症観察室 (Step-down Unit) 日帰り手術室 成人ICU 心臓カテーテル検査室 リハビリ、介護、精神病棟 麻酔後回復室 計算 成人CCU (Coronary Care Unit) 外来 検索画面 事例発生場所(名称) 年齢不詳/記載なし 事例発生場所(領域) * 推定年齢 カレンダー その他(見舞い客,従業員を含む) 外傷 産科 外科系(心疾患以外) 療養型リハビリ施設入院中 見舞い客,従業員 外科系(心疾患) 入院中 内科系(心疾患以外) 救急外来 ヵ月 内科系(心疾患) 疾患区分 * 6 時刻記載なし 一般外来 対象区分 * 年齢(事例発生時) * 2010/02/12 胸骨圧迫(または発見時の心電図波形がVF/pulseless VTの際は除細動)が必要と認識された最初の日時 * 3.1 事例 ログアウト 一時保存 管理ユーザー ユーザ名 静岡県立こども病院 病院名 8.CPRの質の評価と問題点 7.事例の予後 6.治療 5.事例発生時の状態 4.直接原因 3.事例 2.事例発生前の状態 1.入退院時データ CPA 検索画面 ログアウト 一時保存 管理ユーザー ユーザ名 静岡県立こども病院 病院名 8.CPRの質の評価と問題点 7.事例の予後 6.治療 5.事例発生時の状態 4.直接原因 3.事例 2.事例発生前の状態 1.入退院時データ CPA イオン化Ca < 1mmol/L または < 4mg/dL ナトリウム < 125 mEq/L マグネシウム > 4 mEq/L 呼吸不全 気胸 鎮静 低体温 急性脳伷塞、急性脳出血 痙攣重積 人工呼吸器の作動異常 侵襲的エアウエイの位置異常 侵襲的エアウエイの閉塞(LMA含む) エアウエイの閉塞 中毒 薬物過量投与 薬物副作用 中毒の問題 カリウム > 6.5 mEq/L 血糖 < 40mg/dl 肺塞栓 肺水腫 アシドーシス(pH < 7.2,動脈,静脈,毛細血管) 心筋虚血(急性冠症候群)/心筋伷塞 代謝異常/電解質異常 不整脈(洞性頻拍を除く) 低血圧、循環不全 不詳/記載なし 4.1 直接の原因(該当項目全てをチェック) 検索画面 ログアウト 一時保存 管理ユーザー ユーザ名 静岡県立こども病院 病院名 8.CPRの質の評価と問題点 7.事例の予後 6.治療 5.事例発生時の状態 4.直接原因 3.事例 2.事例発生前の状態 1.入退院時データ CPA いいえ 洞調律(洞性頻拍を含む) 脈のある心室頻拍(VT) 徐脈 ペースメーカー調律 いいえ 不詳/記載なし いいえ 死戦期呼吸 補助換気 いいえ 5.3 換気 日時 除細動の回数 カレンダー カレンダー カレンダー カレンダー カレンダー AEDが使用された日時 除細動器の種 類/モード 自動体外式除細動器(AED)は使用されたか * 除細動は行われたか。 * 波形 心室細動あるいは無脈性心室頻拍が最初にみられた日時 はい 出力(J) いいえ はい 時刻記載なし 記載なし 記載なし 脈拍の再開は 除細動と胸骨圧迫の後の心 電図波形(1項目に○を付 け、詳細はop-defs参照) カレンダー カレンダー カレンダー 開胸心臓マッサージ 記載なし 時刻記載なし 不詳/記載なし いいえ 不詳/記載なし 不詳/記載なし カレンダー 時刻記載なし はい 記載なし 今回の事例の経過中に心室細動あるいは無脈性心室頻拍はみられたか * 5.2 自動体外式除細動器と心室細動/無脈性心室頻拍 はい 脈拍のある患者が、胸骨圧迫が必要となった際に、呼吸があったか はい 脈拍のある患者が、胸骨圧迫が必要となった際に、意識があったか 上室性頻脈(SVT) 頻脈性心室固有調律(AIVR) 当事例で脈拍のある患者に胸骨圧迫が開始された際の心電図波形 脈拍はあるが胸骨圧迫が行われた場合 無脈性心室頻拍(無脈性VT) 不詳/記載なし 時刻記載なし 記載なし 無脈性電気活動(PEA) いいえ 21:47 機械的なピストン式CPR いいえ,事前指示により 心室細動(VF) はい 2010/02/12 標準の胸骨圧迫 はい 心静止 脈拍がなかった際の最初の心電図波形 最初に脈拍がなくなった日時 蘇生中のいずれかに脈拍がなかった場合 Impedance Threshold Deviceが使用されたか 胸骨圧迫が開始された日時 * 胸骨圧迫の手段 胸骨圧迫(開胸心マを含む)を受けたか * 脈はあるが循環不良があり、胸骨圧迫が必要であったが、一貫して脈拍がなくなることはなかった 脈拍はあるが循環不良があり、胸骨圧迫が必要であったが、その後、脈拍がなくなった 脈拍がなく、胸骨圧迫または除細動が必要であった 当事例に該当するもの * 5.1 発見時の状態 なし 不詳/記載なし 呼気終末CO2検知器 (詳細) なし/記載なし 施行されているが、方法が不詳/記載なし その他 レントゲン写真(蘇生事象終了前に結果が出ているもの) ファイバー喉頭鏡 食道挿管検知器 気管切開チューブ その他の侵襲的な気道確保/換気 聴診 ラリンゲアルマスクエアウェイ 侵襲的な気道確保後の位置確認の方法(該当項目全てをチェック) 時刻記載なし カレンダー 侵襲的な気道確保(再確保)が行われた日時 いいえ、行われなかった(不成功例も含む) いいえ、非侵襲的な治療に反応した いいえ、事前指示により いいえ、すでに確保済み はい、侵襲的な気道確保が再確保で成功した はい、侵襲的な気道確保が1回目で成功した 蘇生中に侵襲的な気道確保(あるいは再確保)が行われたか 気管チューブ 侵襲的な気道確保用具 (詳細) その他の非侵襲的な換気 口対口 口対バリアデバイス マスクおよび/あるいはNasal CPAP/BiPAP バッグバルブマスク 非侵襲的な用具/補助換気(該当項目全てをチェック) あり 換気/気道確保の種類 検索画面 ログアウト 一時保存 管理ユーザー ユーザ名 静岡県立こども病院 病院名 8.CPRの質の評価と問題点 7.事例の予後 6.治療 5.事例発生時の状態 4.直接原因 3.事例 2.事例発生前の状態 1.入退院時データ CPA 記載なし 気管/気管切開チューブ 記載なし 気管/気管切開チューブ 回 単位 バゾプレッシンの投与量 * いいえ 記載なし 不詳/記載なし 時刻記載なし カレンダー cc of 1:10000 OR 不詳/記載なし 時刻記載なし カレンダー 記載なし 胸腔 刺(針で) 輸血 人工心肺/体外循環を使用したCPR(ECPR) 中心静脈ライン確保 胸腔ドレーン挿入 心エコー 氷で頭部を冷却 なし(下記の選択肢をよく確認すること) 6.3 非薬物的介入 その他の非薬物的介入 ペースメーカー、経皮的 ペースメーカー、経皮的経静脈的または心外膜 心嚢 刺 胸腔 刺 気管切開/輪状甲状間膜切開(今回の蘇生中に) その他の薬剤的介入 その他のアルカリ化剤 アトロピン 塩化カルシウム/グルコン酸カルシウム デキストロースボーラス投与 インスリン併用デキストロースボーラス投与 循環血液量増加のための輸液ボーラス投与 グリコピロレート その他の抗不整脈薬 硫酸マグネシウム アドレナリン(ネピネフリン)とバゾプレッシンのボーラス投与以外 神経筋遮断剤/筋弛緩剤 の強心薬 プロスタグランジンE1 ドブタミン 拮抗薬(ナロキソン、フルマゼニル、ネオスチグミ ドパミン( > 3γ ) ン等) ノルアドレナリン(ノルネルエピネフリン) 鎮静/導入薬 フェニレフリン 炭酸水素ナトリウム その他の強心薬 THAM(アルカリ化剤) 抗不整脈薬 アデノシン/Adenocard アミオダロン/Cordarone リドカイン プロカインアミド なし(下記の選択肢をよく確認すること) 6.2 その他の薬剤的介入 (蘇生時に開始、あるいは事前に開始されていて蘇生中も継続されたものは全て選択) 回 はい OR cc of 1:1000 mg. いいえ 不詳/記載なし はい 投与回数 * 初回静脈内/骨髄内ボーラス投与の日時 * その他 静脈内/骨髄内 投与経路(該当項目全てをチェック) * バゾプレッシンのボーラス投与は行われたか。 * 静脈内/骨髄内投与されたアドレナリンの最大量 * 投与回数 * 初回静脈内/骨髄内ボーラス投与の日時 * その他 静脈内/骨髄内 投与経路(該当項目全てをチェック) * アドレナリンのボーラス投与は行われたか * 6.1 アドレナリン/バゾプレッシン 検索画面 ログアウト 一時保存 管理ユーザー ユーザ名 静岡県立こども病院 病院名 8.CPRの質の評価と問題点 7.事例の予後 6.治療 5.事例発生時の状態 4.直接原因 3.事例 2.事例発生前の状態 1.入退院時データ CPA いいえ ℃ 37.2 最高 はい 皮膚 皮膚 カレンダー カレンダー 時刻記載なし カレンダー 時刻記載なし カレンダー 不詳/記載なし 不詳/記載なし mg/dl 最高 時刻記載なし カレンダー 時刻記載なし カレンダー mg/dl 記録された日時 06:39 最低 血糖値 2010/02/13 時刻記載なし 時刻記載なし 記載なし 記録された日時 01:21 記載なし 21:47 21:47 2010/02/13 いいえ 2010/02/12 2010/02/12 測定部位(運用上の定義参照) 循環再開後24時間以内の最低/最高血糖値 ℃ 36 最低 体温 循環再開後24時間以内の最低/最高体温 循環再開後に低体温療法は開始されたか 7.2 蘇生後管理 循環再開した(20分以上持続) あるいは蘇生努力が中止された日時 * 死亡-家族からの中止 死亡-医学的理由 死亡-蘇生努力を中止、循環の再開なし 死亡-事前指示 生存-循環再開 蘇生終了の理由 * 最初の循環再開日時 * はい 胸骨圧迫なしに循環の再開の記録があるか(触診、聴診、ドップラー、動脈圧波形、血圧測定による脈拍/心拍再開の確認) * 7.1 事例の予後 コメント 利用上の問題 機器 ALS/PALS プロトコールからの逸脱 機能 その他(コメント欄に詳細記載) その他(コメント欄に詳細記載) その他(コメント欄に詳細記載) 薬剤/プロトコールについての知識 NRP メンバーが多すぎる 機器に関する知識 役割に関する知識 チームの監修 リーダー決定の遅延 リーダーシップ その他(コメント欄に詳細記載) 選択 投与量 投与経路 遅延 薬剤投与経路(血管確保) 検索画面 ログアウト 確認画面表示 一時保存 管理ユーザー ユーザ名 静岡県立こども病院 病院名 8.CPRの質の評価と問題点 7.事例の予後 6.治療 5.事例発生時の状態 4.直接原因 3.事例 2.事例発生前の状態 1.入退院時データ CPA はい はい 感染防御 いいえ 記載なし いいえ 記載なし 記載なし 記載なし 記載なし 記載なし 記載なし 遅延 病院全体へ蘇生コードを呼びかける その他(コメント欄に詳細記載) 薬剤投与経路の記載なし その他のサインの不備 記載不備 初期の心電図所見の記載なし 刺 機器(除細動器)の故障 指示なしに行われている 指示されているが、行われていない その他(コメント欄に詳細記載) 開始の遅延、患者への除細動器のアクセスの問題 開始の遅延、パッドあるいはパドルの位置の問題 その他(コメント欄に詳細記載) 開始の遅延、蘇生者が除細動を行えない 背板なし 不詳/記載なし 出力レベルが推奨されているよりも低い/高い 除細動 遅延 胸骨圧迫 その他(コメント欄に詳細記載) 漏出/接続不良 予期しない動脈 遅延 薬剤投与経路(血管確保) その他(コメント欄に詳細記載) 複数回の気管挿管の試み → 気管挿管の回数 気管挿管を試みたが、不成功 挿管チューブの位置異常の認識遅延 遅延 気道確保に関連した誤嚥 ポケベル・PHS等の問題 その他(コメント欄に詳細記載) チームメンバー全員には行われなかった(コメント欄に詳細記載) 記載なし コードチームリーダーのコードシートへのサインなし 気道 いいえ いいえ いいえ いいえ いいえ いいえ 換気回数は挿管チューブの位置確認の時間を除いて10/分(小児は20/分)を超えていたか 8.2 蘇生関連事例と問題点 記録 はい はい はい はい はい はい CPR中、侵襲的な気道確保のような処置のために胸骨圧迫が15秒以上(新生児では20秒以上)中断されたか CPR中、圧迫が10秒以上中断されたか CPR中、圧迫の速度は100/分を維持していたか もし使用されていれば 胸骨圧迫の質の評価のために道具あるいは技術が使用されたか 動脈ラインの拡張期血圧は胸骨圧迫の質の評価のために測定されたか もし測定されていれば、呼気終末CO2は>10mmHgに保たれていたか 呼気終末CO2はCPRの質の評価のために持続的に測定されていたか 8.1 CPRの質 コメント 利用上の問題 機器 ALS/PALS プロトコールからの逸脱 機能 その他(コメント欄に詳細記載) その他(コメント欄に詳細記載) その他(コメント欄に詳細記載) 薬剤/プロトコールについての知識 NRP メンバーが多すぎる 機器に関する知識 役割に関する知識 チームの監修 リーダー決定の遅延 リーダーシップ その他(コメント欄に詳細記載) 選択 投与量 投与経路 遅延 薬剤投与経路(血管確保) 11.5.31 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 第38回日本集中治療医学会 シンポジウム4 背景 「新生児・小児集中治療委員会 委員会報告」 小児の院内心肺停止症例 レジストリ • 小児重症患者の集約化の遅れと治療戦略コンセンサ スの不足が指摘され、各種症例登録基盤の必要性を 認識 日本集中治療医学会新生児小児集中治療委員会 JSICM-PICU network・小児院内心肺停止レジストリグループ 黒澤茶茶1), 2), 3) 清水直樹2), 3) 本間順2) 植田育也4) 志馬伸朗5) 中川聡6) 丸川征四郎7) 1) 静岡県立こども病院救急総合診療科 2) 東京都立小児総合医療センター 救命・集中治療部 3) 国立成育医療研究センター研究所成育政策科学研究部 4) 静岡県立こども病院小児集中治療科 5) 京都府立大学集中治療部 6) 国立成育医療研究センター手術・集中治療部 7) 医誠会病院 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama • 厚生労働科学研究 「AEDを用いた心疾患の救命率 向上のための体制の構築に関する研究(丸川班)」 「小児心肺停止例へのAED普及にかかわる研究(清 水分担班)」の枠組みの中で、小児心肺蘇生レジスト リの構築を検討 • 一昨年、本学会において、「データベース構築・小児 心肺蘇生レジストリ」 を報告 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 小児心肺停止症例レジストリ 本システムとJ-RCPR・NRCPRの関係 日本語Web入力 • 米国を中心に展開する NRCPR (National registry of Cardiopulmonary Resuscitation) に基づくレジストリの 登録項目を選択 • 登録作業はWeb上で展開 • 全国からの症例集積が必要であり、日本集中治療医学会 新生児小児集中治療委員会JSICM-PICU networkと連携 • 国内の院内心停止登録システムである J-RCPR (Japanese registry of Cardiopulmonary Resuscitation) (厚生労働 科学研究 野々木班)=成人領域との連携 わが国固有の 薬剤・医療制度 を加味し、 ニーズに応じた データマイニング 必要項目を 自動出力 国内レポート 作成と配布 自施設データ 抽出可能 • NRCPR=国際的な連携 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 各施設からの症例登録開始(2008年 NRCPR quarterly report J-RCPR The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 結果:症例情報 ) *期間:2002年3月∼2009年12月 度数 日本小児総合医療施設(29施設) 179 総登録データ 156 胸骨圧迫と/または除細動を実施された症例 入院時データ 長野県立こども病院 都立小児総合医療センター (2010年3月 ) 国立成育医療研究センター 静岡県立こども病院 兵庫県立こども病院 英訳レポート自動出力 (NRCPR data collection form) 平均 中央値 年齢(歳) 3.9 体重(kg) 13.4 85.1 身長(cm) 入院時データ 性別 不詳/記載なし 度数 パーセント 4 2.6 最小値 最大値 標準偏差 1 0 31 6.44 7.5 0.742 64.5 14.94 70 36.7 169 39.78 入院時:主な居住先 度数 パーセント 73 46.8 男性 64 41.0 急性期医療施設/病院 28 18.0 女性 88 56.5 新生児(院内出生) 26 16.7 2 1.3 12 7.7 15 9.6 人種 不詳/記載なし 東洋人 6 150 自宅 3.8 療養型リハビリ施設 96.2 不詳/記載なし 不明 1 11.5.31 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama Modified Utstein Template (1) 結果:症例情報 退院時データ 度数 パーセント 死亡 102 生存 41 転帰未決(90日以上) 6 不明 7 退院時:退院先 65.4 パーセント 4/41 9.8 4 3/41 5 4/41 0/41 0 22/41 53.7 70.7 6 12.2 不明 5/41 療養型リハビリ施設 2/41 4.9 不明 5/41 12.2 12.2 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama *Insufficient record (n=39, 25%) was excluded Pulseless 56 % Disch. Alive 25 % 7.3 9.8 % Disch. Alive 25 % PEA 16 % Disch. Alive 22 % Asystole 22 % Disch. Alive 17% Unkown 17 % Disch. Alive 40 % Poor Perfusion, Pulse Present 61 % Disch. Alive 38 % Bradycardia 48 % Disch. Alive 35 % Other Rhythms 11 % Disch. Alive 45 % Unkown 2 % Disch. Alive 0% 院内心停止症例:2002年3月∼2009年12月 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 結果:CPA前の状況 CPA前の既往(基礎疾患) パーセント 12 7.7 4 2.56 救急外来受診(滞在)24時間以内のCPA 8 5.13 鎮静や全身麻酔後24時間以内のCPA 23 14.7 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 結果:事例 発生場所 35 % 8 (%) 度数 麻酔観察室退室後24時間以内のCPA % Disch. Alive VF/Pulseless VT 結果:CPA前の状況 ICU退室後のCPA 117 (156*) 7.3 5/41 急性期医療施設/病院 Total Cardiopulmonary Index Events 41 3/41 4.5 2 3 度数 パーセント 29/41 自宅 度数 26.3 生存退院 3.9 1 41 生存退院 退院時: CPC/PCPC 結果:原因 (%) 直接の原因 (%) 2 11.5.31 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 結果:発生時の状況 平均 目撃の有無 度数 パーセント 110 あり なし/記載なし 32 不明 14 最小値 0.37 発見から胸骨圧迫までの時間(分) 結果:発生時の状況 最大値 0 標準偏差 13 コード発令の有無 1.67 度数 70.5 あり 20.5 なし/記載なし 9.0 不明 パーセント 非侵襲的気道確保 度数 パーセント BVM 46 29.5 侵襲的気道確保 2 1.3 気管切開チューブ Mouth to mouth 2 1 26.3 その他 100 64.1 なし 15 9.6 105 度数 パーセント 132 標準の胸骨圧迫 度数 84.6 経過中のVF/VT 開胸心マッサージ 12 7.7 除細動の実施 不明 12 7.7 AEDの使用 パーセント 6.4 1.3 LMA 1 1.3 0.6 その他 1 0.6 24 15.4 67.3 なし 28 18.0 18 11.5 3 1.9 66 既に確保済 実施なし(不成功含む) 5 非侵襲的治療に反応 5 1回で成功 44 再確保で成功 14 侵襲的気道確保 の確認方法 42.3 度数 パーセント 3.2 聴診 3.2 食道挿管検知器 61 0 0 28.2 呼気CO2検知器 9.0 胸部X線写真 41 26.3 55 33.3 25 16.0 不詳 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 度数 パーセント 125 あり 静脈内/骨髄内 80.1 111/125 気管内 6/125 不明 8/125 バゾプレッシン ボーラス投与 度数 その他の薬剤 度数 パーセント 5.8 静脈内/骨髄内 9/9 100 気管内 0/9 0 69 44.2 心電図 41 26.3 リドカイン 16 10.3 カルシウム 51 32.3 CVライン確保 26 16.7 3 1.9 輸液ボーラス 42 26.9 輸血 27 17.3 2 1.3 鎮静/導入薬 28 18.0 PM(経静脈/心外膜) 7 4.5 1 0.6 アトロピン 22 14.1 PM(経皮) 1 0.6 その他 7 4.5 筋弛緩薬 15 9.6 胸腔ドレーン 3 1.9 強心剤 55 35.3 ドブタミン 13 8.3 ドパミン>3γ 30 ノルアドレナリン フェニレフリン マグネシウム 9 5.8 胸腔穿刺 1 0.6 グルコース 9 5.8 心嚢穿刺 3 1.9 19.2 インスリン+Glu 2 1.3 その他 2 1.3 16 10.3 PGE1 2 1.3 2 1.3 12 7.8 16 4.5 結果:心肺蘇生の質の評価 蘇生終了の理由 度数 パーセント 88 56.4 生存ー循環再開 85 54.5 なし/記載なし 54 34.6 死亡ー循環再開なし 46 29.5 不明 14 2 1.3 23 14.7 9.0 死亡ー家族からの中止 度数 パーセント 7 蘇生後24時間以内 最低体温(℃) 不明 4.5 平均 発見ー循環再開時間(分) 20.8 平均 中央値 最小値 最大値 標準偏差 10 1 144 32.85 中央値 最小値 最大値 標準偏差 35.2 35.6 30 37 1.43 37.3 37.3 35 40.6 1.24 最低血糖値(mg/dl) 101.1 96 27 296 51.02 最高血糖値(mg/dl) 209.3 181 91 513 95.92 最高体温(℃) その他 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama あり 低体温療法 度数 パーセント 炭酸水素ナトリウム 結果:予後 実施あり 非薬剤的介入 13.5 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 度数 パーセント 度数 パーセント 21 その他 自己心拍再開 その他の薬剤 抗不整脈薬 6.4 アデノシン 9 あり 結果:薬剤的/非薬剤的介入 88.9 アミオダロン 4.8 プロカインアミド パーセント 39.1 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 結果:薬剤的介入 アドレナリン ボーラス投与 76.9 10 侵襲的気道確保の実施 度数 パーセント 胸骨圧迫の手段 120 NPPV 41 度数 パーセント 挿管チューブ 評価項目 ETCO2持続モニター CO2>10mmHg 度数 パーセント 38 24.4 28/38 (73.7) 動脈ライン拡張期血圧の測定 31 胸骨圧迫の質の評価のための機器/技術使用 26 19.9 16.7 圧迫速度:100/分を維持 21/26 (80.8) 圧迫が10秒以上中止されなかった 13/26 (50.0) 処置のために胸骨圧迫が15秒以上中止されなかった 14/26 (53.8) 換気回数:10/分(小児は20/分)を超えていた 17/26 (65.4) 3 11.5.31 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama データ登録に関する問題点 ① 誰が、どの時点で、登録するか ② 未入力を減らすためにのシステム上の工夫 – 必須項目の設定 ③ データ管理のための人材確保 – 入力されたデータを確認し、不明な点等に関して は、問い合わせの必要あり 問題点に対する対策 ① データの入力時期については、事例発生直後に可能な 限り入力し、3ヶ月を経過した時点で最終登録とする ② データの欠損・誤入力を少なくするために、昨年末に システムを改定 – 必須項目の設定 – 時間軸の不一致に対するアラート – 異常値に対するアラート ③ データマネージャーの採用 ④ 個人を同定出来る情報がないので、確認 作業が難しい – 入力不備をチェックし、直接問い合わせ ④ それぞれの施設で登録台帳の作成 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama Modified Utstein Template (2) Total Cardiopulmonary Index Events 44 % Disch. Alive 51 % Pulseless 13 % Disch. Alive 62 % *No insufficient record Poor Perfusion, Pulse Present 31 % Disch. Alive 45 % 今後の方向性 • 登録対象施設を拡大し、全国からの症例 集積を開始予定 • データ解析のためのシステムを構築 VF/Pulseless VT 2 Bradycardia 29 % Disch. Alive 100 % % Disch. Alive 45 % PEA 4 Other Rhythms 1 % Disch. Alive 75 % % Disch. Alive 0% Asystole 7 Unkown 1 % Disch. Alive 43 % % Disch. Alive 100 % • 成人データや海外のデータと比較検討 • 小児心肺停止症例の予後の改善へ 院内心停止症例:2010年1月∼12月 The 38th Annual Meeting of Japan Society of Intensive Care Medicine 2011.2.24 in Yokohama 謝辞 上谷良行先生 兵庫県立こども病院副院長 福原信一先生 兵庫県立こども病院救急集中治療科 植松悟子先生 国立成育医療研究センター救急診療科 黒澤寛史先生 静岡県立こども病院小児集中治療科 大崎真樹先生 静岡県立こども病院心臓血管外科 阿部世紀先生 長野県立こども病院麻酔集中治療部 森川和彦先生 東京都立小児総合医療センター臨床試験科 金子徹治先生 東京都立小児総合医療センター臨床試験科 4 11/05/29 The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto Domestic and international comparison of pediatric vs. adult in-hospital cardiac arrest ... children are not small adults ... 黒澤茶茶1),3) 清水直樹2),3) 横山広行4) 米本直裕5) 6) 野々木宏4) 丸川征四郎 1) 静岡県立こども病院 救急総合診療科 2) 東京都立小児総合医療センター 救命・集中治療部 3) 4) 5) 国立成育医療センター研究所 成育政策科学研究部 国立循環器病センター 心臓血管内科 緊急治療科 京都大学医学部研究科社会健康医学系専攻 6) 医誠会病院 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 背景1 • 国内外での院外心停止に関する疫学調査より、 成人では心原性心停止が、小児では呼吸原性 心停止がその主な原因と考えられている • 一方、国内での院内心停止の疫学調査に関して は、明確なデータがない • 心肺蘇生症例の予後改善のためには、成人・ 小児を含めた院内心停止における疫学調査が 必須である Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 背景2 対象と方法 • 厚生労働科学研究(野々木班)において、 2008年より院内心停止の症例登録(J-RCPR : The Japanese Registry of CPR for In-hospital Cardiac Arrest)を開始 • 対象 • 同(丸川班)において、2006年より小児心肺蘇生 レジストリを構築し、2008年より試験的に始動 • 方法 • これらに登録されたデータより小児と成人に関して 比較検討を行った Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto – J-RCPR に登録された 成人(18歳以上)症例:251例(2008年) – 小児心肺蘇生レジストリに登録された 小児(18歳未満)症例:116例(2002-2008年) – 登録データから、発症時心電図所見、直接原因、 発生場所、予後(自己心拍再開率、生存退院率) について成人例と小児例で比較検討を行った Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 結果1 結果2 発症時心電図所見 直接原因 (%) (%) 50 成人 (251) 小児 (116) 40 60 成人 (251) 小児 (116) 50 40 30 30 20 20 10 10 0 VF/VT 心静止 PEA 徐脈 その他 不明 0 不整脈 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 低血圧 呼吸不全 代謝・電解質 ACS その他 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 1 11/05/29 The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 結果3 結果4 発生場所 (%) 自己心拍再開率 (%) 60 成人 (251) 小児 (116) 50 90 成人 (251) 小児 (116) 80 70 40 60 30 50 40 20 30 10 20 10 の 他 0 全体 そ テ 室 救 急 外 来 カ 手 術 室 一 般 病 棟 集 中 治 療 室 0 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 結果5 心静止 PEA 不明 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 結果のまとめ 生存退院率 (%) VF/VT • 蘇生対象となる小児症例の約40%は徐脈の症例であり、 心停止前の介入の必要性が再認識された 60 成人 (251) 小児 (116) 50 40 30 • 直接原因としては、成人が不整脈が最多であるのに対し、 小児では低血圧、呼吸不全、不整脈の順であり、多くの 症例では呼吸不全/循環不全を経て心停止へ至ると 推察される • 発生場所は、小児において集中治療室での発生率が 高かったが、対象施設の特性による影響も大きいと 考えられる 20 10 • 予後に関しては、自己心拍再開率は大きな差はないもの の、生存退院率は小児の方が高い傾向がみられた 0 全体 VF/VT 心静止 PEA 不明 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 背景 小児心肺蘇生レジストリ • 小児救急・集中治療領域においては、小児重症患者の集約化 の遅れと治療戦略コンセンサスの不足が指摘され、各種症例 登録基盤の必要性を認識 • 厚生労働科学研究(平成18-20年)「AEDを用いた心疾患の 救命率向上のための体制の構築に関する研究(丸川班)」 「小児心肺停止例へのAED普及にかかわる研究(清水分担班)」 の枠組みの中で、小児心肺蘇生レジストリを構築 • 同 (平成20-22年) 「成育疾患のデータベース構築・分析と その情報提供に関する研究(原田班)」とも連携 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 2 11/05/29 The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto NRCPRとは? 小児心肺蘇生レジストリ • 米国を中心に展開する NRCPR (National registry of Cardiopulmonary Resuscitation) に基づくレジストリの 登録項目を選択 • 登録作業はWeb上で展開 • 全国からの症例集積が必要であり、日本集中治療医学会 新生児・小児集中治療委員会PICU-EBM作業部会と連携 • 国内の院内心停止登録システムであるJ-RCPR (Japanese registry of Cardiopulmonary Resuscitation) (厚生労働科学研究 野々木班)=成人領域との連携 • NRCPR=国際的な連携 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 本システムとJ-RCPR・NRCPRとの関係性 日本語Web入力 • 2000年から米国を中心にスタート した院内心肺蘇生事例の国際的 データベース • 米国、カナダ、ドイツ、ブラジル、 日本 の430以上の施設が参加、 100,000件以上の蘇生事例集積 CPA; cardiopulmonary arrest ARC; acute respiratory compromise MET; medical emergency team (2006年 ) Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 各施設からの症例登録開始(2008年 ) 英訳レポート自動出力 (NRCPR data collection form) 日本小児総合医療施設(29施設) わが国固有の 薬剤・医療制度 を加味し、 ニーズに応じた データマイニング 国内レポート 作成と配布 自施設データ 抽出可能 長野県立こども病院 都立小児総合医療センター (2010年3月 ) 国立成育医療センター 必要項目を自動出力 NRCPR quarterly report 静岡県立こども病院 J-RCPR Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 小児院内心停止の症例ボリウム 兵庫県立こども病院 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 小児心停止症例の国際比較1 • Nadkarni, et al, JAMA 2006 – First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. • January 2000 – March 2004 • 253 US and Canadian hospitals • 37,782 cases registered • 880 cases (2.3 %) were children (<18 y) • Only about 200 cases / year 発症時心電図所見 (%) 50 JAPAN (50) NRCPR (880) 40 30 20 10 0 • 小児心肺蘇生レジストリ: 心停止 50例 と比較 VF/VT 心静止 PEA 不明 Nadkarni, et al, JAMA. 2006;295(1):50-70 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 3 11/05/29 The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 小児心停止症例の国際比較2 心停止の直接原因 (%) 小児心停止症例の国際比較3 JAPAN (50) NRCPR (880) 心停止発生場所 (%) 70 70 60 30 10 20 0 10 の 他 40 20 JAPAN (50) NRCPR (880) 0 集中治療室 一般病棟 そ 中 毒 30 AC S 50 肺 水 腫 40 不 整 脈 代 謝 ・電 解 質 気 道 閉 塞 60 低 血 圧 呼 吸 不 全 50 手術室 カテ室 Nadkarni, et al, JAMA. 2006;295(1):50-70 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto Nadkarni, et al, JAMA. 2006;295(1):50-70 The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto (%) 80 60 70 結語1 • 院内心停止登録システム(J-RCPR)に登録された成人と 小児に関しての比較検討を行った 生存退院率 (%) JAPAN (50) NRCPR (880) 50 40 30 40 30 • 小児では、蘇生対象となる症例の約40%は “循環不全を 伴う徐脈”であった • 直接原因は、成人では、 “不整脈”が最も頻度が高いのに対 し、小児では、 “低血圧”・“呼吸不全”がその主な原因であっ た 60 50 その他 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 小児心停止症例の国際比較4 自己心拍再開率 救急外来 20 20 10 10 0 0 全体 VF/VT 心静止 PEA 不明 全体 VF/VT 心静止 PEA 不明 • 成人と小児では、心停止の原因およびその経過の違いが 示唆され、小児においては心停止に至る前の徐脈の段階 での介入がその予後を改善する可能性がある Nadkarni, et al, JAMA. 2006;295(1):50-70 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 結語2 • 小児蘇生においてはその症例ボリウムの少なさから 国際協働が不可欠であり、NRCPRがその基盤となる • 小児症例の国際比較では、類似した傾向が見られたが、 発生場所の差に関しては、北米におけるPICU設置の充実が 要因として挙げられる • 今後はMET対応症例や呼吸不全症例の登録も視野に入れて おり、患者安全向上や病院危機管理において重要な情報源と なりえ、科学的のみならず社会的にも重要なシステムである Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 74th Annual Scientific Meeting of the Japanese Circulation Society 2010.3.7�in Kyoto 発表内容の一部は、 • 平成19-21年度厚生労働科学研究費補助金 「・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(主任研究者野々木宏 :国立循環器病センター 心臓血管内科)の「・・・・・・・・・・・・・・・」 • 平成18-20年度 同 循環器疾患等生活習慣病対策総合研究事業 「自動体外式除細動器(AED)を用いた心疾患の救命率向上のた めの体制の構築に関する研究」(主任研究者丸川征四郎:兵庫医 科大学救急・災害医学教授)の「小児AEDの効果的な普及法にか かわる研究」 • 平成21年度 同 循環器疾患等生活習慣病対策総合研究事業 「 循環器の救命率向上に資する効果的な救急蘇生法の普及啓発に 関する研究」(主任研究者丸川征四郎)の「小児心停止救命率向上 のためのAEDを含めた包括的研究」 の一環として行われた. Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 4 11/05/29 【はじめに】 開院10ヵ月間の 院内蘇生の検討 東京都立小児総合医療センター 救命・集中治療部 本間 順 清水直樹 井上信明 新津健裕 齊藤 修 池田次郎 鶴和美穂 中林洋介 水城直人 新津麻子 藤浪綾子 小児院内蘇生の発生数は、入院患者総数の 0.11∼1.4 % と報告されており、決して稀な事象 ではない (成人 0.1∼0.5 %)。 東京都立小児総合医療センターは 2010年3月 に開院しており、 今回、開院後10か月間の院内 蘇生に関して、海外文献との比較も含めて報告 する。 参考文献 Tibballs et al 2006 Resuscitation Reis et al 2002 Pediatrics Donoghue et al 2007 Intensive Care Med 【病院概要】 東京都立小児総合医療センター 【概要】 2010.3.1-12.31 (府中市) 都立清瀬小児病院、八王子小児病院、梅ヶ丘病院、府中病院小児科が 合併して2010.3.1に開院 延べ蘇生 延べ蘇生回数 症例数 回数 /延べ入院患者数 性別 (例) (回) (%) 17 病床数: 561床 0.35 PICU/HCU 22床 NICU 24床、GCU 48床 14 男7:女7 年齢 (中央値) イベント 目撃 (例) 日齢2-9歳 (2歳1ヵ月) 17 【基礎疾患】 体外循環 蘇生時間 心肺蘇生 (分) (例) (中央値) 3 1-77 (3) 重複あり 診療科: 35診療科 医師数: 約190人 延べ入院患者数 4735人 (2010.3.1~12.31) 延べPICU/HCU入室患者数 376人 (2010.3.1~12.31) 【蘇生成績】 【発生場所】 海外 vs 国内 vs 当院 80 院内蘇生 60 海外 国内 当院 52-73 % 56 % 94 % 生存退院率 16-35 % (or 3か月後生存率) 25 % 64 % 神経学的転帰良好 20 % 57 % ROSC (%) 40 (return of spontaneous circulation) 20 0 15-18 % 国内報告 海外 多施設 880例 Nadkarni et al 2006 国内 4施設 156 例 Kurosawa et al 2010 当院 4施設 156 例:厚生労働省科学研究班報告 2010 Kurosawa et al 海外報告 Wu et al Nadkarni et al Tibballs et al Reis et al Suominen et al 2009 Resuscitation 2006 JAMA 2006 Resuscitation 2002 Pediatrics 2000 Resuscitation 1 11/05/29 【考察】 【 ECPR】 国内では海外に比し一般病棟で蘇生事象が多い 補助循環を使用したCPR (extracorporeal CPR; ECPR) の 有用性が1992年に報告されて以来、小児領域では de Mosらの 報告 (Crit Care Med 2006) をはじめ、一般的な蘇生に不応な 院内蘇生症例に対するECPRの有用性が報告されている。 当院でも、各科・コメディカルとの連携のもと、ECPRを積極的 に導入している。 • 一般病棟で小児の重症の患者を見ざるを得ない日本 望まれる対策 • 院内心肺停止を未然に防ぐMET (medical emergency team) の普及 • 後方病棟としてのPICUの整備 当院でROSC、神経学的予後が良好 • • 全例目撃例であった→PALSプロバイダーの迅速な対応 通常蘇生に不応時の積極的な補助循環導入 緊急ECMO物品 【ECPR 症例】 症例1 心臓外科との連携 臨床工学技士との連携 【結語】 症例2 症例3 年齢、体重 2y10mo 7.8kg 10mo 2.9kg 2day 4.2kg 疾患分類 原因 先天性心疾患 心不全の悪化 先天性心疾患 開心術後 ペースメーカー不全 先天性心疾患 ショック 場所 一般病棟 PICU PICU 心電図 徐拍 → PEA 徐拍 → PEA 徐拍 → PEA 導入時間 77分 48分 44分 ECMO期間 11日間 12日間 6日間 離脱 不可(心ポンプ不全) 可 可 転帰 死亡 死亡 (sepsis) 生存退院 神経学転帰 ECMO中 瞳孔散大なし 蘇生前と同様の反応 (追視、手を動かすetc) 良好 日本では重症患者を一般病棟で管理せざる をえない状況が続いており、院内心肺停止を未 然に防ぐMET の普及と、PICUの整備が必要 と思われる。 小児院内蘇生例の中には先天奇形、先天代謝 疾患など、小児特有の疾患を持つ場合が多く、 蘇生後の神経予後を改善するには、集中治療、 小児疾患共に精通した医師が必要と思われる。 【小児院内心停止 報告】 著者 (年) 国 Wu ET et al (2009) 台湾 Nadkarni et al (2006) Tibballs and Kinny (2006) 施設数症例数 アメリカ、 カナダ オーストラリア 生存 性差 年齢 ROSC 神経学的転帰 退院率 (%) median (%) 良好 (%) (%) 1 316 M 56 ― 61 21 16 253 880 M 54 1.8 52 27 18 1 111 ― 0.5 73 35 ― ― 64 16 15 ― 63 18 ― Reis et al (2002) ブラジル 1 129 M 58 Suominen et al (2000) フィンランド 1 129 M 59 2000年以降、n>100例以上の報告 2 11/05/29 【はじめに】 小児蘇生の疫学 院内心停止 小児では、入院患者数に対する院内心停止数 は入院患者数の0.11∼1.4 %と報告されており、 決して稀な事例ではない。(成人0.1∼0.5 %) 本発表では、小児の院内心停止の疫学につい て、成人との比較、院外心停止との比較、国内 外の比較の3つの視点から検討する。 東京都立小児総合医療センター 救命・集中治療部 本間 順 参考文献 J tibballs et al (Resuscitation 2006) A reis et al (Pediatrics 2002) Donoghue et al (Intensive Care Med 2007) 【院内心停止 小児 vs 成人 ①】 【小児院内心停止 報告】 著者 (年) 国 Wu ET et al (2009) 台湾 Nadkarni et al (2006) アメリカ、 カナダ 生存 性差 年齢 ROSC 神経学的転帰 退院率 (%) median (%) 良好 (%) (%) 施設数症例数 1 316 M 56 ― 61 21 16 253 880 M 54 1.8 52 27 18 111 ― 0.5 73 35 ― Tibballs and Kinny オーストラリア 1 (2006) Reis et al (2002) ブラジル 1 129 M 58 ― 64 16 15 Suominen et al (2000) フィンランド 1 129 M 59 ― 63 18 ― 353 M 57 0.9 全例 49 44 Moler et al (2009) ※ アメリカ 15 ※ CPR20min 以内にROSCに至った症例 小児 成人 性差 M 54-58 % M 57 % ROSC 52-73 % 47 % 生存退院率 16-35 % 18 % 神経学的転帰良好 15-18 % 11 % 2006 V.Nadkarni et al (NRCPR)より 成人院内心停止36902例 2000年以降、n>100例以上の報告 【院内心停止 小児 vs 成人 ②】 直接原因 % 100 小児 (%) 【小児心停止 院内 vs 院外 ①】 院内 院外 性差 M 54-59 % M 58-62 % 年齢(median) 0.8-1.5 1.5-2.9 ROSC 52-73 % 10-27 % 生存退院率 16-35 % 2-12 % 神経学的転帰良好 15-18 % 1-4 % 成人 (%) 80 60 院内蘇生 65 61 57 44 40 49 41 20 12 11 11 2 0 低血圧 呼吸不全 不整脈 代謝 電解質異常 心筋梗塞 2006 M.Nadkarni et al (NRCPR)より 院内心停止 成人36902例 vs 小児880例 院外心停止 参考文献 Sirbough PE et al (Ann Emrg med 1999) Kelly D et al (Pediatrics 2004) Donoghue et al (Ann Emrg med 2005) Dianne L et al (Circulation 2009 ) 1 11/05/29 【小児心停止 院内 vs 院外 ②】 直接原因 % 100 % 院内 (%) 80 100 院内 (%) 院外 (%) 72 80 院外 (%) 69 60 40 【小児心停止 院内 vs 院外 ③】 死亡原因 (ROSC後) 60 20 42 37 36 40 30 4 2 4 0 心原性 呼吸原性 神経原性 6 22 20 20 15 心原性 50 8 11 0 脳神経 外傷性 心血管 その他 (不整脈、ショック、 (CHD) 心筋炎など) 2009 F.Moler et al 院内353例 vs 院外138例より F.Moler et al 2009 院内353例 vs 院外138例より 【院内心停止 国内】 ・国外の小児院内心停止の疫学に関しての文献 的報告は多いが、国内はない。 ・厚生労働科学研究、小児心肺停止例へのAED 普及に関わる研究(清水分担班)の枠組みで小児 心肺蘇生レジストリを構築中 ・国際的に展開する NRCPR(National registry of Cardiopulmonary Resuscitation)に基づく登録項目を選択し各領域と連携 小児心肺蘇生レジストリ 【 】 国際、国内連携 日本語Web入力 英訳レポート自動出力 (NRCPR data collection form) わが国固有の 薬剤・医療制度 を加味し、 ニーズに応じた データマイニング 国際連携 必要項目を自動出力 国内レポート 作成と配布 NRCPR quarterly report J-RCPR 成人領域との連携 【院内心停止 国内 vs 国外 ①】 国内:研究班報告4施設 (PICUあり) 156 例 (2010 S Kurosawa et al) 国内 【院内心停止 国内 vs 国外 ②】 直接原因 % 100 国内 (%) 国外 国外 (%) 80 性差 M 42 % M 54-58 % 60 61 57 49 46 年齢(median) 1.0 0.8-1.5 40 ROSC(>20min) 56 % 52-73 % 20 生存退院率 25% 16-35 % 神経学的転帰良好 19.5 % 15-18 % 0 36 30 20 12 65 8 4 22 低血圧呼吸不全不整脈 代謝 気道閉塞肺水腫 ACS 電解質異常 02 41 中毒 その他 国内 50例 Kurosawa et al 2010 国外 880例 V.Nadkarni et al 2006 2 11/05/29 【院内心停止 国内 vs 国外 ③】 心停止発生場所 % 100 80 国外 (%) 65 60 20 ・院内と院外では、院内の方が、生存退院率、神経 転帰が共に良好であった。 42 ・国際比較では、類似した傾向が見られていたが、 国内データは4施設と現状を反映するには少ない。 38 14 6 3 0 ・小児院内心停止では、想定よりも不整脈による心 停止が多かった。 国内 (%) 40 【結語】 10 13 0 2 4 2 集中治療室一般病棟 手術室 検査室 救急外来 その他 国内 50例 Kurosawa et al 2010 国外 880例 V.Nadkarni et al 2006 ・小児心肺蘇生レジストリに多施設の参加を呼びか け日本の現状を把握する必要があると思われた。 3 10.9.11 The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya Introduction シンポジウム5 「小児蘇生2010からの展望」 小児心肺蘇生法の 品質改善に関わる研究 静岡県立こども病院救急総合診療科 東京都立小児総合医療センター救命・集中治療部 国立成育医療研究センター研究所成育政策科学研究部 • 小児心肺停止症例の生存率は決して高くない • 生存率改善のために出来ることは? • CPRは蘇生治療の根幹 • 効果的な胸骨圧迫を絶え間なく行うことが重要 黒澤茶茶 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya CPR : Chest Compression CPR : adequate depth of CC Schema Chest CT image • Adequate Depth? Sternum – 1/2 AP chest diameter or 1/3 or・・・ Heart ① • Method ② – for Children : single or doubble hands – for Infant : “circumferential squeeze” in the use of two-thumb chest compression ② ① thorax Vertebral body ① AP chest diameter (external AP) ② Between sternum and vertebral body (internal AP) Kurosawa S, Jpn. Soc. Intensive care med. 2009 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya CPR : adequate depth of CC Residual AP with compression of 1/3 or 1/2 external AP 1/2 external AP 1/3 external AP standard deviation 40 Residual AP (mm) Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan CPR : adequate depth of CC Percentage of Patients with Greater than 10mm during 1/2 AP CC, 1/3 AP CC, 51mm CC, and 38mm CC US 1-‐3 yo Japan 1-‐3 yo US 4-‐7 yo Japan 4-‐7 yo ① 30 20 10 Average 1/2 : 1.5±3.4 1/3 : 22.6±4.4 0 -‐10 1 2 3 4 Age (years) 5 6 7 Kurosawa S, Jpn. Soc. Intensive care med. 2009 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan Braga M, SCCM's 39th Critical Care Congress. 2010 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 1 10.9.11 The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya CPR : CC methods for infants CPR : CC methods for infants Shimizu N, Circulation (abstract). 2008 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya CPR : CC quality monitoring 乳児の胸骨圧迫の深さの検証 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan New target for CC depth P=0.016* < 1year 1-‐7 year 8-‐15 year Chest compression data PC skill reporOng system 0 32 34 0 5 10 Time(second) 15 Depth of compression (mm) 35 1/3 平均値=40.54 mm 標準偏差=4.112 度数=241 平均値=53.97 mm 標準偏差=6.709 度数=124 30 25 20 20 30.0±4.2 before 32.4±1.5 aSer Kurosawa S, Jpn. Soc. Intensive care med. 2010 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya New target for CC depth (mm) 平均値=32.08 mm 標準偏差=3.177 度数=82 AP chest diameter 1/2 1/3 1/3 AP depth 1/3 AP depth 1/3 AP depth Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya 150 New target for CC depth 100 200 50 150 30mm 0 100 30mm 0 0-‐2 3-‐5 6-‐8 9-‐11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 months 50 50mm 40mm 50mm 40mm years • 実数規定で年齢差がない方が、自動胸骨圧迫装置 やQ-CPR類似機器の小児応用に際して利便性が高い 0-‐2 3-‐5 6-‐8 9-‐11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 months years Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 2 10.9.11 The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya CPR Quality in Pediatrics The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya CC quality monitoring devices • 8歳から18歳までの小児入院患者の保護者を対象とした研究:VAM (voice advisory manikin)を用いて、的確なフィードバックを行いながら トレーニングを行ったほうが、インストラクターと1対1で行うよりもBLS手技 の習得はより正確になる – Sutton RM, et al. The voice advisory manikin (VAM): an innovative approach to pediatric lay provider basic life support skill education. Resuscitation. 2007;75: 161-8. • 8歳以上の小児の院内心肺蘇生事例に対し、Q-CPRを使ってCPRの質を 解析した研究:CPRのトレーニングを受けている者が蘇生を行った場合で も、CPRの質は決して高くない – Sutton RM, et al. Quantitative analysis of CPR quality during in-hospital resuscitation of older children and adolescents. Pediatrics. 2009;124(2):494-9. POCKET CPR: Bio-Detek, Incorporated製 ハートスタートMRx(Q-CPR):PHILIPS製 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya New method of CC depth measure Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya Automatic CC systems • Applying flow sensor rather than accelerometer LUCAS:Jolife社製 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya Application to children AutoPulse:ZOLL社製 KOMSTAT2300:コーケン社製 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya New technology of auto. CC device • 安全性、正確性の検証 • 固定の問題 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 3 10.9.11 The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya The Japanese society of Reanimatology 29th Annual Meeting, 2010.9.11 in Utsunomiya Future Developments 発表内容の一部は、 • 小児では、新しく挑戦的な蘇生手段を拒否されがち – 少ない小児症例、年齢における体格の違い • 小児心肺蘇生における品質改善のためには 年齢の壁を越えた挑戦が必要 • 品質改善のためのモニタリング機器、自動胸骨圧迫 装置の小児への応用ならびに新たな機器の開発 • 今日は不可能でも、明日は可能に! Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan • 平成18-20年度厚生労働科学研究費補助金 循環器疾患等生活 習慣病対策総合研究事業 「自動体外式除細動器(AED)を用いた 心疾患の救命率向上のための体制の構築に関する研究」 (主任研究者丸川征四郎:兵庫医科大学救急・災害医学教授)の 「小児AEDの効果的な普及法にかかわる研究」 • 平成21-22年度 同 循環器疾患等生活習慣病対策総合研究事業 「循環器の救命率向上に資する効果的な救急蘇生法の普及啓発 に関する研究」(主任研究者丸川征四郎:医誠会病院)の 「小児心停止救命率向上のためのAEDを含めた包括的研究」 の一環として行われた. Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 4 11.6.1 Table 1. Demographics and anthropometric characteristics Figure 1. Measurement of the external and internal anteriorposterior diameter of the chest 1. Schema Age category Age* Male(n) Female(n) total(n) Infants 2. Chest CT image Sternum Heart Younger children B A B A thorax Vertebral body Older children A. External AP: External anterior-posterior chest diameter B. Internal AP: Internal chest diameter between sternum and vertebral body Weight(kg) external AP(mm) internal AP(mm) Height(cm) 0-2 13 15 28 51.0 ± 3.5 (+0.12SD) 3.6 ± 1.0 (+0.22SD) 87.3 ±6.9 46.0 ±3.7 3-5 8 10 18 63.0 ± 2.5 (-0.43SD) 7.0 ± 0.9 (+0.16SD) 99.6 ±6.7 48.4 ±6.0 6-8 11 7 18 66.5 ± 2.7 (-0.73SD) 7.7 ± 0.9 (-0.41SD) 100.8 ±7.4 51.3 ±6.6 9-11 8 10 18 71.3 ± 3.3 (-0.16SD) 8.5 ± 0.9 (-0.18SD) 102.2 ±8.1 51.5 ±6.5 1 31 25 56 78.9 ± 3.6 (-0.37SD) 10.2 ± 1.2 (-0.05SD) 109.4 ±5.3 56.1 ±4.5 2 29 17 46 87.4 ± 3.9 (-0.29SD) 12.2 ± 1.4 (+0.2SD) 115.3 ±7.1 59.8 ±5.9 3 15 15 30 93.9 ± 3.4 (-0.53SD) 13.5 ± 1.3 (-0.44SD) 118.1 ±7.1 60.6 ±5.0 4 18 12 30 102.8 ± 4.8 (-0.1SD) 16.2 ± 2.2 (-0.13SD) 125.1 ±8.9 63.9 ±6.9 5 20 9 29 107.9 ± 4.3 (-0.17SD) 18.1± 2.2 (-0.1SD) 131.4 ±6.9 67.4 ±5.1 6 11 11 22 114.1 ± 5.4 (-0.17SD) 19.8 ± 2.8 (-0.32SD) 131.6 ±7.5 67.5 ±7.8 7 15 13 28 121.2 ± 6.6 (-0.14SD) 23.1 ± 3.8 (-0.25SD) 138.3 ±9.9 73.0 ±8.4 8 8 3 11 123.9 ± 5.6 (-0.68SD) 22.8 ± 3.6 (-0.84SD) 142.4 ±12.2 73.0 ±13.1 9 5 14 19 131.0± 7.1 (-0.35SD) 27.1 ± 6.5 (-0.54SD) 144.1 ±12.0 73.2 ±9.4 10 8 10 18 137.1 ± 6.4 (-0.29SD) 30.4 ± 5.5 (-0.55SD) 150.0 ±12.5 78.3 ±10.2 11 14 14 28 141.4 ± 6.5 (-0.64SD) 35.8 ± 6.0 (-0.43SD) 163.5 ±16.4 82.2 ±9.3 12 7 5 12 152.1 ± 9.0 (+0.19SD) 43.3 ± 8.5 (-0.07SD) 170.3 ±17.4 85.1 ±11.0 13 5 5 10 156.7 ± 5.7 (-0.11SD) 47.7 ± 6.9 (-0.2SD) 174.2 ±11.8 85.7 ±12.0 14 6 9 15 161.6 ± 5.7 (+0.31SD) 53.2 ± 7.4 (+0.11SD) 184.9 ±15.6 91.5 ±14.6 15 6 5 11 164.0 ± 8.7 (+0.14SD) 51.0 ± 6.0 (-0.44SD) 175.9 ±15.9 82.9 ±13.6 n=238 (53%) n=209 (47%) n=447 * infants ; months, children ; years Table 2. Residual AP with compression of 1/2 or 1/3 external AP Fig.2 Residual AP at 1/2 and 1/3 chest compression depth Overcompression Age (Residual AP<0mm) (years) 1/3 CC depth 1/2 CC depth 1/3 CC depth 25/82 0/82 82/82 5/82 1 17/56 0/56 56/56 1/56 2 13/46 0/46 45/46 0/46 3 10/30 0/30 30/30 0/30 4 9/30 0/30 30/30 0/30 5 7/29 0/29 28/29 0/29 6 7/22 0/22 22/22 1/22 7 6/28 0/28 24/28 0/28 8 6/11 0/11 8/11 0/11 8/19 0/19 19/19 0/19 2/18 0/18 17/18 1/18 11 13/28 0/28 27/28 0/28 12 6/12 0/12 12/12 0/12 13 6/10 0/10 9/10 0/10 14 5/15 0/15 14/15 1/15 15 9/11 0/11 11/11 0/11 total 149/447 (33.3%) 0/447 (0%) 434/447 (97.1%) 9/447 (2.0%) 10 0 -10 0-2 3-5 6-8 9-11 1 (months) 2 3 4 5 6 7 8 9 (years) 10 11 12 13 14 15 Age Fig.3 Averages of depth equivalent to 1/3 and 1/2 external AP AP chest diameter 1/3 CC depth 20 10 (mm) 1/2 CC depth 30 Residual AP 9 (mm) (Residual AP<10mm) 1/2 CC depth 0 1/2 Table 3. Average depths equivalent to 1/3 and1/2 AP diameter 1/3 200 150 100 Infants Children Older children 1/2 AP diameter depth (average, mm) 48.1±4.8 60.8±6.2 81.0±10.1 1/3 AP diameter depth (average, mm) 32.1±3.2 40.5±4.1 54.0±6.7 50 0 0-2 3-5 6-8 9-11 1 (months) 2 3 4 5 6 7 8 9 (years) 10 11 12 13 14 15 Age 1 11.6.1 Fig.4 Frequency distribution of 1/3 external AP depth Infants Average = 32.08 mm Standard deviation = 3.177 Frequency = 82 Children Older children Average = 40.54 mm Standard deviation = 4.112 Frequency = 241 Average = 53.97 mm Standard deviation = 6.709 Frequency = 124 20.0 25.0 30.0 35.0 40.0 30.0 35.0 40.0 45.0 50.0 55.0 1/3 AP depth 1/3 AP depth Table 4. Residual AP and Proportions of patients with CC targewithout overcompression (residual AP <10mm) for each 30, 40, and 50mm target for each infants, children, and older children Infants (30mm) Children (40mm) Older children (50mm) Residual AP (mm) 18.9 ± 6.0 22.7 ± 8.1 31.2 ± 12.4 Proportion of patients with residual AP ≥10mm 77/82 (94.0%) 233/241 (96.7%) 119/124 (96.0%) Proposed target depth (mm) 40.0 50.0 60.0 70.0 1/3 AP depth 2 The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya C2010 Peds Worksheets 第3回 日本蘇生科学シンポジウム トピック 「公表されているWork Sheetについて」 小児領域における 日本からの情報発信 • 55 items • 75 Worksheets • 4 WS authors nominated from Japan – Naoki Shimizu, Research Inst., NCCHD – Masahiko Nitta, Osaka Medical College – Kunio Ohta, Kanazawa University – Sasa Kurosawa, Research Inst., NCCHD 黒澤茶茶 静岡県立こども病院 救急総合診療科 東京都立小児総合医療センター 救命・集中治療部 国立成育医療研究センター研究所 成育政策科学研究部 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya C2010 Peds topics • • • • • • • • • • • • • • Access : IV vs IO, ET vs IV Airway: BMV, Tube, ETCO2, Oxygen, cricoid pressure Bypass : ECPR CPR : CV ratio, Compression only CPR, Compression depth, methods Defibrillation : AED, Doses, Adequate energy, Pad/Padlle Monitoring : methods, invasive monitoring Pharmacology : Epinephrine, Vasopressin, Atropine・・・ Prognosis : predict ROSC Recognition : pulse check accuracy Shock : fluid, intubation, inotropes, etomidate, corticosteroids・・・ Special Circumstances : family, resuscitation for Fontan circulation Systems of Care : MET/RRT Temperature : induced hypothermia Trauma : fluid resuscitation, traumatic arrest Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya CPR : Chest Compression • Adequate Depth? C2010 Peds topics • • • • • • • • • • • • • • Access : IV vs IO, ET vs IV Airway: BMV, Tube, ETCO2, Oxygen, cricoid pressure Bypass : ECPR CPR : CV ratio, Compression only CPR, Compression depth, methods Defibrillation : AED, Doses, Adequate energy, Pad/Padlle Monitoring : methods, invasive monitoring Pharmacology : Epinephrine, Vasopressin, Atropine・・・ Prognosis : predict ROSC Recognition : pulse check accuracy Shock : fluid, intubation, inotropes, etomidate, corticosteroids・・・ Special Circumstances : family, resuscitation for Fontan circulation Systems of Care : MET/RRT Temperature : induced hypothermia Trauma : fluid resuscitation, traumatic arrest Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya CPR : adequate depth of CC Chest CT image Schema Sternum – 1/2 AP chest diameter or 1/3 or・・・ • Method ② Heart ① ② ① thorax – for Children : single or double hands – for Infant : “circumferential squeeze” in the use of two-thumb chest compression Vertebral body ① AP chest diameter (external AP) ② Between sternum and vertebral body (internal AP) Kurosawa S, et al, Jpn. Soc. Intensive care med. 2009 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 1 The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya CPR : adequate depth of CC CPR : adequate depth of CC Residual AP with compression of 1/3 or 1/2 external AP Percentage of Patients with Greater than 10mm during 1/2 AP CC, 1/3 AP CC, 51mm CC, and 38mm CC 1/2 external AP 1/3 external AP standard deviation Residual AP (mm) 40 US 1-3 yo Japan 1-3 yo US 4-7 yo Japan 4-7 yo ① 30 20 10 Average 1/2 : 1.5±3.4 1/3 : 22.6±4.4 0 -10 1 2 3 4 Age (years) 5 6 7 Kurosawa S, et al, Jpn. Soc. Intensive care med. 2009 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya CPR : CC quality monitoring 乳児の胸骨圧迫の深さの検証 CPR Quality in Pediatrics P=0.016* PC skill reporting system 0 32 34 0 5 10 15 Depth of compression (mm) 35 Chest compression data Braga M, et al, SCCM's 39th Critical Care Congress. 2010 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 1/3 • 8歳から18歳までの小児入院患者の保護者を対象とした研究:VAM (voice advisory manikin)を用いて、的確なフィードバックを行い ながら トレーニングを行ったほうが、インストラクターと1対1で行うより もBLS手技の習得はより正確になる – Sutton RM, et al. The voice advisory manikin (VAM): an innovative approach to pediatric lay provider basic life support skill education. Resuscitation. 2007;75: 161-8. 30 • 8歳以上の小児の院内心肺蘇生事例に対し、Q-CPRを使ってCPRの質 を解析した研究:CPRのトレーニングを受けている者が蘇生を行っ た場合でも、CPRの質は決して高くない 25 – Sutton RM, et al. Quantitative analysis of CPR quality during in-hospital resuscitation of older children and adolescents. Pediatrics. 2009;124(2):494-9. 20 Time(second) 20 30.0±4.2 before 32.4±1.5 after Kurosawa S, et al, Jpn. Soc. Intensive care med. 2010 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya New target for CC depth < 1year 平均値=32.08 mm 標準偏差=3.177 度数=82 1-7 year 平均値=40.54 mm 標準偏差=4.112 度数=241 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 8-15 year 平均値=53.97 mm 標準偏差=6.709 度数=124 New target for CC depth AP chest diameter (mm) 200 1/2 1/3 150 100 50 1/3 AP depth 1/3 AP depth 1/3 AP depth Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 0 0-2 3-5 6-8 9-11 1 months 50mm 40mm 30mm 2 3 4 5 6 7 8 years 9 10 11 12 13 14 15 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 2 The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya 150 New target for CC depth 100 50 0 0-2 3-5 6-8 9-11 1 50mm 40mm 30mm 2 3 4 5 6 months 7 8 9 10 11 12 13 14 15 years • 成人の胸骨圧迫(4-5 cm)が浅すぎる? • 実数規定で年齢差がない方が、QCPR類似機器の 小児応用に際して利便性が高い Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya C2010 Peds topics • • • • • • • • • • • • • • Access : IV vs IO, ET vs IV Airway: BMV, Tube, ETCO2, Oxygen, cricoid pressure Bypass : ECPR CPR : CV ratio, Compression only CPR, Compression depth, methods Defibrillation : AED, Doses, Adequate energy, Pad/Padlle Monitoring : methods, invasive monitoring Pharmacology : Epinephrine, Vasopressin, Atropine・・・ Prognosis : predict ROSC Recognition : pulse check accuracy Shock : fluid, intubation, inotropes, etomidate, corticosteroids・・・ Special Circumstances : family, resuscitation for Fontan circulation Systems of Care : MET/RRT Temperature : induced hypothermia Trauma : fluid resuscitation, traumatic arrest Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya MET/RRT for Pediatrics Authors Hospital Pre-MET/RRT period Post-MET/RRT period Rapid Response system MET/RRT for Pediatrics Main findings (per 1000 Admissions/Discharges) Authors Code Cardiac / Resp.Arrest Brilli et al (2007) 1.54 to 0.62/1000 A (p=0.02) 0.56 to 0.24/1000 A (NS) Hunt et al (2008) 2.1 to 1.1/1000 D (NS) Resp.Arrest 1.46 to 0.40/1000 D (p=0.04) Brilli et al (2007) Children’s Hospital 15 months 8 months Two-tiered Doctors & Nurses (MET attend <15 min.) Hunt et al (2008) Tertiary academic hospital 12 months One-tiered Doctors & nurses Mistry et al (2006) Children’s Hospital 6 months 5 months One-tiered Mistry et al (2006) Sharek et al (2007) 264 bed pediatric hospital 56 months 19 months One-tiered Doctors & nurses Sharek et al (2007) Tibballs et al (2009) 215 bed pediatric hospital 41 months 48 months One-tiered Doctors & nurses Tibballs et al (2009) Zenker et al (2007) Children’s Hospital 23 months 12 months Two-tiered Nurses 12 months Zenker et al (2007) Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya NRCPR and MET/RRT decreased 58% (p=0.001) 2.45 to 0.69/1000 A (P=0.008) Mortality 0.43 to 0.24 (NS) decreased 48% (p=0.005) 10.1 to 8.3/1000 D (p=0.007) 0.19 to 0.17/1000 A (NS) preventable CA : 0.16 to 0.07/1000 A (p=0.04) 8.0 to 5.1/1000 D (36%) (NS) 4.38 to 2.87/1000 A (p<0.0001) from 4.3 to 4.5/1000 D (NS) Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya NRCPRとは? • 2000年から米国を中心にスタート した院内心肺蘇生事例の国際的 データベース • 米国、カナダ、ドイツ、ブラジル、 日本 の430以上の施設が参加、 100,000件以上の蘇生事例集積 CPA; cardiopulmonary arrest ARC; acute respiratory compromise MET; medical emergency team (2006年 ) Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 3 The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya 小児死亡の症例ボリウム 小児心肺蘇生レジストリ 平成19年度厚生労働科学研究(池田班) 幼児死亡の分析と提言に関する研究 (件・人) 300 死亡施設数 死亡症例数 250 200 • 米国を中心に展開する NRCPR (National registry of Cardiopulmonary Resuscitation) に基づくレジストリの 登録項目を選択 年間死亡症例 5人/年以上の施設数は 施設数総計の10%未満 • 登録作業はWeb上で展開 年間死亡症例10人/年以上の施設数は 施設数総計の 2 %未満 • 全国からの症例集積が必要であり、日本集中治療医学会 新生児・小児集中治療委員会PICU-EBM作業部会と連携 年間死亡症例10人/年以上施設で死亡 する小児は、小児死亡総数の10%程度 • 国内の院内心停止登録システムであるJ-RCPR (Japanese registry of Cardiopulmonary Resuscitation) (厚生労働科学研究 野々木班)=成人領域との連携 150 100 50 平成17年死亡小票 0 1-4歳のデータから 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 • NRCPR=国際的な連携 単位施設あたりの年間死亡症例数 (人/年) Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya 各施設からの症例登録開始(2008年 ) Modified Utstein Template 日本小児総合医療施設(29施設) 長野県立こども病院 都立小児総合医療センター (2010年3月 ) 国立成育医療研究センター 静岡県立こども病院 兵庫県立こども病院 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya Total Cardiopulmonary Index Events 132 (168*) % Disch. Alive 35 % Pulseless 63 % Disch. Alive 29 % VF/Pulseless VT 8 % Disch. Alive 25 % PEA 17 % Disch. Alive 29 % Asystole 21 % Disch. Alive 19 % Unkown 17 % Disch. Alive 41 % *Insufficient record (n=36, 21%) was excluded Poor Perfusion, Pulse Present 69 % Disch. Alive 41 % Bradycardia 48 % Disch. Alive 44 % Other Rhythms 11 % Disch. Alive 55 % Unkown 10 % Disch. Alive 10 % 院内心肺停止症例:2002年3月∼2009年12月 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya Immediate causes (%) 今後の展望 • CoSTR 2010 Treatment Recommendation : 60 「In infants and children in ・・・, there is insufficient evidence to support or refute・・・」 50 40 30 • 小児蘇生領域におけるエビデンス創成の必要性 51 20 30.2 22.4 10 0 • 小児重症患者の集約化と多施設共同臨床研究 20.3 12.6 10.6 循 呼 環 不 吸 不 全 不 全 整 脈 代 謝 電 エア ウ 解 質 異 常 ェイ 4.2 2.8 2.1 鎮 AC S 痙 静 の 不 攣 重 明 積 • 小児蘇生領域での国際恊働 異 常 Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 4 The 3rd Japanese Resuscitation Science Symposium, 2010.9.12 in Omiya 発表内容の一部は、 • 平成18-20年度厚生労働科学研究費補助金 循環器疾患等 生活習慣病対策総合研究事業 「自動体外式除細動器(AED) を用いた心疾患の救命率向上のための体制の構築に関する 研究」(主任研究者丸川征四郎:兵庫医科大学救急・災害医 学教授)の「小児AEDの効果的な普及法にかかわる研究」 • 平成21-22年度 同循環器疾患等生活習慣病対策総合研究 事業 「循環器の救命率向上に資する効果的な救急蘇生法の 普及啓発に関する研究」(主任研究者丸川征四郎:医誠会 病院)の「小児心停止救命率向上のためのAEDを含めた包括 的研究」 の一環として行われた. Department of Emergency and general Pediatrics, Shizuoka Children’s Hospital, Shizuoka, Japan 5 → 1 ち外れ値は 457 点、解析対象として残ったのは 17104 点である。 また、下図は PP データの原系列(上)と外れ値処理済系列(下)である。PP データは 17561 点、う 値は 178 点、解析対象として残ったのは 16825 点である。 下図は RR データの原系列(上)と外れ値処理済系列(下)である。RR データは 17003 点、うち外れ れ値処理を行った。 それぞれの時系列を MemCalc/Win に読込み、 「実行」 「修正系列の計算」にて、つぎの条件で外 【外れ値処理】 記録された値を用いる。 RR データは 20103300646RR.csv ファイル、PP データは 20103300646SBPPP.csv ファイルに 【比較検討する時系列】 当する情報が得られるか、検討する。 パルスオキシオメータ脈波から取り出した PP データにより、心電波形 RR データの HRV に相 【目的】 心電波形の RR とパルスオキシオメータ脈波の PP データの対応について 開始 2011 年 5 月 10 日 最終更新 2011 年 5 月 10 日 他方、次図は別の 5 分長区間である。 いるように見える。 2 赤い折れ線(=PP データ)は緑の点列(=RR データ)と一致しないが、緑の点列の推移をなぞって 次図は上図の一部を拡大したもので、5 分長のデータである。 図で赤い折れ線は PP データ、緑の点列は RR データである(いずれも外れ値を取り除いたデータ)。 て読み込んで比較したのが次図である。 MemCalc/Win にてそれぞれの外れ値処理済系列をファイルに記録し、ビューア(MvView.exe)に 【外れ値処理済系列の比較】 上図では、区間中央付近で PP データは欠落しており、従って RR データの推移を PP データは セグメントにおいて RR データと PP データがともに欠落値のない場合のみ、解析対象と 2. 3 列(欠落値のない、等間隔データ)を得る。つぎに上記条件にて MEM-PSD を求める。次図が RR の MemCalc/Win に RR の最初のセグメントデータを読込み、外れ値処理等、一切行わずに修正系 秒)相当、すなわち 10%とする(25÷300×100∼8.3%)。 1. なめらかなスペクトルを得るため、周波数分解能との兼ね合いでラグ値は 1/0.04 秒(=25 一例として最初のセグメントを解析する。このとき、解析条件(ラグ値)をつぎのように設定する。 【解析】 して切り出した 21 個のセグメントデータは添付のとおりである。 する、(g)「実行」キーを押す、以上である。二つ目以降のセグメントでは(c)以降を繰り返す。こう ダ・時系列 A と B のファイル名を設定する、(f)記録する時間帯を「描画範囲」ボタンを押して指定 セグメントを探す、(d)フォーム下端のフロッピーディスクの絵の記録キーを押す、(e)記録先フォル のキリのよい値を入力し Enter キーを押す、(c)フォーム下端の左右向きの三角キーで欠落値のない 作は、(a)「描画巾」に「300」と入力し Enter キーを押す、(b)「左端時刻」にデータ左端時刻以降 時刻を 10 進数表示=時分秒表示でない、として立ちあげた MvView.exe から切り出す)。具体的操 上記 1.と 2.を満足するセグメントを(MvView.exe にて)目視確認しながら複数抽出する(このとき、 する。 セグメント長を 300 秒とする。 1. るため、つぎの条件を設定する。 LF 周波数帯(0.04∼0.15Hz)と HF 周波数帯(0.15∼0.40Hz)で「安定した」パワースペクトルを得 【解析対象データの抽出】 が妥当と思われる。 注目区間で一方のデータが欠落する場合、その区間は解析対象としないこと 冒頭の目的に照らし、注 増大し、他方 PP データについては LF 成分が過少に評価されるなどの結果が予想される。従って この区間のデータを解析した場合、RR データについては区間中央付近の挙動により LF 成分が 「追随」していない。この間の PP データの挙動と外れ値処理のアルゴリズムの結果と思われる。 それとよく対応する。 4 LFとHFはそれぞれ 342msec2と 215msec2、LF/HFは 1.59 である。この 3 つの値はRRデータの また、つぎは同じ時間帯の PP データの結果である。 LFのパワーは 371msec2、HFのそれは 244msec2、LF/HFは 1.52 である。 最初のセグメントの結果である。 5 する LF、HF、LF/HF を得られる可能性がある。 以上 すなわち、パルスオキシオメータ脈波からの PP データにより RR データの解析結果によく対応 測定波形を改善することにより、対応するセグメントとなる可能性もある。 2. 対応するセグメントを構成できなかった区間の一部については、パルスオキシオメータの データの解析結果によく対応する PP データのそれを得る可能性がある。 1. 上述の手続きにて RR データと PP データのセグメントを作成・解析することにより、RR 以上より、 ࿑ߢࠆޕ ࠇ୯ߪ 525 ߢᄖࠇ୯₸ߪ 6.69㧑ߢࠆޕᄖࠇ୯ಣℂߒߡୃᱜᤨ♽ࠍᚑߒߚ߽ߩ߇ਅ ౝኈߢࡈࠔࠗ࡞ฬ࠲࠺ޔᢙߥߤ߇␜ߐࠇᄖࠇ୯ಣℂࠍⴕߞߚ⚿ᨐޔᱜᏱ୯ 7326 ߢᄖ ߥㇱಽ߇ᄖࠇ୯ಣℂࠍⴕਅߦ✛ߩㇱಽ߇⼂ߢ߈ߥㇱಽߣಽ߆ࠆޕฝߪ࠺࠲ߩ ࿑ߪේ♽࠺࠲ᮮゲ߇ᤨ㑆❑ޔゲߪ P- P 㑆㓒ߢࡁࠗ࠭ߥߤߦࠃࠅᵄᒻ⼂߇ߢ߈ߡ ⸃ᨆ ࡈࠔࠗ࡞ͳ201010280001SBPPP.csv ࠍ⸃ᨆޕExcel ࠺࠲ࡈࠔࠗ࡞ 0001PP 㑆㓒ߣߒߚޕ ࠢߣࡇࠢߩᤨ㑆㑆㓒㧕ߪሽߐࠇߥߩߢ❗ᤨᵄᒻߩᤨ㑆࠺࠲߆ࠄ⸘▚ߒߡ P-P MemCalc/Tonam2C ߢߪᔃ㔚࿑ R-R 㑆㓒ߪ⥄േ⊛ߦሽߢ߈ࠆ߇⣂ᵄ߆ࠄߩ P-P 㑆㓒㧔ࡇ LF/HF ࠍᗵ⚻ᯏ⢻ߩᜰᮡߣߒߚޕ ⢻ࠍߔ HF ᚑಽࠍ 0.15㨪0.5Hz ߣߒߚޕ ⴕ឵⚻ᯏ⢻ߣᗵ⚻ᯏ⢻ࠍวࠊߖߚ LF ᚑಽࠍ 0.04㨪0.15Hz ߣߒᗵ⚻ᯏ ࠣࡓ MemCalc/Win ࠍ↪ߒࠣࡔࡦ࠻㐳 5 ಽ㧔㊀ߨวࠊߖߪ 2.5 ಽ㧕ߣߒᵄᢙ⸃ᨆࠍ ࠗࡓ⸃ᨆࡊࡠࠣࡓ MemCalc/Tonam2C ࠍ↪ᵄᒻሽࠍⴕߩߘޔᓟ♽ᤨޔ⸃ᨆࡊࡠ ߘࠇߙࠇߩࠕ࠽ࡠࠣജࠍ A/D ᄌ឵ߒߡࡁ࠻ࡄ࠰ࠦࡦߩขࠅㄟߺޔᔃᜉⴊࠕ࡞࠲ ᣇᴺ ࡔࠞߪࡈࠖ࠶ࡊࠬ␠ࡕ࠾࠲ߣࠦࡧࠖ࠺ࠖࠛࡦ␠ࡄ࡞ࠬࠝࠠࠪࡔ࠲ޕ ᔃ㔚࿑ᵄᒻߣࡄ࡞ࠬࠝࠠࠪࡔ࠲⣂ᵄߣߩ HRV ߩᲧセᬌ⸛ ⸃ᨆ⚿ᨐ ࠣࡔࡦ࠻㐳 5 ಽޔLF0.04㨪0.15HzޔHF0.15㨪0.5Hz ߣߒߚޔ LF/HF ߪ 1.0 ߣߥࠆޕ㧔ᷝઃߩ Excel ࠺࠲ࡈࠔࠗ࡞ 0001PP ߦࠆ㧕 ฝਅߩ⸃ᨆ⚿ᨐߢ LF ߇ 1002.4㧔ms㨊2㧕HF ߇ 991.4㧔ms㨊2㧕ޕ Ꮐ࿑ߪ⸃ᨆߔࠆ 5 ಽߩ࠺࠲ߢฝ࿑ߪࠬࡍࠢ࠻࡞ኒᐲ㧔PSD㧕ߩ⚿ᨐޕ ࠣࡔࡦ࠻ᢙߪ 42 ߢࠆޕ ⸃ᨆ᧦ઙߪห᭽ߢᱜᏱ୯߇ 9969 ޔᄖࠇ୯ߪ 130 ߢᄖࠇ୯₸ߪ 1.29㧑ߢࠆޕ หᤨ᷹ቯߒߚ R-R 㑆㓒ߩ⸃ᨆ ⸃ᨆ⚿ᨐ ࠣࡔࡦ࠻㐳 5 ಽޔLF0.04㨪0.15HzޔHF0.15㨪0.5Hz ߣߒߚޔ Ყセ LF/HF ߪ 1.2 ߣߥࠆޕ㧔ᷝઃߩ Excel ࠺࠲ࡈࠔࠗ࡞ 0001RR ߦࠆ㧕 ฝਅߩ⸃ᨆ⚿ᨐߢ LF ߇ 1127㧔ms㨊2㧕HF ߇ 921.1㧔ms㨊2㧕ޕ ࠣࡔࡦ࠻ᢙߪ 41 ߢࠆޕ ో PP㧔21 1 ਇᢛ⣂㒰ߊ㧕4.062㧑 ⚂ 8 ᄖࠇ୯߇ᄙޕ 22 ߩᄖࠇ୯₸ ో RR㧔21 1 ਇᢛ⣂㒰ߊ㧕0.522㧑 22 ߩᲧセ (ᷝઃࡈࠔࠗ࡞ෳᾖ) ోߣߒߡߪ⦟ᅢߦ߃ࠆ߇ߘࠇߙࠇߩ⸃ᨆ୯ߩ࠻ࡦ࠼ࠣࡈࠍᲧセߔࠆޕ P-P ߪ 5 ಽ㑆ߥߩߢߊߟ߆⼂ߢ߈ࠇ߫ᰳ⪭ㇱಽ߇ߥߊߥࠆޕ HFޔLF/HF ߩᰳ⪭ㇱಽߪᄖࠇ୯߇ᄙߚߦ⸃ᨆਇน⢻ޕ 0001PP ߩ࠻ࡦ࠼ࠣࡈ ᄖࠇ୯߇ዋߥߚߦᰳ⪭ㇱಽ߇ߥޕ 0001RR ߩ࠻ࡦ࠼ࠣࡈ ᢙߢߪ 0.5 ⑽ߩ㆑ࠆޕ ᤨ㑆ߩߕࠇߪࡄ࡞ࠬࠝࠠࠪࡔ࠲ౝߢߩಣℂᤨ㑆ߥߩ߆㧫 0001PP ߣ RR ߩᲧセ 0001 LF㧔P-P㧕ߣ LF㧔RR㧕ߩᲧセ HF ߩᲧセ LF/HF ߩᲧセ & $"".. %! & #& ' & !&$ #"' #!% $$#% &&# %( &(" " (!($ -- $ % &.. -- % %".. $ %" %#" %!%# ( -- ' ".. !(&(#$ !$& '!$ ' (!($ & %!$.. $ '# -- %$ $' ( ( % " # %.. !% % -- !# !" $#& "$$ # !(!#("# " .. %# $ $& %!("#(# "$ ! %#!.. " (!(! "'% $$.. ""' -- $ '% -- '"$$ !&' & !(#( -- %!".. & &&! "!% ''" " ' &$# % '& &"# '"$ "# !"! %" ' "' "' " " % $ &$& ' %%" !(!#( (( & & ! $!&& ' $' -- % &"&" $"! $ "&'% !' %.. ' .. -- -- (!(# (!(# !("%( % $%.. -- ' # ( ( & !!((!" ' #(&($ $ % ".. -- # "'.. -- " %.. -- ! $!.. %! ' # !("(!" $" .. -- #! ! "" # 8 %!$ *) +) -- !!(!( # 20 6457 $"$.. -- .. / & " # ' ! & & # $! # $ # !& & $ ! " " # # # % ' " !! ! & ! ' $ " " % +)*) $ "% #$&#& $#&%$ '"#& ! "&% !!' ' $" $&$ $%!! % #$ !%!# !&& "& ! #$ "! " &! " " !&! "%$%& %&# '' # !#& !"#'& " !&" "%!! ""!$' "'%"& # !%$ %$!% %' $'' $ !"$%! "'" %#$ %! .. -- -- !!.. -- $#.. -- &.. ' !((!(! &("($ % (#( " ' '$ #! %' !'$ !$ !! %& '! "%# $ "$ !&' $ ' ! !#&!! $ "'' $'! ' !"& !'!" #$!& #$&% #'% %" "" $! % !#$& " && $ $#&$' #! ' "! "%$ !#& %&& !'# !!" ""'' "'& $$&! '! % ## $%'$ % !% "# "#& !'& # ' " % !&& "# "'%& $ &% "%!' &"$ # # %! $ "'%% ! #$ !% ' $ $ ''$' %&' !$' ' &' #$' " '# "%'! !! ' ## ""!" !% "%# #' "#& $"# "'#% ! ! # !$# $$& !&%# !%'& "#% "&"% %& %" 3 $& # ,, 1 "$ $ & # " $ ! %" %" ' " # !! $ $$' ' ! " "#! ! ' !!& $' % & & !$ $ # 1 # 3 $!"! $'! !" " #$ % $'$ # '" ##"!' !'!!# #" & #$%$ !# $ &# $% % PLoS ONE | www.plosone.org Cardiac diseases are a major cause of mortality in the world. Studies carried out in 2006 in Colombia establish that heart diseases produced circa 30875 deceases with an overall increase of 19.6% since 1999. Therefore, there has been great interest in the development of computational tools for prognosis and diagnosis. The main aim of these tools is to improve performance of cardiologists on prognostic and diagnostic tasks, i.e., reducing both the number of missed diagnoses or prognoses and the time taken to reach such decisions. Under these conditions, it is expected that detecting cardiac signs helps to decrease the mentioned decease rates. At the same time, the introduction of computational systems offers additional benefits, since the early identification of patients would help the specialists to deal efficiently with certain cardiac diseases. Moreover, as traditional risk stratifiers are commonly used for prognosis, their positive predictive value is not as high as the clinical practice demands. Heart rate variability (HRV) has been often related with the diagnosis and prognosis of certain cardiac diseases and, in fact, is a standard method for studying the autonomic nervous system (ANS) in heart control [1]. Several findings on HRV analysis have demonstrated that geometric, statistical, spectral, multi-resolution and non-linear approaches are powerful tools for the assessment of cardiovascular health [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18]. Several patterns observed from HRV dynamics are often related with myocardial infarction (MI) [18,19], sick sinus syndrome (SSS) [1], multiple cardiac arrhythmias [1], atrial fibrillation (AF) [20], congestive heart failure (CHF) [21], complete heart block (CHB) [2], and ischemic cardiopaty [2], amongst Introduction * E-mail: [email protected] 1 February 2011 | Volume 6 | Issue 2 | e17060 others. Additionally there are some risk factors that affect HRV directly or indirectly, such as blood pressure (BP), alcohol, smoking and drug consumption [2]. Cardiovascular risk in general terms is often related to low or excessive fluctuations of the NN intervals given by intrinsic and extrinsic factors [10]. The relation between reduced HRV and mortality risk was first shown by Wolf et al. in 1977 [22]. Furthermore, during the last 25 years, the significance of HRV in assessing cardiac health has been recognized and various techniques have been developed in order to analyze the fluctuations of NN intervals. Time and frequency domain analyses are often referred to as classical analysis as they were the very first methods being used for the HRV processing [23,24,25,26,27,28,29]; these methods are often inconvenient as they are linear and stationary methods intending to model a highly non-linear phenomenon. These methods as well as visual assessment of the raw HRV data are the most common approaches used in clinical practice. In 1996, the Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (ESC/NASPE) published standards on HRV analysis. They proposed several time and frequency domain parameters and their clinical uses, based on short-term (5 min) and long-term (24 h) HRV data [12,21]. Relatively recent findings have shown that frequency domain methods in HRV are related to hypertension [29]. Subjects with risk factors such as hypertension, obesity, insulin resistance, among others, generally show a high sympathetic activity which is often presented before the clinical manifestation of hypertension. As spectral methods are useful to assess the changes in sympathovagal balance, hypertension has been accurately predicted. Competing Interests: The authors have declared that no competing interests exist. Funding: All the financial resources to carry out this research were provided by Universidad Autonoma de Occidente, Cali, Colombia. They provided the necessary medical equipment for the data recording and analysis. The funders had no role in the preparation of the manuscript. Copyright: ß 2011 Ramirez-Villegas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Received November 2, 2010; Accepted January 17, 2011; Published February 28, 2011 Editor: Kelvin Wong, Royal Melbourne Institute of Technology, Australia Citation: Ramirez-Villegas JF, Lam-Espinosa E, Ramirez-Moreno DF, Calvo-Echeverry PC, Agredo-Rodriguez W (2011) Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk. PLoS ONE 6(2): e17060. doi:10.1371/journal.pone.0017060 Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multilayer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis. Abstract 1 Computational Neuroscience, Department of Physics, Universidad Autonoma de Occidente, Cali, Colombia, 2 Engineering Faculty, Department of Automatics and Electronics, Universidad Autonoma de Occidente, Cali, Colombia Juan F. Ramirez-Villegas1*, Eric Lam-Espinosa2, David F. Ramirez-Moreno1, Paulo C. Calvo-Echeverry2, Wilfredo Agredo-Rodriguez2 Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk PLoS ONE | www.plosone.org Two distinct source materials were employed in this study: (a) A database of risk and non-risk individuals given by Coomeva IPS (Health Provider Company) experts and (b) the corresponding 2. ECG Database This study was approved by the Institutional Review Board of Universidad Autonoma de Occidente (UAO), Cali, Colombia. Each patient in this study was informed in detail about the procedure and signed an informed consent which guaranteed the transparence of the test and the records’ future usage. 1. Ethics Statement Materials and Methods Classical methods of analysis are not absolutely suitable for analysis of HRV [21,30,31,32]. Consequently, some approaches have applied multi-resolution methods to HRV analysis. Multiresolution methods are related to the wavelet transform multi-level decomposition; given the non-stationarity of the HRV signals [31], the discrete wavelet transform (DWT) and wavelet packet transform calculate the required high and low frequency subbands, enabling more accurate HRV analysis. Moreover, wavelet entropy measures have been introduced for the implementation of pattern recognition schemes and seem to provide high performances in diagnosing cardiac diseases [21]. However, to our knowledge, previous work has not considered utilizing wavelet energy measures analysis for HRV assessment. Recently, new dynamic methods of HRV quantification have been used to uncover nonlinear fluctuations in heart rate that otherwise are not apparent. Several methods have been proposed: Return map (Poincaré plot) calculation [13,14,15,33,34,35,36,37]; Lyapunov exponents/spectrum [2,38]; 1/f slope [39]; approximate and sample entropy (ApEn and SmEn, respectively) [20,40]; and detrended fluctuation analysis (DFA) [41]. Moreover, for the last years these analysis techniques have been useful to understand the HRV dynamics as the response of a highly non-linear system, and therefore to produce discriminative enough features to reach high success rates when several pattern recognition techniques are implemented [2,20]. Pattern recognition in HRV has been used for a variety of applications from prognosis to diagnosis of heart diseases. The most commonly used schemes include: Artificial neural networks (ANN) frames [20]; support vector machines (SVMs) [1,20]; and linear statistical classifiers [21]. In general terms, the performance of these classifiers in prognostic or diagnostic tasks is relatively high (80% to 95% sensitivity in the best cases); however, they have been used for the recognition of several patterns in specific cardiac diseases (e.g., CHF, paroxysmal AF, MI, cardiac arrhythmias, amongst others) rather than for the prognosis of cardiovascular risk. In this work, HRV analysis methods and pattern recognition schemes (namely, artificial neural networks and support vector machines) were used to discriminate between healthy control subjects and cardiovascular risk patients. Extensive experiments were carried out regarding the overall usefulness of the features with emphasis on the prognostic values associated to classical and non-linear analysis methods. We determined the potential application of such methods to clinical practice in order to increase the success rates of cardiovascular risk assessment. There is a strong consideration for breathing frequency as a relevant feature of the HRV analysis, given the respiratory sinus arrhythmia (RSA) phenomenon [25], [42,43,44]. Additionally, we provide a brief explanation on the implementation of advanced HRV analysis software using the analyses performed in this work and for automatic cardiovascular risk prognosis. 2 February 2011 | Volume 6 | Issue 2 | e17060 This phenomenon is known as respiratory sinus arrhythmia (RSA), which is a rhythmic fluctuation of the heart beat intervals in a phase relation with the inspiration and the expiration. The autonomous nervous system (ANS) is the part of the nervous system which extrinsically controls the vital functions and organs such as the heart, lungs and glands. ANS is divided into two major subsystems: The Sympathetic Nervous System and the Parasympathetic Nervous System. These systems are antagonists and responsible for the tuning of some physiologic mechanisms. Intrinsic as well as extrinsic factors may affect such balance and sometimes provoke different nervous activity patterns (sympathetic or parasympathetic), which are often the cause of functional irregularities; those patterns are given by hyper/hypoactivity of such subsystems. When the respiration is being monitored in a controlled environment, the R-R intervals tend to be shorter during the 2.1. HRV and Respiratory Sinus Arrhythmia Considerations. Respiration has an important influence in HRV. electrocardiographic data extracted by us using a medical expert protocol. The requirement for patient’s clinical history and positive or negative cardiovascular risk verification was assessed by Coomeva experts as this verification concedes extreme importance on the validity and quality of the subsequent results of this work. The main purpose of this step was to measure the relationship between HRV indices and the subjects with risk factors. Diabetes Mellitus, high blood cholesterol and other lipids, high blood pressure, metabolic syndrome, overweight, obesity, physical inactivity, tobacco and drug consumption are common risk factors of cardiovascular heart diseases (CHD) and heart failure; nearly all of these risk factors are associated with HRV reduction or excessive fluctuations [45,46,47,48,49]. All the risk subjects (patients) showed at least 3 significant risk factors according to the experts’ risk assessment. In order to get the ECG and respiratory signals, a PowerLab device -ref. ML865- (ADInstruments) and a piezoelectric band -ref. MLT1132/D- were used. PowerLab is a data acquisition system used in a variety of experiments and applications with humans’ biopotentials. The unit can record more than 200000 samples per second and has individually selectable input sensibilities. Additionally, it has a bioamplifier (used to record any biological signal from the human body or other source) and an internal processor with low and high pass filters. The hardware of the PowerLab uses the software package Chart and Scope in order to record and analyze each acquired dataset. On the other hand, a non-invasive blood pressure (NIBP) measure was taken into account for the HRV evaluation as it is considered one of the main risk factors in the cardiovascular assessment [49]. Such measure was extracted by using a multiparameter monitor Spacelabs ref. 90309 which allows us to monitor the following parameters: Electrocardiography, respiration, temperature, non-invasive blood pressure and pulse oximetry. Each register (a total of 90 electrocardiographic records) was recorded following a medical protocol designed by the teamwork using the frontal-bipolar derivation (D2) of the electrocardiogram. The duration of each record was 5 minutes, following the international standards established by the Task Force of the ESC/ NASPE [12]. In addition, the following information was taken from each patient: Age, gender, weight, height, diagnosed cardiovascular diseases, risk valuation given previously (without risk, medium risk or high risk), diagnosed risk factors. All the subjects of this study were in sinus rhythm during the ECG recordings, furthermore, the mean breathing frequency for all was 12:1+2:1breaths/min. HRV for the Prognosis of Cardiovascular Risk 220 50 0 2 3 4 FN 0 0 0 270 PLoS ONE | www.plosone.org doi:10.1371/journal.pone.0017060.t001 FP 240 Decomposition Level 1 100.00 99.19 96.53 96.06 Sensitivity (Se - %) 100.00 99.19 96.53 91.98 Accuracy (Ac - %) Table 1. Performance of the R-peak detection algorithm at various wavelet decomposition levels (sampling frequency of 200 kHz) using the Haar wavelet. 3.1. R-Peak Extraction. The R peaks were extracted using the Pan-Tompkins algorithm and the wavelet transform by keeping the detail coefficients from 21 to 24 using the Haar wavelet [51]. In order to know the effectiveness of the wavelet decomposition levels, the performance of the algorithm was measured using the detail coefficients from the first decomposition level to the fourth decomposition level using on 6120 heart beats recorded with the implemented medical protocol. The results of this evaluation procedure are summarized in Table 1. According to Table 1, the most appropriate wavelet decomposition level to extract the R-peak is 24 , with a sampling frequency of 200 kHz for the ECG signal and using the Haar wavelet. However, the diverse resolution levels on the R-peak extraction procedure may affect the temporal resolution of the signal; thereby a comparison of the estimation of the R-R series was made using the resolutions taken into consideration for this work. We found that, despite the detected false positives, there are no significant spatial and frequency changes on the signal given by the decimation process; thereby, there are no significant variations on the spectral indexes estimation. 3.2. Outlier Removal Procedure. Past publications have shown that eliminating the ectopic HRV data is often better than interpolating them or doing any other cumbersome procedure 3. ECG Data Pre-processing inspiration and larger during the expiration. Various theories have been exposed about this phenomenon, according to many experiments on animals [43]. The RSA comes from the control given by the oscillations in the firing rates of the medullar neural networks (central pattern generators, CPGs); the medullar neural network shows periodic oscillations even when the afferent inputs are interrupted. When those oscillations are carried out by afferent stimuli from the receptors in the lungs and the thoracic wall, there is a cardiac rhythm oscillation known as RSA. Obtaining the respiratory frequency has been used to evaluate the magnitude of the RSA, defined as the sum of the power spectral density estimations on the respiratory band. The variations induced by the respiratory rate introduce a significant change on the measurement of HRV; however, if the respiratory frequency is a constant (i.e., 12 breaths/min) and the tidal volume is relatively constant for the maximum capacity, the error in the measurement caused by respiratory irregularities is eliminated and allows a better stability and an effective comparison of the RSA magnitude between patients [50]. In this study, the above criteria were used to measure HRV in the patients. Consequently, both the recorded ECG signals in resting conditions and specific conditions of the environment were taken into account for the vital signs stabilization. 3 maxxj {x , for i~0, 1,2 ::: k: s ð1Þ February 2011 | Volume 6 | Issue 2 | e17060 4.1. Statistical or Time-domain Measures. In this approach, a set of 7 well-known statistical indexes were calculated: First, the mean and the standard deviation (SDNN) of the NN intervals of each 5 min record; second, the square root of the mean of the sum of the square of differences between adjacent NN intervals (RMSSD); third, the so-called pNN50 was computed as the NN50 count value divided by the total of all NN intervals, where NN50 is the count of adjacent intervals differing by more than 50 ms in the entire HRV record; fourth, the interquartile margin of the NN intervals (MIRR) was also calculated, i.e., the first quartile subtracted from the third quartile of the NN series; in addition, the median of the absolute differences of the NN intervals (MDARR) and the standard deviation of the differences between adjacent NN intervals (SDSD) were calculated. 4.2. Spectral or Frequency-domain Measures. Spectral or frequency-domain measures are based on the power spectral density (PSD) analysis of the R-R series. In this kind of analysis some processing techniques, such as interpolation and detrending, are necessary. The spectral measures have the advantage of relating the power of variation in different frequency bands to different physiological modulating effects [2,24]. Extensive experiments have shown that parametric methods (AR spectrum) tend to produce better results than classical nonparametric methods (Welch’s periodogram) when the data length of the signal is relatively short, as is the case with HRV data [20]. For this reason, we applied parametric PSD estimation. Three main spectral measures are distinguished from the spectrum of the R-R series: The power of the very low frequency band (VLF band, 0– 0.04 Hz), the power of the low frequency band (LF band, 0.04– 0.15 Hz) and the power of the high frequency band (HF band, 0.15–0.4 Hz). These frequency components and their normalized values (NLF and NHF) were calculated using a standard integration procedure (area under the curve) of the spectrum regions. In addition, the ratio of LF to HF was calculated as it indicates the balance of ANS. For parametric spectral methods, the data can be modeled as the output of a discrete and causal filter whose input is white noise. 4. HRV Classical Measures where x is the mean and s is the standard deviation of the sample ðn{iÞ and j is the position of one given value of the sample. In this way, the critical values of the test are determined by specifying a and by calculating b and lðbÞ in order to calculate the t-student statistical test [53]. Ri ~ [52]. Grubbs Test extended by Rosner method was used in this work [53,54]. Assuming a normal distribution, Grubbs’ outlier test can be used to remove one outlier. Nevertheless, if we decide to remove this outlier, we might be tempted to run Grubbs’ test again to see if there is a second outlier in the data; however, the rejection criteria changes. Rosner has extended Grubbs’ method to detect several outliers in one dataset. Rosner’s several outliers detection method seems to be compatible with HRV signals in general ways [54]. For a specified limit k of the number of outliers, the procedure is calculated by using reduced samples of length n, n{1, :::, n{kz1, respectively. For each sample (n{i): HRV for the Prognosis of Cardiovascular Risk s ð2Þ ð3Þ Ej : Etotal ð4Þ j X pj log2 (pj ): ð5Þ PLoS ONE | www.plosone.org In [21], the wavelet entropy is calculated as a unique multiresolution measure. However, in this work, both the energy and entropy measures are taken into account due to their high cardiovascular risk prognostic value. A problem with wavelet packets implementation is coping with redundant information coming from the wavelet transform computation for the approximation and detail coefficients [54]. In order to avoid the redundant information due to wavelet packet decomposition, a standard Principal Component Analysis (PCA) was computed. PCA chooses a dimensionality reduction by linear projection that maximizes the scattering of all projected samples. The resultant feature space is the projection of the original data set over the covariance matrix eigenvectors, which constitutes the WS~{ In this way, using the definition of entropy given by Shannon, the entropy can be calculated as follows: pj ~ Then, the total energy can be calculated as the mean value of the energy for each coefficient. On the other hand, the wavelet entropy can be calculated as the probability distribution of the coefficients or the wavelet energy into normalized values: 2 Ej ~ Cj : According to the literature consulted [21], there is a three step procedure to calculate the wavelet measures: First, calculate the wavelet packet coefficients; second, calculate the wavelet energy; and third, calculate the wavelet entropy. The wavelet packet analysis in HRV is used to separate the signal into multiple scales. This method allows us to analyze both frequency and spatial domains and removes polynomial nonstationarities of the signal [11]. Due to this property, wavelet analysis is much more suitable for analyzing HRV signals than statistical and spectral methods. In this work, the wavelet packet analysis was implemented by using the DB4 function as mother wavelet [21]. The decomposition was performed at a level of 5 [21,56,57]. Once the wavelet coefficients are known, it is possible to calculate the energy for each coefficient: 5. Wavelet Packet Measures where a(k) are the recursive coefficients calculated by covariance method [2]. An important factor in the implementation of the AR method is the selection of the order [28]. The order p = 16 for the AR model was taken into account for this study [26,54,55]. k~1 ep ^ AR ð f Þ~ 1 , P p P {2pjkf fs ^p ðkÞexp a 1z f The spectral power of an AR process is given by: 4 February 2011 | Volume 6 | Issue 2 | e17060 HRV has been often evaluated using non-linear methods [6,20,58]. These methods seem to be very relevant in feature extraction of the HRV series; on the other hand, HRV dynamics is highly non-linear and, actually, HRV series is the response of a chaotic system, i.e., a system with high sensitivity on the initial conditions [59,60,61]. 6.1. Poincaré Map-Based Features. The most popular non-linear technique to assess the HRV is the so-called Poincaré map (also called return map or Lorenz map). The Poincaré map corresponds to the reconstruction of the attractor of the system based on the HRV experimental series [60]. This map can be constructed by plotting each RR interval against the next interval. This plot is very useful in summarizing beat-to-beat information on heart behavior. The Poncaré plot is a simple visual interpretation technique and it has proved to be a very powerful predictor of disease and cardiac dysfunction [21]. In order to extract features of the Poincaré map, two methods were applied in this work: The ellipse fitting technique and the histogram technique [17]. A group of axes with orientation onto the identity line or principal diagonal is the main feature of the ellipse fitting technique. The axes of the plot are related to a new group of axes with a rotation of p=4 [17]. On the new reference system axes, the dispersion of the points through the x1 axis is measured by its standard deviation, denoted SD1. On the other hand, the magnitude of the points through the identity line shows the level of long term variability, denoted SD2, i.e., the standard deviation over the x2 axis. On the other hand, the ellipse approximation is satisfactory in many cases; however, the shortening that occurs on short R-R intervals is not taken into account by this technique [35]. The histogram approximation has been used to evaluate the distribution of the data into several time ranges. There are three types of histograms: The width histogram, the NN interval histogram and the length histogram [17]. As the visual interpretation of the histogram can be useful to extract information about the heart, it is necessary to parameterize it. The computation of the width of the three histograms is a very strong feature for the prognosis of cardiovascular risk, as it gives the absolute statistical ranges of the NN intervals and its projections. These features are useful for assessing short term HRV, long term HRV and the distribution of NN intervals itself. These histogram widths were taken into account in this study. 6.2. Complexity Analysis. There are several approximations for estimating regularities of different kinds of signals. The most widely used complexity measures for short and noisy data series are approximate entropy (ApEn) and sample entropy (SmEn). These features assign a non-negative number to temporal series in order to quantify the regularity of its fluctuations. Given this fact, complexity measures have been highly useful for the analysis of HRV signals [20]. To calculate ApEn and SmEn from temporal series it is necessary to choose two parameters: A length m and a window size r. ApEn measures the logarithmic similarity amongst neighboring input patterns (those with a separation radius less than r) for m contiguous observations. On the other hand, SmEn is an unbiased estimator introduced to avoid the self-couplings and to quantify the regularity of highly irregular temporal series. SmEn is equal to 6. Non-Linear Measures weights of each feature on the input space according to how much of the model’s variability is explained by them. The most important entropy and energy features (in terms of variability) were selected. HRV for the Prognosis of Cardiovascular Risk ð6Þ fj ðxÞ~ expðxÞ{expð{xÞ : expðxÞzexpð{xÞ ð7Þ where wmji is the synaptic weight i of the neuron, hj is the bias and fj is the activation function. In the current model we have two nonlinear transfer functions corresponding to the hidden and the output layers, given by the following equations, respectively. i~1 ! N X Yjm ~fj smj ~fj wmji xmi zhj , Multilayer Perceptrons (MLP) are frequently implemented for classification tasks, given their generalization capabilities. In this work, a standard three-layer network has been proposed. Let m (xmi ) be an input pattern, the output of a single artificial neuron of the hidden layer is given by the following equation: 8.1. Multi-layer Perceptron (MLP) Neural Network. Multilayer Perceptrons (MLP), Radial Basis Function (RBF) networks and several Support Vector Machines (SVM) were evaluated for the classification stage of this work. All classification schemes were trained to capture the difference between cardiovascular risk subjects and healthy ones. 8. Classification PLoS ONE | www.plosone.org 5 February 2011 | Volume 6 | Issue 2 | e17060 ð8Þ Ni 1 X ^i , x Ni i~1 ð9Þ Normalization, Validation and Performance PLoS ONE | www.plosone.org Measures. In order to train the classifiers and perform the KS-tests, all samples were normalized using the MinMax normalization [21]. There are several ways to compute the performance of a recognition system. The pattern recognition schemes were evaluated using two different procedures: The calculation of several performance measures such as sensitivity (Se), specificity 8.4. where Ni is the number of input vectors associated to each Gaussian node of the hidden layer. This procedure is computed until the stabilization of the synapses is reached (the weights do not change from a training cycle to another). The Gaussian scale parameters for each hidden neuron can be determined by the approximated magnitude of the influence radius of each neuron on the input space in relation to other neurons near to the j neuron. This network consisted of three layers (the sensory input layer, the hidden layer and the output layer), with 5, 3 and 1 neurons, respectively. 8.3. Support Vector Machines (SVMs). In the most cumbersome case, the patters are not linearly separable. The main objective of the SVM schemes is to map the input data from the N-dimensional space to the M-dimensional space (M.N), where the classes are supposed to be linearly separable and can be classified by the calculation of a standard separating hyperplane [64,65] (see Appendix S2 for details on the implementation of SVM). In our work, polynomial and radial basis function (RBF) as well as linear SVM were used to classify the input data. ^ (tz1)~ w This architecture guarantees that the network’s output will run over 0 and 1 (given the sigmoid output function). We used the Levenberg-Marquardt backpropagation algorithm to train the MLP neural network, as it is the most popular and successful learning method for training MLPs. The algorithm employs iterative mean squared error minimization using least squares curve fitting [64]. The network consisted of three layers (the sensory input layer, the hidden layer and the output layer), with 5, 200 and 1 neurons, respectively. 8.2. Radial Basis Function (RBF) Neural Network. RBF network is a well-known classifier which combines supervised and unsupervised learning. A standard three-layer RBF network was implemented in this work. The hidden layer of the network is responsible for producing a non-linear expansion of the input space to a hidden space where the classes are linearly separable by unsupervised learning [64]. The most popular unsupervised learning rule for the hidden layer is the so-called k-means. In this procedure, we establish a number of neurons (k), whose synaptic weights wji are randomly distributed on the input space and then a similarity measure is calculated, i.e., the Euclidean distance. When this procedure is applied to the whole layer, the weight update rule is then calculated from: 1 : 1zexpð{xÞ 6 February 2011 | Volume 6 | Issue 2 | e17060 All the feature analysis results obtained in this work were reported using standard box diagrams, given their suitability for this statistical analysis and since their interpretation can be performed in a remarkably easy way, regardless of the fact that variables could present a great deviation from the normal distribution. The tops and bottoms of each box are the 25th and 75th percentiles of the samples, respectively. The line in the middle of each box is the sample median; this illustrates the skewness of the samples. The dashed lines extending below and above each box are drawn from the ends of the interquartile ranges to the furthest observation within the dashed line length. Crosses are the outliers of the samples; they represent atypical data sufficiently distant from the limits of the box. Note that their elimination is not justified, provided that the objective of box diagrams is to give a complete knowledge of the shape of the data distribution. Statistical, spectral, multi-resolution and non-linear features were calculated from the recorded HRV database. The statistical analysis for the classical measures is shown in Figure 3. 1. Statistical, Spectral, Multi-resolution and Non-linear Analysis of Extracted HRV Data Results For each subject statistical, spectral, multi-resolution and nonlinear features were calculated using MatlabTM 7.6.0. The flow diagram of the whole system is depicted in Figure 2. The application works with 5-min electrocardiographic (ECG) signals; thereby, a preprocessing step is involved in the procedure, i.e., the R-peak extraction and NN intervals calculation. Therefore, there is an ectopic beat removing algorithm, i.e., Grubbs Test extended by Rosner outlier detector. The next stage contains the feature extraction, i.e., statistical, spectral, multiresolution and non-linear features calculation. For spectral features calculation, the 4 Hz cubic interpolation and the smoothness priors l~1000 as detrending method are performed in the whole HRV dataset. The wavelet packet-based features are extracted using DB4 mother wavelet and the decomposition is done to a level m~5 [21]. Ellipse fitting and histogram features are extracted from the first-order Poincaré plot. SmEn and ApEn complexity measures are extracted using r~0:1s and m~1 : 4. All the features mentioned above can be displayed by the user. Feature selection is performed via KS-tests and the top-5 features are used to distinguish normal subjects (N) from cardiovascular risk ones (R). The classification scheme is responsible for giving the final prognosis result. The respiratory rate mean and standard deviation feature can be used to corroborate that respiratory rate is relatively constant over the whole ECG record and that is approximately equal to 12 breaths/min. If this condition is not fulfilled, the results would be invalid. 9. Computational Implementation (Sp), positive predictive value (Pp), negative predictive value (Np) and accuracy (Ac), all in the interval [0.00,100.00]. On the other hand, Receiver Operating Characteristic (ROC) curve was used in order to measure the accuracy of ANNs. The ROC curve is the plot of the true positive rate (Se) versus the false positive rate (1 – Sp) for different testing points in a diagnostic test. An ROC curve illustrates various aspects: First, it shows the tradeoff between the sensitivity and the specificity in the evaluation of a model; and second, it is a measure of the accuracy of the algorithm given by the area under the curve, i.e., the algorithm’s probability of giving correct classifications when a new input pattern is presented [29]. fk (x)~ Statistical significance of these results was tested using a standard two-sample KS-test. A level pv0:05 was considered a statistically significant difference [63]. On the other hand, in order to use the best features on the classification stage, a level pv0:0001 was considered statistically relevant enough as KS test-based selection criteria. Figure 1. Cumulative distribution plots comparison between a given feature considered in this work and the standard normal distribution. doi:10.1371/journal.pone.0017060.g001 Up to this moment, several statistical methods have been related to feature selection for training and testing classifiers and for improving their overall performance. As most of computational methods in pattern recognition require a feature selection step, the nature of such procedure depends largely on the structure of the data. As a result, many computational approaches use parametric statistics, e.g., the so-called multivariate analysis of variance (MANOVA), which often reports adequate results for such purposes. However, we cannot assume that all the data has resemblance to a standard normal distribution at high statistical significance. Therefore, we implemented two methods in order to test the normality of the data: First, we conducted the Pearson’s chi-square test; and second, the one-sample KS-test. According to our results, the data (for all the features taken into account), has a remarkably different distribution when compared to the normal distribution (with pv10{9 ). As both methods reported quite similar results, we concluded that non-parametric (distributionfree) statistical methods needed to be implemented at this stage. These methods, unlike parametric statistics, make no assumptions about the probability distributions of the variables being assessed. Figure 1 depicts the empirical cumulative distribution plot for a given feature (note the significant difference to the standard normal distribution). 7. Statistical Significance Tests and Feature Selection the negative of the natural logarithm of a conditional probability. It is the probability that sequences close to each other for m consecutive data points will also be close to each other when one more point is added to each sequence [20]. For both, ApEn and SmEn calculation, it is recommended to take r~ks, where s is the standard deviation of the data series and k runs over 0.1 to 0.2 [62] (for details regarding the calculation of complexity analysis measures see Appendix S1). HRV for the Prognosis of Cardiovascular Risk HRV for the Prognosis of Cardiovascular Risk PLoS ONE | www.plosone.org The KS-test showed that all statistical features (mean, standard deviation, RMSSD, pNN50, MIRR, MDARR and SDSD) are statistically significant (pv0:05) for the comparison of normal (N) and cardiovascular risk (R) subjects. The most statistically significant features were the standard deviation, RMSSD, MIRR and SDSD (with pv0:001); the remaining features reported significances close to the alpha value. In addition, LF power, LF/HF ratio, NLF power and NHF power showed statistically significant differences (pv0:05) be- 7 February 2011 | Volume 6 | Issue 2 | e17060 tween normal and cardiovascular risk subjects; however, VLF and HF powers do not discriminate between these two groups (pw0:05). Standard PCA was applied to the multi-resolution measures in order to obtain the most relevant features in terms of variance. The total of selected groups of wavelet coefficients was 26 out of 62 (the total of wavelet packet coefficients from a decomposition level of 5). These 26 groups of coefficients, according to the PCA, retain approximately 98% of the variance of the model; however, the Figure 2. Flow diagram of the computational implementation of the computational tool reported in this work. doi:10.1371/journal.pone.0017060.g002 HRV for the Prognosis of Cardiovascular Risk were statistically significant with0:003vpv0:05 (1 from the first decomposition level, 1 from the second one, 2 from the third one, 3 form the fourth one and 5 from the last one). The remaining entropy and energy components were not taken into account because they did not discriminate between the two groups (normal and cardiovascular risk subjects) with statistical significance. Non-linear analysis KS-test results are illustrated in Figure 5. The results of the non-linear analysis showed that SD1 and SD2 ellipse fitting features are statistically significant (pv0:01, in the best case); SD1 being the less significant one. Additionally, there is statistical difference in histogram technique parameters, i.e., the widths of the NN intervals, the width and the length histograms of the HRV records, among normal and cardiovascular risk subjects. According to the statistical analysis, statistical significance increases with the NN intervals histogram width (pv0:00001) and the length histogram width (pv0:00001). For the case of the width of the width histogram the statistical difference is relatively high (pv0:01). PLoS ONE | www.plosone.org 8 February 2011 | Volume 6 | Issue 2 | e17060 Figure 4. PCA transform of multi-resolution features of the 5-min HRV records from Normal (black diamond) and cardiovascular risk (red square) subjects. (a) entropy features and, (b) energy features. doi:10.1371/journal.pone.0017060.g004 features projections given by this transformation were not used to train the classifiers due to the decreasing statistical significance of the projected features. The main results of PCA for the two principal components are illustrated in Figure 4. The second principal component projection showed statistical significance in both energy and entropy wavelet features; these two features retain approximately 50% of the variance of the model. In this analysis, even the third component showed statistical significance; however, the rest of the projected data were not significantly different or discriminative between normal and cardiovascular risk subjects. A total of 27 wavelet packet-based features were selected. Statistical significance levels of the entropy measures showed that 15 wavelet entropy components were statistically significant with0:00001vpv0:05 (1 from the first decomposition level, 2 from the second one, 1 from the third one, 3 form the fourth one and 8 from the last one). On the other hand, the significance levels for energy features showed that 12 wavelet energy components Figure 3. Box diagrams. (a) Statistical measures and, (b) Spectral measures from 5-min HRV records from normal (N) and risk (R) subjects in normalized values (y axis). doi:10.1371/journal.pone.0017060.g003 HRV for the Prognosis of Cardiovascular Risk 2.1. KS test-based Feature Selection Results. In order to evaluate each artificial intelligence (AI) scheme, the cross validation method was used. This method allows generating the indexes for the validation of the N observations by choosing randomly the training and test observations. Each AI scheme was trained using approximately 66% of the observations (60 HRV records, 30 from normal subjects and 30 from cardiovascular risk subjects) and tested using the remaining 33% of them (30 HRV records, 15 from normal subjects and 15 from cardiovascular risk 2. Artificial Intelligence Schemes Classification for the Prognosis of Cardiovascular Risk non-linear and 2 multi-resolution features. These features were used to train and test the ANN and SVM classifiers. Additional experiments were conducted in order to compare the performance of the four principal PCA feature projections to those chosen by KS-tests. PLoS ONE | www.plosone.org 9 February 2011 | Volume 6 | Issue 2 | e17060 Figure 6. Box diagrams of complexity measures. (a) ApEn and, (b) SmEn (r~0:1s and m~1{4) of the 5-min HRV records from normal (N) and risk (R) subjects in normalized values (y axis). doi:10.1371/journal.pone.0017060.g006 ApEn and SmEn significance test results are contained in Figure 6. ApEn shows increased statistical significance (pv10{7 ) for m~1 : 4. On the other hand, SmEn shows statistical significance (pv0:001) only for m~1 : 3, for m~4 there is no statistical significance for the comparison of normal (N) and cardiovascular risk (R) subjects. Table 2 contains the p values of ApEn and SmEn at various m values; the m value varies from 1 to 4. The subsequent values did not allow obtaining statistically significant ApEn and SmEn values due to the relatively short duration of the HRV records (5-min per HRV record) [20]. The total number of features extracted from spatial and frequency domains, multi-resolution and non-linear algorithms is equal to 52 (7 statistical, 6 spectral, 27 multi-resolution and 12 non-linear features). The total number of optimal features extracted by KS-tests is equal to 5 due to the statistically significant discrimination presented by them (the next section will illustrate this fact clearly). The resulting feature set combined 3 Figure 5. Box diagrams of Poincaré map-based features. (a) SD1 and SD2 ellipse fitting features and, (b) NN histogram (NN), width histogram (WNN) and length histogram (LNN) features of the 5-min HRV records from normal (N) and risk (R) subjects in normalized values (y axis). doi:10.1371/journal.pone.0017060.g005 HRV for the Prognosis of Cardiovascular Risk 1.21E–09 4.87E–09 6.83E–08 1 2 3 4 p-value (SmEn) 0.6101 2.52E–06 1.60E–04 2.38E–07 domain) and 15 features (5 from non-linear domain, 6 from multiresolution domain and 4 from statistical domain) selected by KStest. The results of MLP and RBF neural networks as well as of SVM classifications of HRV records from normal (N) and cardiovascular risk (R) subjects are illustrated in Table 3. The ROC curves for both neural network schemes are depicted in Figure 7; the areas under the curve are 0.9822, 0.8889 and 0.9024 for MLP; and 0.8800, 0.8667 and 0.8400 for RBFNN, for 5, 10 and 15 features, respectively. The linear SVM C value was fixed to 1 by default. The SVM with polynomial and RBF kernels’ C and c parameters produced the best classification performances. All C= and c were determined into a heuristic way. According to Table 3, the higher performance was reached by MLP using the top-5 features selected by KS-test. It is important to note that the performance of the classifiers was similar in all cases; therefore, many combinations of features are suitable for the prognosis of cardiovascular risk as it is proposed in our work. For the 5 optimal features, linear SVM selected 36 support vectors; SVM (RBF kernel)* SVM (Polynomial kernel) SVM (Linear) RBFNN MLP* SVM (RBF kernel)* SVM (Polynomial kernel) SVM (Linear) RBFNN MLP* SVM (RBF kernel) SVM (Polynomial kernel) SVM (Linear) PLoS ONE | www.plosone.org 10 93.94 Test set 90.91 100.00 Training set Test set 77.27 100.00 Test set Training set 100.00 Training set 60.00 Test set 73.33 83.33 Training set Test set 96.97 100.00 Test set Training set 100.00 Training set 86.36 Test set 86.36 100.00 Training set Test set 60.00 100.00 Test set Training set 96.67 Training set 86.67 Test set 74.24 100.00 Training set Test set 84.09 100.00 Test set Training set 100.00 Training set 72.73 Test set 85.71 71.88 Training set Test set 93.33 96.67 Training set Test set Se (%) 100.00 Training set *Classifiers that presented the higher performances on each experiment. doi:10.1371/journal.pone.0017060.t003 15 10 MLP* 5 RBFNN* Classifier #Features 77.27 100.00 70.45 100.00 77.27 100.00 100.00 83.33 100.00 100.00 81.82 100.00 75.00 100.00 77.27 100.00 100.00 90.00 80.00 100.00 78.79 100.00 70.45 100.00 72.73 75.00 93.33 100.00 100.00 100.00 Np (%) 92.73 100.00 88.57 100.00 77.27 100.00 72.43 83.33 78.95 100.00 96.43 100.00 84.62 100.00 85.00 100.00 71.43 96.43 85.71 100.00 75.36 100.00 81.58 100.00 72.73 70.00 87.50 96.67 93.75 100.00 Pp (%) 80.52 100.00 75.47 100.00 77.27 100.00 100.00 83.33 100.00 100.00 84.21 100.00 77.55 100.00 79.17 100.00 100.00 90.63 81.25 100.00 77.78 100.00 74.00 100.00 72.73 76.67 92.31 100.00 100.00 100.00 Ac (%) 85.61 100.00 80.68 100.00 77.27 100.00 80.00 83.33 86.67 100.00 89.39 100.00 80.68 100.00 81.82 100.00 80.00 93.33 83.33 100.00 76.52 100.00 80.00 100.00 72.73 73.33 89.66 98.33 96.67 100.00 February 2011 | Volume 6 | Issue 2 | e17060 Sp (%) Table 3. MLP, RBF neural networks and linear SVM (C~1), SVM with polynomial kernel (C~1; c~4) and SVM with RBF kernel (C~1; c~3) classifications using the top 5, top 10 and top 15 features selected via KS-test of the HRV records from normal (N) and cardiovascular risk (R) subjects. patients). This division gave an optimal performance (high generalization levels) for the ANNs as well as for SVMs. Experiments were performed using 5 (3 from non-linear domain and 2 from multi-resolution domain), 10 (4 from non-linear domain, 3 from multi-resolution domain and 3 from statistical doi:10.1371/journal.pone.0017060.t002 p-value (ApEn) 1.87E–08 m Table 2. Statistical significance for complexity measures at different m values. HRV for the Prognosis of Cardiovascular Risk 100.00 77.27 Test set 79.55 Training set Sp (%) 87.88 100.00 86.36 100.00 90.91 100.00 PLoS ONE | www.plosone.org doi:10.1371/journal.pone.0017060.t004 RBF Test set 86.36 100.00 Test set Training set Linear Polynomial Se (%) 100.00 Training set Kernel 86.44 100.00 85.37 100.00 86.96 100.00 Np (%) 79.45 100.00 80.85 100.00 90.48 100.00 Pp (%) 82.58 100.00 82.95 100.00 88.64 100.00 Ac (%) Table 4. Results of linear SVM (C~1), SVM with polynomial kernel (C~1; c~4) and SVM with RBF kernel (C~1; c~3) classifications using the total of features of the HRV records from normal (N) and cardiovascular risk (R) subjects. non-linear and multi-resolution features on HRV analysis perform better than the conventional and clinical-applied statistical and spectral analysis methods [2,27,28,29,30,31]. On the basis of determining the real usefulness of the non-linear and multiresolution features in terms of the prognostic value (Se, Sp, Pp, Np and Ac), extensive experiments were carried out in this work. 2.2. Do Multi-resolution and Non-linear Features Perform Better than Conventional Statistical and Spectral Features? A topic of remarkable discussion has been whether polynomial kernel SVM selected 28 support vectors; and RBF kernel SVM selected 43 support vectors from the same training dataset. In addition, as part of the experiments, we evaluated the effect of using all the features from all the analysis methods shown in this paper. The results showed that for SVM classifiers, the three schemes evaluated (linear, polynomial kernel and RBF kernel SVM) reached higher performances than ANN ones. The main results of these experiments are registered in Table 4. The results of ANN classification were not included due to the poorness of the classification performances, this is a common effect given by the overfitting produced by the high dimensionality of the input space. 11 February 2011 | Volume 6 | Issue 2 | e17060 The proposed classifiers were trained using statistical and spectral features (classical analysis features) and using the multiresolution and non-linear features (novel features) separately, especially in order to know the overall suitability of each group of features with respect to the HRV analysis. The main results of our experiments are depicted in Table 5. The ANN and SVM schemes were implemented under the same setup as described in the previous section. When statistical and spectral features were used to classify the data, the number of support vectors chosen by linear SVM, polynomial kernel SVM and RBF kernel SVM was 36, 24 and 46, respectively. On the other hand, when multi-resolution and non-linear features were used, linear SVM, polynomial kernel SVM and RBF kernel SVM selected 30, 24 and 46 support vectors, respectively. Table 5 illustrates at least two important findings from the experiments carried out for this part of the research: First, nonlinear and multi-resolution features have remarkably higher prognostic value than the features referred to as classical analysis (this fact was also confirmed by the statistical significance of the features already reported in this work); and second, the results indicate indirectly the overall usefulness of certain combinations of statistical and spectral measures and their expected effectiveness in clinical applications (it is important to note that even when these classical features are not very suitable to HRV analysis, the nonlinear nature of the classifiers is the main catalyst to reach moderately good performances). Due to the non-linearity and non-stationarity of the HRV signal, many authors prefer using non-linear and multi-resolution features rather than statistical or spectral ones in order to train classifiers [20,21]. Nonetheless, it is important to note that as the complexity of the features increases, also its medical interpretation becomes obscure and cumbersome. Furthermore, especially multiresolution decomposition produces an important loss on the potential interpretation of features and signals, regardless of the remarkable increase of the statistical significance of the features reported using such analyses. 2.3. PCA-based Feature Selection Results. In addition to the results reported above, several classification experiments regarding PCA features’ projections were performed in our work. They were carried out using the cross validation method Figure 7. ROC curves. (a) For MLP neural networks, (b) RBF neural networks obtained from the classification of the HRV test records using 5, 10 and 15 top features selected by KS-test; the areas under the curves are equal to 0.9822, 08889 and 0.9024 for MLP and 0.8800, 0.8667 and 0.8400 for RBFNN, respectively. doi:10.1371/journal.pone.0017060.g007 HRV for the Prognosis of Cardiovascular Risk SVM (RBF kernel) 73.33 95.45 88.64 90.91 RBFNN SVM (Linear) SVM (Polynomial kernel) SVM (RBF kernel) 80.00 68.18 SVM (Polynomial kernel) MLP SVM (Linear) PLoS ONE | www.plosone.org Heart rate variability has been related to numerous cardiac diseases. According to the literature, the short variations on Discussion under the same setup reported above. These experiments were made on the basis of two main goals: First, in order to investigate whether the significance levels of the projected features remained similar to the original ones; and second, to classify the data using the 3, 4, 5 and 10 principal features’ projections from such PCA analysis, as the variance retained by the 3, 4, 5 and 10 first components for both groups –normal healthy subjects and cardiovascular risk patients– was equal to 77.65%, 83.33%, 86.96% and 94.45%, respectively. Furthermore, the 99% of the variance of the model was retained by the first 21 components. According to the KS-test results, from the five first PCA projections, three of them remained to be statistically significant (pv0:03), and in one case, the seventh PCA projection also showed high statistical significance (pv0:04); the rest of the components were not statistically significant for the comparison of normal (N) and cardiovascular risk (R) subjects. The results of the ANN and SVM schemes classification of HRV records from normal (N) and cardiovascular risk (R) subjects are depicted in Table 6. With respect to the classification results using the projected features, linear SVM selected 46, 32, 27 and 23 support vectors from the whole training dataset; polynomial kernel SVM chose 28, 22, 21 and 21 support vectors; and RBF kernel SVM picked up 46 support vectors in all cases. Table 6 clearly illustrates important improvements for the performance of SVMbased classifiers. On the other hand, MLP and RBFNN schemes presented highly limited performances over the entire track of experiments regarding the implementation of PCA. However, the greatest performance reported by our work was achieved by MLP when the KS test-based feature selection was performed. The main aim of using these four different numbers of PCA projections was to compare the performance reached by the classifiers and to identify whether the data structure was suitable for the proposed classifiers architecture. Indeed, there exists more than one group of features that reported high success rates at classifying the HRV records. Amongst all the classifiers, the maximum overall performance was reached by the polynomial kernel SVM with overall sensitivity, specificity and accuracy of 90.91%, 93.18% and 92.05%, respectively. doi:10.1371/journal.pone.0017060.t005 Non-linear + Multi-resolution 26.67 72.73 68.18 RBFNN Statistical + Spectral 12 Se (%) 66.67 Classifier MLP Features Np (%) 90.16 87.80 94.44 78.95 83.33 70.00 68.89 76.00 56.00 64.29 Pp (%) 84.51 82.98 80.77 100.00 100.00 72.58 69.77 84.21 80.00 62.50 Ac (%) 87.12 85.23 86.36 86.67 90.00 71.21 69.32 79.55 60.00 63.33 February 2011 | Volume 6 | Issue 2 | e17060 statistical features of the NN intervals are related to: Complete heart block (CHB), left bundle branch block (LBBB) and ischemic cardiopaty. On the other hand, the long variations on statistical features of the NN intervals are related to: Premature ventricular contractions (PVCs), sinus syndrome (SSS) and atrial fibrillation (AF). There are several modifications on AR spectrums that can be noticed by the calculation of the power in frequency bands. Short variations of HRV segments usually lead to high VLF and LF bands power. Conversely, long variations of HRV segments, usually leads to higher HF band power. As cardiovascular risk is highly related to variations on statistical and spectral components, one of the major disadvantages of these methods is the linearity and consequently, their poor suitability for highly non-stationary HRV dynamics and, certainly, the NN intervals fluctuation by nervous mechanisms. The Fourier transform techniques (frequency domain methods such as Welch periodogram or AR spectrum as well) resolve the time domain signal into complex exponential functions, along with information about their phase shift measured with respect to a specific reference instant. Here the frequency components extend from {? to ? in the time scale. That is, even finite length signals are expressed as the sum of frequency components of infinite duration. Besides, the phase angle, being a modular measure, fails to provide the exact location of an ‘event’ along the time scale. This is a major limitation of the Fourier transform approach [2]. Thereby, considering the cardiovascular system as nonlinear in nature, can lead to a better understanding of its dynamics. The patterns in HRV are directly related to the Poincaré map patterns in visual assessment. In the case of short fluctuations, HRV segments are not much dispersed and torpedo shapes [62] are predominant in many cases. In the case of long fluctuations, HRV segments appear to be very dispersed forming complex-like and fan-like return map shapes. All these Poincaré plot patterns are directly related with cardiovascular risk [66]. One of the main contributions of this work is the prognosis of cardiovascular risk in a general way, not only for specific cardiac diseases or the prediction of specific cardiac episodes like other publications have shown [1,8,13,14,16,18,19,20,21,29,55,61]. Moreover, it has been confirmed that multi-resolution and nonlinear analysis are much more suitable for the assessment and prognosis of cardiovascular risk than statistical and spectral classical analysis. KS significance tests also confirmed that those features lead to higher statistical significance levels (pv0:001 for 83.33 81.82 77.27 100.00 100.00 74.24 70.45 86.36 93.33 60.00 Sp (%) Table 5. MLP, RBF neural networks and linear SVM (C~1), SVM with polynomial kernel (C~1; c~4) and SVM with RBF kernel (C~1; c~3) classifications using classical and non-linear/multi-resolution features of the HRV records from normal (N) and cardiovascular risk (R) subjects. HRV for the Prognosis of Cardiovascular Risk SVM (RBF kernel) 95.45 81.82 81.82 SVM (Polynomial kernel) SVM (RBF kernel) 13 95.45 81.82 SVM (Linear) PLoS ONE | www.plosone.org the case of ApEn and SmEn features). We developed a method that combines statistical, spectral, multi-resolution and non-linear features as well as ANN and SVM schemes for the prognosis of cardiovascular risk. Exactly 90 HRV records were analyzed, 60 of them were used to train and 30 to test each classification scheme. From the classification schemes, MLP provided the best classification rates for the prognosis of cardiovascular risk, with an area under the ROC curve equal to 0.9800. On the other hand, schemes such as the RBF network and SVMs showed relatively high classification performances too. Another remarkable finding is the improvement of the classification rates of SVM using all the extracted features (not only the features selected by KS significance tests) and PCA, which can be attributable to the computation of the decision surface and the apparent SVM bias towards the positive and negative cases. Furthermore, as expected, ANN schemes often presented overfitting using all those features. The comparison between the performances of all the implemented classifiers was limited to sensitivity, specificity, positive predictive value, negative predictive value and accuracy as a consequence of ROC curves limitations, i.e., usually its contributions become cumbersome when a comparison between different classifiers is needed. Besides, their transformation to objective values is usually limited to the calculation of the area under the curve [67]. According to findings reported in the literature [5], breath rate modifies the fluctuation of the NN intervals in a HRV sample record, i.e., there is an evident modification of the HRV when the analyzed subject is breathing at different frequencies (e.g., 6 breaths/min or 12 breaths/min) provided that the rhythmic fluctuations can be larger or shorter given the regulation 84.00 84.00 81.82 N/A 78.57 84.00 84.00 87.50 N/A 75.00 93.65 91.11 90.91 61.90 80.00 86.00 81.58 73.68 60.87 64.71 Np (%) 94.74 94.74 81.82 N/A 75.00 94.74 94.74 95.00 N/A 100.00 89.86 93.02 90.91 77.78 80.00 71.95 74.00 68.00 85.71 69.23 Pp (%) 88.64 88.64 81.82 N/A 76.67 88.64 88.64 90.91 N/A 83.33 91.67 92.05 90.91 66.67 80.00 77.27 77.27 70.45 66.67 66.67 Ac (%) February 2011 | Volume 6 | Issue 2 | e17060 mechanisms and the RSA dynamics as an effect of the activity of neural oscillators. As a direct consequence, the experimental results from the comparison between records at different breathing rates would be invalid. Thus, another contribution of this work is the consideration of the breathing rate as an additional variable for the assessment of HRV; this feature was included in every record taken for the HRV database reported in this work. Besides the strong considerations of the breathing rate and the breathing signal, our computational implementation allows working with the ECG and HRV signals for medical analysis. There are new possibilities of analysis that commercial and conventional HRV analysis software [55] have not yet considered; additionally, there is the possibility of performing an automatic prognosis using a trained ANN scheme embedded in the program. The main objective of this module is to give support to the specialist criteria on the HRV assessment. This computational application needs strong validation and medical feedback, which will be a topic for future research. According to the results of this study, we strongly suggest working with multi-resolution and non-linear analysis in order to achieve more reliable cardiovascular risk prognosis, especially for classification schemes such as ANNs and SVMs. It is evident that a nonlinear deterministic approach is more appropriate to describe more complex phenomena, indicating that apparently erratic behavior can be generated even by a simple deterministic system with nonlinear structure. In general terms, the fluctuations of heartbeats during normal sinus rhythm could be partially attributed to deterministic chaos, and a decrease in this type of nonlinear variability could be observed in different cardiovascular 81.82 N/A 73.33 95.45 N/A SVM (RBF kernel) 95.45 80.00 81.82 SVM (Polynomial kernel) N/A 95.45 MLP 81.82 SVM (Linear) 100.00 89.39 93.18 90.91 86.67 80.00 65.15 70.45 63.64 93.33 73.33 Sp (%) RBFNN* N/A 86.36 RBFNN* 66.67 93.94 SVM (Polynomial kernel) MLP 90.91 90.91 SVM (Linear) 46.67 RBFNN 89.39 SVM (RBF kernel) 80.00 84.09 SVM (Polynomial kernel) MLP SVM (Linear) *The results for this classifier were not reported due to their poorness. doi:10.1371/journal.pone.0017060.t006 10 5 4 40.00 77.27 RBFNN 60.00 MLP 3 Se (%) Classifier Number of PCA Projections Table 6. MLP, RBF neural networks and linear SVM (C~1), SVM with polynomial kernel (C~1; c~4) and SVM with RBF kernel (C~1; c~3) classifications using the projections of the features from PCA analysis of the HRV records from normal (N) and cardiovascular risk (R) subjects. HRV for the Prognosis of Cardiovascular Risk PLoS ONE | www.plosone.org 1. Mohammadzadeh Asl B, Kamaledin Setarehdan S, Mohebbi M (2008) Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artificial Intelligence in Medicine 44: 51–64. 2. Rajendra Acharya U, Paul Joseph K, Kannathal N, Min Lim C, Suri JS (2006) Heart rate variability: a review. Med Bio Eng Comput 44: 1031–1051. 3. Bezerianos A, Papadimitriou S, Alexopoulos D (1999) Radial basis function neural networks for the characterization of heart rate variability dynamics. Artificial Intelligence in Medicine 15: 215–234. 4. Belova NY, Mihaylov SV, Piryova BG (2007) Wavelet transform: A better approach for the evalation of instantaneous changes in heart rate variability. Autonomic Neuroscience: Basic and Clinical 131: 107–122. 5. Lopes P, White J (2006) Heart rate variability: Measurement methods and practical implications. In: Maud PJ, Foster C, eds. Physiological Assessment of Human Fitness. pp 39–61. 6. Garcı́a-González MA (1998) Estudio de la Variabilidad del ritmo cardı́aco mediante técnicas estadı́sticas, espectrales y no-lineales. PhD Thesis, Universitat Politècnica De Catalunya. 7. Montano N, Porta A, Cogliati C, Costantino G, Tobaldini E, et al. (2008) Heart rate variability explored in the frequency domain: A tool to investigate the link between heart and behavior. Neuroscience and Biobehavioral Reviews. In Press. References This work has been focused on 4 major aspects: (1) The HRV database conformation integrating the breathing signal; (2) integrating the breathing frequency to the analysis of HRV records; (3) the analysis of statistical, spectral, multi-resolution and non-linear features linked with classification schemes for the prognosis of cardiovascular risk as well as the confirmation of the properties of these features as they are reported in the literature; (4) a brief illustration of the software implementation of advanced HRV analysis integrating an automatic prognosis tool using a standard 5 min ECG record. This work has developed a method for the cardiovascular risk prognosis using statistical, spectral, multi-resolution and non-linear features extracted from HRV data. The database used in this work was recorded using a proper medical protocol and contains a total of 90 HRV and breathing signal records from normal and cardiovascular risk subjects. The suitability of each HRV analysis feature has been shown by using KS-tests and neural and support vector classifiers. Short-term HRV features are highly useful for the prognosis of cardiovascular risk; nonetheless, long-term features can be useful for increasing the positive predictive value of the proposed classifiers. In addition, it has become obvious that the performance reported by the different feature selection strategies depends largely on the pattern recognition scheme implemented to classify the data. For the short-term HRV features analyzed in this work, there were two main observed effects: First, the ANN schemes were more suitable for the KS test-based feature selection as well as for feature spaces of low dimension; and second, SVM schemes were more suitable for the PCA-based feature selection as well as to high dimensional feature spaces. Nonetheless, as the PCA projected features improved by far the performance of SVM classifiers, their statistical significance showed influential decrease that affected negatively the performance of the ANN classifiers. Breathing signal and breathing frequency were employed in this work for the analysis of HRV, given the findings about RSA phenomena on the modification of the fluctuations of NN intervals at different breathing frequencies [5]. All the HRV measurements in this work were done approximately at 12 breaths/min for every single subject in the database; this was guaranteed by the procedures established in the medical protocol that we designed Conclusions diseases [58]. Further investigation is needed for the incorporation of chaotic dynamics and fractals to the analysis of HRV for the prognosis of cardiovascular risk proposed in this study. 14 February 2011 | Volume 6 | Issue 2 | e17060 8. Acharyaa UR, Bhatb PS, Iyengarc SS, Raod A, Dua S (2003) Classification of heart rate data using artificial neural network and fuzzy equivalence relation. Pattern Recognition 36: 61–68. 9. Kuss O, Schumann B, Kluttig A, Greiser KH, Haerting J (2008) Time domain parameters can be estimated with less statistical error than frequency domain parameters in the analysis of heart rate variability. Journal of Electrocardiology 41: 287–291. 10. Urbanowicza K, Zebrowski J, Baranowskic JR, Holysta JA (2007) How random is your heart beat?. Physica A 384: 439–447. 11. Bilgin S, Çolak OH, Koklukaya E, Ari N (2008) Efficient solution for frequency band decomposition problem using wavelet packet in HRV. Digital Signal Processing 18: 892–899. 12. Task force of the European society of cardiology and the North American society of pacing and electrophysiology (1996) Heart Rate Variability Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 93: 1043–1065. 13. D’Addio G, Acanfora D, Pinna GD, Maestri R, Furgi G, et al. (1998) Reproducibility of Short -and Long-Term Poincaré Plot Parameters Compared with Frequency-Domain HRV Indexes in Congestive Heart Failure. Computers in Cardiology 25: 381–384. Conceived and designed the experiments: JFR ELE. Performed the experiments: JFR ELE PCE WAR. Analyzed the data: JFR ELE. Contributed reagents/materials/analysis tools: DFR. Wrote the paper: JFR DFR. Performed the feature extraction methods: JRV. Gave important feedback on statistical procedures: ELE. Made the PCA-based feature selection and classification experiments: JRV. Gave important feedback and medical validation of the reported results: WAR. Gave important scientific background: DFR. Suggested suitable classification schemes and architectures to overcome the classification problems: DFR. Gave important feedback for the enhancement of the paper: DFR PCE. Author Contributions We acknowledge the support of the Occupational Health Office (Universidad Autonoma de Occidente), the Coomeva IPS S. A. experts and the patients which formed part of this study. We also acknowledge the special reviewing collaboration of Dr. Odelia Schwartz (Albert Einstein College of Medicine, NY, USA). Finally, we are grateful for the important suggestions given by anonymous reviewers. Acknowledgments algorithm. (DOC) Appendix S2 Detailed description of SVM learning sures calculation. (DOC) Appendix S1 Detailed description of complexity mea- Supporting Information to carry out this research; moreover, the acquired breathing signals confirmed it. Finally, HRV signal –as both a traditional and non-linear signal in nature– has been an important predictor of cardiovascular risk. Furthermore, this work represents an important step in comprehensively understanding such dynamics, and more importantly, on the prognosis of cardiovascular risk as a stated goal established by Chattipakorn et al. (2007) and a plethora of researchers and clinicians: ‘‘It is necessary to understand the mechanisms of HRV components and improve their sensitivity and specificity as a prognostic marker’’ [68]. Furthermore, the combination of the methods reported in this work and other ECG and physiological parameters is expected to lead to a solution for the prognosis of cardiovascular mortality at reasonable cost-effectiveness. HRV for the Prognosis of Cardiovascular Risk PLoS ONE | www.plosone.org 14. D’Addio G, Pinna GD, Maestri R, Acanfora D, Picone C, et al. (1999) Correlation Between Power-law Behavior and Poincaré Plots of Heart Rate Variability in Congestive Heart Failure Patients. Computers in Caridiology 26: 611–614. 15. Thong T (2007) Geometric Measures of Poincaré Plots for the Detection of Small Sympathovagal Shift. Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale. pp 4641–4644. 16. Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM (1992) Patterns of beat-to-beat heart rate variability in advanced heart failure. Am Heart J 123: 704–710. 17. Brennan M, Planiswami M, Kamen P (2001) Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability?. IEEE Trans Biomed Eng 48: 1342–1347. 18. Rueda OL, López EJ, Vargas CA, Delgado MB, Murillo CA (2007) La variabilidad de la frecuencia cardı́aca como factor pronóstico de mortalidad del infarto del miocardio: Revisión sistemática de estudios observacionales. Médica Sanitas 22. 19. Malik M, Farrell T, Cripps TR, Camm AJ (1989) Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J 10: 1060–1074. 20. Chesnokov YV (2008) Complexity and spectral análisis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artificial Intelligence in Medicine 43: 151–165. 21. Ísler Y, Kuntalp M (2007) Combining classical HRV indexes with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Computers in Biology and Medicine 37: 1502–1510. 22. Wolf MM, Varigos GA, Hunt D, Sloman JG (1978) Sinus arrhythmia in acute myocardial infarction. Med J Aust. pp 52–53. 23. Penaz J, Roukenz J, Van Der Waal HJ (1968) Spectral Analysis of Some Spontaneous Rhythms in the Circulation.. Leipzig Germany: Biokybernetik, Karl Marx University. pp 223–241. 24. Pomeranz M, Macaulay R, Caudill M, Ma K, Kutz I, et al. (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 248: H151–H153. 25. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, et al. (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science. pp 220–222. 26. Akselrod S, Lishner M, Oz O, Bernheim J, Ravid M (1987) Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron 45: 202–206. 27. Berntson GG, Bigger JT, Jr., Eckberg DL, Grossman P, Kaufmann PG, et al. (1997) Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiol 34: 623–648. 28. Broadman A, Schlindwein FS, Rocha AP, Leite A (2002) A study on the optimum order of autoregressive models for heart rate variability. Physiol Meas 23: 324–336. 29. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, et al. (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog. Circ Res 58: 178–193. 30. Pal GK, Pal P, Nanda N, Amudharaj D, Karthik S (2009) Spectral analysis of heart rate variability (HRV) may predict the future development of essential hypertension. Medical Hypotheses 72: 183–185. 31. Ravichandran IT, Ramasuhha Reddy I, Avudainayagam A (2003) Estimation and Power Spectral Analysis of Heart Instantaneous Frequency (HIF) - A Wavelet Approach. Bio-Signal Processing TENCON. pp 223–226. 32. Fukuda O, Nagata Y, Homma K, Tsuji T (2001) Evaluation of heart rate variability by using wavelet transform and a recurrent neural network. Proceedings of the 23rd Annual EMBS International Conference. pp 1769–1772. 33. Lerma C, Infante O, Perez-Grovas H, Jose MV (2003) Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin Physiol & Func Im 23: 72–80. 34. Marciano F, Migaux ML, Acanfora D, Furgi G, Rengdf F (1994) Quantification of Poincaré Maps for the Evaluation of Heart Rate Variability. Computers in Cardiology. pp 577–580. 35. Singh D, Vinod K (2005) Effect of RR Segment Duration on Short-Term HRV Assessment Using Poincaré Plot. Proceedings of ICISIP. pp 430–434. 36. Brennan M, Palaniswami M, Kamen P (2002) Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol 283: 1873–1886. 37. Hnatkova K, Copie X, Staunton A, Malik M (1995) Numeric processing of Lorenz plots of R–R intervals from long-term ECGs. Comparison with timedomain measures of heart rate variability for risk stratification after myocardial infarction. J Electrocardiol 28: 74–80. 38. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica 16D: 285–317. 39. Kobayashi M, Musha T (1982) 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng 29: 456–257. 15 February 2011 | Volume 6 | Issue 2 | e17060 40. Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside, Lancet 347: 1312–1314. 41. Peng CK, Havlin S, Hausdorf JM, Mietus JE, Stanley HE, et al. (1995) Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J Electrocardiol 28: 59–65. 42. Hirsh JA, Bishop B (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol Heart Circ Physiol 241: H620–H629. 43. Piepoli M, Sleight P, Leuzzi S, Valle F, Spadacini G, et al. (1997) Origin of Respiratory Sinus Arrhythmia in Conscious Humans. Circulation 95: 1813–1821. 44. Katona PG, Jih F (1975) Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol 39: 801–805. 45. Lloyd-Jones D, Adams R, Carnethon M, de Simone G, Ferguson TB, et al. (2009) Heart disease and stroke statistics – 2009 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119: e21–e181. 46. Beltrán-Bohórquez JR (2010) Guı́as colombianas de cardiologı́a. Sı́ndrome coronario agudo con elevación del ST. Revista Colombiana de Cardiologı́a 17: 111–275. 47. Gallagher D, Terenzi T, de Meersman R (1992) Heart rate variability in smokers, sedentary and aerobically fit individuals. Clinical Autonomic Research 2: 383–387. 48. Liao D, Carnethon M, Evans GW, Cascio WE, Heiss G (2002) Lower heart rate variability is associated with the development of coronary heart disease in individuals with diabetes: the atherosclerosis risk in communities (ARIC) study. Diabetes 51: 3524–3531. 49. Williams JS, Brown SM, Conlin PR (2009) Blood-pressure Measurement. N Engl J Med 360: e6. 50. Motivala SJ, Hurwitz BE, Lagreca AM, Llabre MM, Marks JB, et al. (1999) Aberrant parasympathetic and Hemodynamic function distinguishes a subgroup of psyologically distressed individuals with asymptomatic type-I diabetes mellitus, International Journal of Behavioral Medicine 6: 78–94. 51. Gutierrez A, Lara M, Hernandez PR (2005) Evaluación de un detector de complejo QRS basado en la wavelet de Haar usando las bases de datos MITBIH de arritmias y Europea del segmento ST y de la onda T. Computación y Sistemas 8: 293–302. 52. Lippman N, Stein KM, Lerman BB (1994) Comparison of methods for removal of ectopy in measurement of heart rate variability. Am J Physiol Heart Circ Physiol 267: H411–H418. 53. Rosner B (1983) Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics 25: 165–172. 54. Ramirez-Villegas JF, Lam-Espinosa E (2009) Análisis de la variabilidad de la frecuencia cardı́aca integrando la señal de la frecuencia respiratoria. B. Eng. Thesis, Universidad Autonoma de Occidente, Cali, Colombia. 55. Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2002) Software for advanced HRV analysis. Computer Methods and Programs in Biomedicine. In Press. 56. Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, et al. (2001) Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods 105: 65–75. 57. Blanco S, Figliola A, Quian QR, Rosso OA, Serrano E (1998) Time-Frequency analysis of electroencephalogram series (iii): Information transfer function and wavelet packets. Phys Rev E 57: 932–940. 58. Lombardi F (2000) Chaos Theory, Heart Rate Variability, and Arrhythmic Mortality. Circulation 101: 8–10. 59. Meiss JD (2007) Differential dynamical systems. Society for Industrial and Applied Mathematics (SIAM). 434 p. 60. Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series. Physical Review Letters 55: 1082–1085. 61. Korpelainen JT, Sotaniemi KA, Mäkikallio A, Huikuri HV, Myllylä VV (1999) Dynamic Behavior of Heart Rate in Ischemic Stroke. Stroke 30: 1008–1013. 62. Pincus SM (2001) Assessing Serial Irregularity and its Implications for Health. Annals of the New York Academy of Sciences 954: 245–267. 63. Rencher AC (2002) Methods of Multivariate Analysis. Wiley Series in Probability and Statistics. 738 p. 64. Haykin S (1999) Neural Networks: A Comprehensive Foundation. Prentice Hall, inc. 823 p. 65. Wang L, Liu B, Wan C (2005) Classification using support vector machines with graded resolution. Proceedings of the international conference on granular computing. pp 666–670. 66. Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM (1992) Patterns of beat-to-beat heart rate variability in advanced heart failure. Am Heart J 123: 704–710. 67. Fawcett T (2006) An introduction to ROC analysis. Pat Rec Lett 27: 861–874. 68. Chattipakorn N, Incharoen T, Kanlop N, Chattipakorn S (2007) Heart rate variability in myocardial infarction and heart failure. International Journal of Cardiology 120: 289–296. HRV for the Prognosis of Cardiovascular Risk | doi: 10.1111/j.1365-2796.2010.02321.x J. M. Huston1 & K. J. Tracey2 Inflammation is induced by factors that are exogenous (e.g. pathogens and microbial products) and endogenous [e.g. High Mobility Group Box-1 (HMGB1) released from injured cells] to the host [1, 2]. These inducing agents interact with genome encoded pattern recognition receptors expressed on Amongst the leading causes of morbidity and mortality in Western societies are heart disease, cancer, stroke, diabetes and sepsis. Recent advances in immunology reveal a significant pathogenic role for inflammation in the development and progression of these disorders. Inflammation accelerates deposition of atherosclerotic plaques leading to myocardial and cerebral infarction; mediates insulin resistance; stimulates tumour growth; and causes organ damage in lethal sepsis. Knowledge of these mechanisms has elevated the importance of understanding both the molecular basis of inflammation and the regulatory systems that keep it in check during health. Introduction Biological therapeutics targeting TNF, IL-1 and IL-6 are widely used for treatment of rheumatoid arthritis, inflammatory bowel disease and a growing list of other syndromes, often with remarkable success. Now advances in neuroscience have collided with this therapeutic approach, perhaps rendering possible Abstract. Huston JM, Tracey KJ (Department of Surgery, Division of General Surgery, Trauma, Surgical Critical Care, and Burns, Stony Brook University Medical Center, Health Sciences Center, Stony Brook; and Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset; NY, USA). The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway, and implications for therapy (Key Symposium). J Intern Med 2011; 269: 45–53. ª 2010 The Association for the Publication of the Journal of Internal Medicine 45 monocytes, macrophages and other cells of the innate immune system [3]. These receptor families, including the toll-like receptors and NOD-like receptors, transduce intracellular signals leading to the production and release of cytokines, eicosanoids and other inflammatory molecules that directly mediate cellular responses causing inflammation [3]. The cardinal signs of inflammation, including pain, erythema, oedema, warmth and loss of function, can be produced by exposing tissues to inflammatory cytokines. Nonresolving or persisting exposure to cytokine damages tissue, impairs organ function and can be lethal. Biological therapeutics that specifically inhibit cytokine mediators of inflammation are widely used to treat arthritis, colitis, psoriasis and a growing list of other disabling illnesses. Therefore, the dangers of uncontrolled inflammation are inherent to the molecular activity of cytokines themselves, and maintenance of health requires tight control over the steps leading to the production and release of cytokines. Keywords: heart rate variability, inflammation, neuroimmunology, therapeutics, vagus nerve stimulation. the development of nerve stimulators to inhibit cytokines. Action potentials transmitted in the vagus nerve culminate in the release of acetylcholine that blocks cytokine production by cells expressing acetylcholine receptors. The molecular mechanism of this cholinergic anti-inflammatory pathway is attributable to signal transduction by the nicotinic alpha 7 acetylcholine receptor subunit, a regulator of the intracellular signals that control cytokine transcription and translation. Favourable preclinical data support the possibility that nerve stimulators may be added to the future therapeutic armamentarium, possibly replacing some drugs to inhibit cytokines. Department of Surgery, Division of General Surgery, Trauma, Surgical Critical Care, and Burns, Stony Brook University Medical Center, Stony Brook; and 2Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset; NY, USA 1 The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy Key Symposium | 46 Under basal conditions, the cholinergic anti-inflammatory pathway exerts a tonic, inhibitory influence on innate immune responses to infection and tissue injury. Interrupting this pathway, by either severing the vagus nerves, or by knocking out the a7 gene (CHRNA7), produces an inflammatory phenotype characterized by exaggerated responses to bacterial products and injury [5, 8]. For example, electrical stimulation of the cervical vagus nerve in wild-type The ‘cholinergic anti-inflammatory pathway’ is the descending, or motor arc of the inflammatory reflex (Fig. 1) [6]. It is comprised of vagus nerve signals leading to acetylcholine- dependent interaction with the alpha 7 nicotinic acetylcholine receptor subunit (a7nAChR) on monocytes and macrophages, resulting in reduced cytokine production [8, 22]. The cholinergic anti-inflammatory pathway can be activated experimentally by electrical or mechanical vagus nerve stimulation, or through administration of a7 agonists, to inhibit inflammatory cytokine production, prevent tissue injury and improve survival in multiple experimental models of systemic inflammation and sepsis [4, 5, 9–14, 16–18]. Mononuclear cells express muscarinic and nicotinic acetylcholine receptors on their cell surface and experimental evidence suggests that a7 is required for the regulation of cytokine release by acetylcholine [8]. This pathway is unique in the context of vagus nerve signalling because in contrast to classical parasympathetic nervous system signalling through muscarinic receptors on target organs, this circuit requires signalling through a specific nicotinic receptor subunit. ª 2010 The Association for the Publication of the Journal of Internal Medicine Journal of Internal Medicine 269; 45–53 To date, the inflammatory reflex is the best- studied anti-inflammatory neural circuit, but undoubtedly, as expertise in this field continues to improve, it is likely that other pathways will be elucidated [21]. These findings now raise some fundamental ques- In the late 1990’s, whilst studying CNI-1493, an inhibitor of the p38 MAP kinase developed by one of us (KJT) as an anti-inflammatory molecule, we discovered an anti-inflammatory neural circuit [4, 5]. Termed ‘the inflammatory reflex’, this neurological mechanism involves the vagus nerve, which can sense peripheral inflammation and transmit action potentials from the periphery to the brain stem [6]. This in turn leads to the generation of action potentials in the descending vagus nerve that are relayed to the spleen, where pro-inflammatory cytokine production is inhibited [7]. The molecular basis of this anti-inflammatory circuit, termed the cholinergic anti-inflammatory pathway, includes the neurotransmitter acetylcholine interacting with the alpha7 nicotinic acetylcholine receptor subunit expressed on monocytes, macrophages and other cytokine producing cells [8]. Signal transduction through this receptor inhibits cytokine release, suppresses inflammation and confers protection against tissue damage in polymicrobial sepsis, arthritis, colitis, diabetes, atherosclerosis, ischaemia-reperfusion injury, pancreatitis, myocardial ischaemia and haemorrhagic shock [5, 9–20]. The inflammatory reflex suppresses inflammation The cholinergic anti-inflammatory pathway tions about understanding clinical disease pathogenesis. Pre-eminent amongst these is whether it is possible to measure activity within the inflammatory reflex in humans in order to understand or predict the risk of uncontrolled inflammation. Here, we review available data addressing this question and focus on the potentially informative data regarding measurements of vagus nerve signalling. We discuss the concept that measuring changes in vagus nerve activity may provide useful information about realtime activity of the inflammatory reflex in patients with inflammatory diseases. We also examine the evidence that measuring underlying vagus nerve activity may have clinical utility for predicting damage from ongoing inflammation and review the potential implications of utilizing this diagnostic information to then guide therapeutic modulation of immune responses. Key Symposium: The pulse of inflammation: implications for therapy Factors that trigger inflammation also enhance the activity of anti-inflammatory pathways, which function to counter-balance inflammation. This concurrent activation of pro- and anti-inflammatory mechanisms is analogous to other homoeostatic systems, such as coagulation and fibrinolysis, which act in concert to coordinate haemostasis during haemorrhage. Anti-inflammatory pathways that exert critical roles in suppressing cytokine production include the hypothalamic-pituitary-adrenal axis, which culminates in glucocorticoid release; release of neutralizing soluble cytokine receptors; and production of antiinflammatory cytokines (e.g. IL-10 and TGFb). Interruption of these pathways (e.g. adrenalectomy), or failure of their function (genetic deficiency of IL-10) leads to excessive inflammation. This knowledge has enabled the development of novel therapies that suppress inflammation in humans by either directly targeting the activities of cytokines (e.g. anti-TNF antibodies), or by preventing cytokine release (glucocorticoids). J. M. Huston & K. J. Tracey | 47 In addition to regulating cytokine release, the cholinergic anti-inflammatory pathway modulates the expression of activation markers on circulating leukocytes that transit the spleen. Vagus nerve stimulation down-regulates neutrophil activation by attenuating expression of CD11b, a surface molecule required for cell adhesion and chemotaxis [28]. The mechanism of CD11b suppression requires F-actin polymerization, the rate-limiting step for CD11b surface expression. Using a carrageenan air pouch ª 2010 The Association for the Publication of the Journal of Internal Medicine Journal of Internal Medicine 269; 45–53 Fig. 1 Action potentials transiting the vagus nerve synapse in the coeliac ganglion, the origin of the splenic nerve. The splenic nerve controls lymphocytes in the spleen, which can produce acetylcholine that interacts with a7 nicotinic acetylcholine receptors expressed on cytokine producing macrophages. Intracellular signal transduction through this receptor inhibits the activity of nuclear factor-jB to suppress cytokine production. Nerve stimulators can provide an identical signal to initiate the anti-inflammatory pathway, an approach that reverse signs and symptoms in preclinical disease models of arthritis, inflammatory bowel disease, ischaemia-reperfusion injury, heart failure, pancreatitis, sepsis and other syndromes . Organs of the reticuloendothelial system, including the lungs, liver and spleen, contain innate immune cells that mediate the immediate, early response to pathogens and injury. During endotoxemia, an experimental model of Gram-negative bacterial shock produced by administration of lipopolysaccharide, the spleen is the major organ source of systemic TNF that accumulates in blood [7, 25]. TNF production in spleen accounts for >90% of the total TNF burden that reaches the circulation, so it is perhaps not surprising that splenectomy significantly reduces circulating TNF levels in endotoxin-challenged mice. Vagus nerve stimulation fails to inhibit systemic TNF production in splenectomized mice or in mice following interruption of either the common coeliac branch of the abdominal vagus nerve, or the splenic nerve, indicating that cholinergic anti-inflammatory pathway control of TNF culminates in spleen [7, 26, 27]. As expected by the observation that vagus nerve stimulation suppresses serum TNF, vagus nerve stimulation significantly reduces TNF synthesis in spleen, an effect that requires a7nAChR. Moreover, administration of selective a7nAChR agonists to splenectomized mice fails to reduce cytokine levels; rather, this exacerbates pro-inflammatory cytokine production and increases lethality [7, 13, 25]. These findings indicate that the spleen is a critical physiological interface between cholinergic anti-inflammatory signalling and regulation of systemic immune responses. cholinergic anti-inflammatory pathway. Signal transduction mechanisms involving the a7nAChR are an area of active study by a number of groups and more data are needed to fully understand this mechanism. There is general agreement that the cytokine suppressing signals from a7nAChR are not dependent upon activation of ion channels, the principal mechanism, by which a7nAChR mediates signalling in neurons. Rather, the current signal transduction model indicates that receptor ligand interaction activates JAK-STAT dependent inhibition of the nuclear translocation of nuclear factor (NF)-jB, resulting in decreased transcription of cytokine genes [22–24]. Key Symposium: The pulse of inflammation: implications for therapy mice reduces pro-inflammatory cytokine production, but a7nAChR-knockout animals are resistant to these effects and produce higher levels of cytokines despite vagus nerve stimulation. Even in the absence of vagus nerve stimulation, a7nAChR-knockout mice generate a significantly elevated pro-inflammatory cytokine response following challenge with endotoxin giving direct evidence that the a7 receptor is necessary to maintain the tonic inhibitory influence of the J. M. Huston & K. J. Tracey | 48 A widely used approach to measuring vagus nerve activity in humans is based on cardiac physiology. Measuring vagus nerve activity: Heart rate variability Neural circuits function reflexively to maintain physiological stability in visceral organs. Each reflex is comprised of a sensory or afferent arc that detects environmental and chemical changes. This information is relayed to neural centres in the central nervous system, which integrate the input and relay neural signals to an output or motor nucleus. Efferent signals are then relayed by motor neurons travelling to the innervated organ to produce a response that maintains an ‘appropriate’ or healthy level of function. The net physiological effect of this reflexive behaviour is a system output that varies according to a set point function curve. For example, consider the control of heart rate: increases in heart rate activate a reflex circuit that leads to increased activity in the vagus nerve, which slows heart rate and restores homoeostasis. A major unanswered question in clinical immunology is whether it is possible to record neural activity in the vagus nerve as a surrogate marker of activity in the inflammatory reflex to determine the sensitivity of the innate immune system to inflammation. Clinical implications of the inflammatory reflex ª 2010 The Association for the Publication of the Journal of Internal Medicine Journal of Internal Medicine 269; 45–53 The original concept of the inflammatory reflex followed experimental observations that administration of extremely low quantities of CNI-1493 into the brain inhibited systemic TNF production during endotoxemia [31]. This effect was not attributable to either leakage of the drug from the brain into the periphery, or to stimulation of the hypothalamic-pituitary-adrenal axis. Surprisingly at the time, the systemic cytokine inhibitory actions of intracerebral CNI-1493 were dependent upon the vagus nerve because vagotomy abolished the TNF-suppressing effects of intracerebral administration [9]. This was ultimately explained by the fact that CNI-1493 is a weak agonist of the M1 class of muscarinic receptors, which stimulate activity within descending forebrain cholinergic neural pathways that mediate increased efferent va- Central activation of the cholinergic anti-inflammatory pathway It is interesting to consider the clinical experience with splenectomized patients. Even with the availability of effective vaccines, splenectomized patients are at increased risk for potentially lethal bacterial infections from the syndrome of overwhelming postsplenectomy sepsis. The pathogenesis of this syndrome is debated, but it has been attributed to inadequate immune responsiveness, particularly to encapsulated bacteria [30]. Based on these new insights provided by the cholinergic anti-inflammatory pathway, it is intriguing to consider whether patients dying of postsplenectomy complications develop uncontrolled, and ultimately lethal, cytokine responses due to the absence of a functional inflammatory reflex. gus nerve activity [32, 33]. Intracerebral M1 muscarinic receptors had been implicated in the control of visceral functions by the vagus nerve, including glycogen synthesis in the liver, pancreatic exocrine secretion and cardiovascular reflexes [34, 35]. Administration of selective muscarinic receptor agonists into the brain stimulates vagus nerve mediated suppression of cytokine production during endotoxemia [32, 33]. These effects are directly attributable to intracerebral signals because peripheral administration of muscarinic receptor agonists that cannot cross the blood-brain barrier fails to inhibit cytokine release. There is now widespread interest in studying the anti-inflammatory effects of clinically approved, centrally acting acetylcholinesterase inhibitors, which increase brain acetylcholine levels and enhance M1 signalling. Preclinical studies indicate that these agents increase the activity of the cholinergic anti-inflammatory pathway and suppress inflammation in the periphery. It may be possible to exploit this approach in clinical trials of treating inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease and psoriasis because these diseases can be controlled by inhibiting cytokine activity. Key Symposium: The pulse of inflammation: implications for therapy model to study recruitment of neutrophils to sites of local soft tissue inflammation, stimulating the vagus nerve significantly inhibits neutrophil recruitment [28, 29]. An intact spleen is required for this response because vagus nerve stimulation of splenectomized animals fails to inhibit neutrophil recruitment to the air pouch [25, 28]. In the absence of exogenous vagus nerve stimulation, removing the spleen also interferes with endogenous neutrophil trafficking. These results indicate that vagus nerve signals to spleen control the activity of circulating immune cells, regulating the ability of these cells to respond to inflammatory stimuli and migrate to local zones of ongoing inflammation, even when these regions are not innervated directly by the vagus nerve. Together these findings point to a specific, centralized neural pathway innervating the spleen that is positioned to both suppress inflammatory cytokine production and downregulate the activity of circulating inflammatory cells. J. M. Huston & K. J. Tracey | 49 Planned and ongoing clinical studies in patients with cytokine-mediated diseases, including rheumatoid arthritis, inflammatory bowel disease, sepsis, psoriasis and depression are providing new insights into measures of vagus nerve activity as a direct correlate to cholinergic anti-inflammatory pathway activity. We recently assessed RR interval variability in rheumatoid arthritis and observed that vagus nerve activity was significantly decreased in patients as com- ª 2010 The Association for the Publication of the Journal of Internal Medicine Journal of Internal Medicine 269; 45–53 Extensive physiological and pharmacological studies have examined the neural contributions to the fre- Frequency domain analysis, which is more widely used to analyse HRV, utilizes spectral methods to interpret the RR tachogram. Power spectral density analysis provides information of how power (variability) distributes as a function of frequency. A mathematical algorithm, Fast fourier transform, generates spectral (frequency) components that are labelled ultra-low frequency (ULF), very low frequency (VLF), low frequency (LF) and high frequency (HF) power components. Power components can be expressed in absolute values (ms2) or in normalized units, which are used to represent the relative contribution of each power component to the total variance (power) in the recording. Analysis of the time differences between successive heartbeats to assess HRV can be accomplished with reference to time (time domain analysis) or frequency (frequency domain analysis). The former is based on the normal-to-normal (NN) interval, or the time difference between successive QRS complexes (RR interval) resulting from sinus node depolarization on a standard, continuous EKG. Statistical analysis of measurements of the NN intervals, or those derived from the differences between NN intervals yields various measures of inter-beat variability. Examples include the standard deviation of the NN interval, i.e. the square root of variance, the standard deviation of the average NN interval calculated over short periods and the square root of the mean squared differences of successive NN intervals >50 ms. Measures of HRV have been strongly correlated to morbidity and mortality from diverse diseases. Early clinical findings, first observed more than 50 years ago, revealed that variability in RR intervals predict the onset of foetal distress before any measurable changes in absolute heart rate [38–40]. There is now extensive experience using HRV measures in diverse disease syndromes and these data indicate that decreased vagus nerve activity is associated with increased morbidity and mortality. These correlations include increased morbidity and mortality following cardiac surgery or myocardial infarction, increased mortality from sepsis and progression or disease severity in autoimmune diseases, including rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus and sarcoidosis [41–49]. Prior to knowledge of the inflammatory reflex, it was thought that decreased vagus nerve activity in these cases resulted from neural damage associated with the underlying diseases. It is now possible to consider an alternative explanation that decreased vagus nerve activity and the associated loss of the tonic inhibitory influence of the cholinergic anti-inflammatory pathway on innate immune responses and cytokine release, may enable significantly enhanced cytokine responses to stimuli that would have been otherwise harmless in the presence of a functioning neural circuit. quency components of HRV. For example, administration of acetylcholine antagonists or vagotomy down modulates the HF power component and electrical vagus nerve stimulation increases HF power [37]. These results indicate that the HF power component reflects efferent vagus nerve activity to the sinoatrial node. The interpretation of LF power is less clear, but most agree that the LF component is a measure of sympathetic activity or a combination of sympathetic and parasympathetic activity [37]. The ratio of low-tohigh- frequency spectral power (LF ⁄ HF) has been proposed as an index of sympathetic to parasympathetic balance of heart rate fluctuation. A consensus has not been achieved concerning the physiological correlates of VLF and ULF power. Key Symposium: The pulse of inflammation: implications for therapy Heart rate is controlled by action potentials transmitted via the vagus nerve to the sinoatrial node of the heart, where vagus nerve-dependent acetylcholine release essentially ‘prolongs’ the time to the next heartbeat, thus slowing the pulse. Measuring the time between individual hearts beats, as can be accomplished with software that captures the distance between R waves on the electrocardiogram (EKG) tracing, provides information about the instantaneous heart rate. These data are then plotted as a function of time to provide analysis of heart rate variability (HRV), or the dynamic variation of heart rate under control of the sympathetic and parasympathetic nervous input [36]. Heart rate variability represents the time differences between successive heartbeats (also known as the beat-to-beat interval), and is synonymous with RR variability, referring to the R waves on the electrocardiogram corresponding to ventricular depolarization. J. M. Huston & K. J. Tracey 50 Sloan et al. [68] recently assessed whether aerobic exercise training can modulate vagus nerve activity and whole blood production of TNF. In a study of 61 healthy sedentary subjects (age 20–45 year), those ª 2010 The Association for the Publication of the Journal of Internal Medicine Journal of Internal Medicine 269; 45–53 Numerous studies have investigated the relationship between depression, systemic cytokine production and HRV. Depression is associated with abnormalities in innate and adaptive immune function, including increased production of pro-inflammatory cytokines, decreased production of anti-inflammatory cytokines and increased expression of surface markers associated with immune cell activation [54–56]. It is plausible that over-expression of cytokines in the brain may influence depressive behaviour because cognitive impairment, behavioural dysfunction and sickness syndrome effects are mediated by cytokines, including TNF. Current data are unable to determine whether the onset of a major depressive episode precedes the development of a dysfunctional immune response, or vice versa. Patients with major depressive disorder also exhibit decreased HRV and the severity The role of inflammation in the development and progression of atherosclerosis is another area of significant interest and a number of recent studies have explored the potential relationship between the inflammatory reflex and atherogenic risk [62–65]. For example, C-reactive protein (CRP), implicated as an independent risk factor for cardiovascular mortality and morbidity, was measured in 678 healthy subjects. CRP levels were significantly inversely related with vagus nerve activity, as assessed by HRV, thus providing clinical evidence that vagus nerve activity may modulate systemic inflammatory responses in cardiovascular disease [36]. Another large study of CRP and IL-6 levels was conducted in 682 outpatients with coronary heart disease and vagus nerve activity was inversely correlated with CRP and IL-6 levels [66]. The relationship between circulating inflammatory markers has also been studied in healthy university students, (20.56 ± 0.82 years) and those subjects in the highest tertile of hs-CRP had significantly decreased vagus nerve activity [67]. Moreover, vagus nerve activity was inversely correlated with hs-CRP, with the lowest hs-CRP levels observed in the most physically active subjects, who also had the highest levels of vagus nerve activity. Thus, loss of the inflammation suppressing activity of vagus nerve signals may contribute to overproduction of CRP, which in turn is controlled by cytokines, including IL-1 and IL-6. Depressed vagus nerve activity has been implicated in exaggerated inflammation in peripheral organs following brain death, and as expected, HRV decreases significantly following brain death in rats [53]. Interestingly, before harvesting donor organs, vagus nerve stimulation significantly decreases cytokine concentrations in serum and reduces the expression of proinflammatory cytokines, E-selectin, IL-1b and ITGA6. Moreover, assessment of renal function reveals significant improvements in recipients of grafts from donors, who had been subjected to vagus nerve stimulation as compared with unstimulated donor grafts [53]. These results agree with a direct, contributory role of impaired vagus nerve signalling in excessive cytokine release during ischaemia before organ harvesting. Key Symposium: The pulse of inflammation: implications for therapy of the impairment correlates with the clinical severity of depression [57]. Moreover, implantable vagus nerve stimulators are used in patients with treatment-resistant depression, with improvements observed in a significant percentage of patients [58–60]. It is now interesting to consider whether these observations regarding the relationship between depression and maladaptive immune responses result from impaired vagus nerve regulation of cytokine release. It should be possible to design clinical studies to address the question of whether increasing vagus nerve activity using a nerve stimulator corrects the dysregulated cytokine response and lowers the exposure of the brain to cytokines that disrupt behaviour. End point selection of these studies will be is critically important and should include assays of stimulated cytokine release (e.g. whole blood endotoxin stimulated cytokine release) because basal cytokine levels are not well correlated to disease severity [61]. | pared with healthy controls [50, 51] Moreover, serum levels of HMGB1, a cytokine that has been implicated in the pathogenesis of rheumatoid arthritis and other inflammatory syndromes, are significantly related to RR interval variability. There was no significant relationship between disease severity and vagus nerve activity, which is consistent with the hypothesis that impaired vagus nerve activity, is not the result of advancing disease. Vagus nerve activity was predictive of the innate immune response to endotoxin and administration of endotoxin to healthy human subjects revealed a significant correlation of basal highfrequency variability to the magnitude of TNF release [52]. Together these results support the hypothesis that diminished vagus nerve signals, which normally provide an inhibitory influence on cytokine production, which contribute to enhanced or unregulated production of TNF and other inflammatory mediators. J. M. Huston & K. J. Tracey | 51 It is also theoretically possible that monitoring HRV and vagus nerve activity may prove to be useful as a long-term measure of inflammation in chronic diseases. Similar to tracking haemoglobin A1c levels in patients with diabetes, or daily blood pressure monitoring in patients with hypertension, HRV monitoring could theoretically be developed to monitor the activity of inflammatory risk in these and other cytokinemediated diseases. Noninvasive methods to determine HRV are available and it will be of interest to assess the usefulness of portable monitoring devices at home that interface with central monitoring stations to provide online analysis of changes in the inflammatory reflex. Correction of chronic, maladaptive levels of inflammation using nerve stimulators might prevent the progression of debilitating and deadly diseases, potentially replacing the need for some biological therapeutics. ª 2010 The Association for the Publication of the Journal of Internal Medicine Journal of Internal Medicine 269; 45–53 As clinical studies of vagus nerve- mediated inflammatory responses expand, it may be possible to dissociate the neural pathways that regulate immunity from those that regulate other vagus nerve functions. In animal studies of direct stimulation of the vagus nerve, it is possible to activate the cholinergic antiinflammatory pathway by delivering an electrical charge that is below the threshold required to significantly change heart rate [13]. Thus, the neural tracts descending in the vagus nerve to modulate immune responses function at a lower firing threshold than the cardio-inhibitory fibres. It is likely that there are anatomical and physiological differences that underlie these responses. For example, cardio-inhibitory vagus nerve fibres in mammals are B and C fibre types, which require significantly higher stimulation intensities to fire as compared with myelinated A-type fibres, which do not participate in heart rate regulation. These ‘lower threshold’ A signalling fibres may Are the cardiac and immune regulatory vagus nerve pathways linked? There is a need to determine whether augmenting vagus nerve activity in patients who are deficient in this activity will reduce cytokine production and the levels of other inflammatory factors, including CRP and IL6. This has not been reported in patients with autoimmune or other active inflammatory diseases, but a study of 183 healthy adults (mean age = 45) revealed that higher vagus nerve activity is significantly associated with lower production of TNF and IL-6 in endotoxin- stimulated whole blood assays [69]. This association was independent of demographical and health characteristics, including age, gender, race, years of education, smoking, hypertension and white blood cell count. These authors concluded that vagus nerve activity is inversely related to the activity of inflammatory mediators, which has potential implications for studying mechanisms linking psychosocial factors to risk for inflammatory diseases. The relationship between activation thresholds of the cholinergic anti-inflammatory pathway and regulation of HRV is an area of intensive study and the available clinical evidence indicates that when vagus nerve activity is deficient, inflammation is excessive. There are theoretical and practical advantages to developing devices that can selectively activate the cholinergic anti-inflammatory pathway without stimulating cardiac fibres. It may be possible to draw correlative analysis from measurements of HRV to identify individuals with reduced vagus nerve signalling, who are susceptible to tissue damage from inflammation. Heart rate variability could serve as a biomarker to identify patients, who may benefit from pharmacological or electrical stimulation of the cholinergic anti-inflammatory pathway. As Holter monitors are used to track changes in heart rhythm, HRV monitors may one day provide indices of diminished or enhanced vagus anti-inflammatory activity. During therapy for inflammation, it may be possible to measure the physiological level of exogenous cholinergic stimulation delivered to each patient and to modulate the delivery of therapy by altering voltage, pulse and time in order to tailor the treatment to the individual, based on changes in HRV. Autoimmune diseases are characterized by waxing and waning clinical episodes and HRV measurements may one day be used to predict impending relapse by revealing declining activity in the cholinergic anti-inflammatory pathway, thus signalling the need for additional treatment to enhance the neural network. convey the anti-inflammatory signal of the cholinergic anti-inflammatory pathway to peripheral immune cells [13]. Key Symposium: The pulse of inflammation: implications for therapy receiving the highest intensity aerobic training had significant reductions in TNF production. These data suggest that in healthy young adults, a 12-week high-intensity aerobic training programme, sufficient to increase VO2 max, can inhibit cytokine release from blood monocytes. A larger study is presently underway to assess the role of vagus nerve activity in conferring protection against inflammatory cytokine release in humans [68]. It has been proposed that a major cardio-protective benefit of exercise is derived from enhanced vagus nerve activity, which inhibits inflammatory risk and atherogenesis. J. M. Huston & K. J. Tracey | 52 ª 2010 The Association for the Publication of the Journal of Internal Medicine Journal of Internal Medicine 269; 45–53 1 Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5: 331–42. 2 Yang H, Hreggvidsdottir HS, Palmblad K et al. A Critical Cysteine is Required for HMGB1 Binding to TLR4 and Activation of Macrophage Cytokine Release. Proc Natl Acad Sci USA 2010; 26: 11942–7. 3 Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell 2010; 140: 771–6. 4 Borovikova LV, Ivanova S, Nardi D et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci 2000; 85: 141–7. 5 Borovikova LV, Ivanova S, Zhang M et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405: 458–62. 6 Tracey KJ. The inflammatory reflex. Nature 2002; 420: 853–9. 7 Huston JM, Ochani M, Rosas-Ballina M et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 2006; 203: 1623–8. 8 Wang H, Yu M, Ochani M et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421: 384–8. 9 Bernik TR, Friedman SG, Ochani M et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 2002; 195: 781–8. 10 Bernik TR, Friedman SG, Ochani M et al. Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. J Vasc Surg 2002; 36: 1231–6. 11 van Westerloo DJ, Giebelen IA, Florquin S et al. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 2006; 130: 1822–30. 12 van Westerloo DJ, Giebelen IA, Florquin S et al. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J Infect Dis 2005; 191: 2138–48. 13 Huston JM, Gallowitsch-Puerta M, Ochani M et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 2007; 35: 2762–8. 14 Yeboah MM, Xue X, Duan B et al. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney Int 2008; 74: 62–9. 15 van Maanen MA, Lebre MC, van der PT et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum 2009; 60: 114–22. 16 Mioni C, Bazzani C, Giuliani D et al. Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia ⁄ reperfusion injury in rats. Crit Care Med 2005; 33: 2621–8. References No conflict of interest was declared. Conflict of interest statement 17 Guarini S, Cainazzo MM, Giuliani D et al. Adrenocorticotropin reverses hemorrhagic shock in anesthetized rats through the rapid activation of a vagal anti-inflammatory pathway. Cardiovasc Res 2004; 63: 357–65. 18 Guarini S, Altavilla D, Cainazzo MM et al. Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation 2003; 107: 1189–94. 19 Ottani A, Giuliani D, Galantucci M et al. Melanocortins counteract inflammatory and apoptotic responses to prolonged myocardial ischemia ⁄ reperfusion through a vagus nerve-mediated mechanism. Eur J Pharmacol 2010; 637: 124–30. 20 Li J, Xie H, Wen T, Liu H, Zhu W, Chen X. Expression of high mobility group box chromosomal protein 1 and its modulating effects on downstream cytokines in systemic lupus erythematosus. J Rheumatol 2010; 37: 766–75. 21 Tracey KJ. Understanding immunity requires more than immunology. Nat Immunol 2010; 11: 561–4. 22 Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M et al. Modulation of TNF Release by Choline Requires Alpha7 Subunit Nicotinic Acetylcholine Receptor-Mediated Signaling. Mol Med 2008; 14: 567–74. 23 de Jonge WJ, van der Zanden EP, The FO et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 2005; 6: 844–51. 24 Wang H, Liao H, Ochani M et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 2004; 10: 1216–21. 25 Huston JM, Wang H, Ochani M et al. Splenectomy protects against sepsis lethality and reduces serum HMGB1 levels. J Immunol 2008; 181: 3535–9. 26 Rosas-Ballina M, Tracey KJ. The neurology of the immune system: neural reflexes regulate immunity. Neuron 2009; 64: 28–32. 27 Rosas-Ballina M, Ochani M, Parrish WR et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA 2008; 105: 11008–13. 28 Huston JM, Rosas-Ballina M, Xue X et al. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol 2009; 183: 552–9. 29 Saeed RW, Varma S, Peng-Nemeroff T et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 2005; 201: 1113–23. 30 Brigden ML, Pattullo AL. Prevention and management of overwhelming postsplenectomy infection–an update. Crit Care Med 1999; 27: 836–42. 31 Tracey KJ. Suppression of TNF and other proinflammatory cytokines by the tetravalent guanylhydrazone CNI-1493. Prog Clin Biol Res 1998; 397: 335–43. 32 Pavlov VA, Parrish WR, Rosas-Ballina M et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 2009; 23: 41–5. 33 Pavlov VA, Ochani M, Gallowitsch-Puerta M et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci USA 2006; 103: 5219–23. 34 Li Y, Wu X, Zhu J, Yan J, Owyang C. Hypothalamic regulation of pancreatic secretion is mediated by central cholinergic pathways in the rat. J Physiol 2003; 552: 571–87. 35 Shimazu T, Matsushita H, Ishikawa K. Cholinergic stimulation of the rat hypothalamus: effects of liver glycogen synthesis. Science 1976; 194: 535–6. Key Symposium: The pulse of inflammation: implications for therapy Supported in part by grants from the NIH (NIGMS) to KJT. Acknowledgements J. M. Huston & K. J. Tracey | ª 2010 The Association for the Publication of the Journal of Internal Medicine Journal of Internal Medicine 269; 45–53 53 Correspondence: Jared M. Huston, MD, Department of Surgery, Stony Brook University Medical Center, T18-040, Health Sciences Center, Stony Brook, NY 11794, USA. (fax: +631-444-6176; e-mail: [email protected]). 54 Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9: 46–56. 55 Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006; 27: 24–31. 56 Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65: 732–41. 57 Kemp AH, Quintana DS, Gray MA, Felmingham KL, Brown K, Gatt JM. Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry 2010; 67: 1067–74. 58 Bajbouj M, Merkl A, Schlaepfer TE et al. Two-year outcome of vagus nerve stimulation in treatment-resistant depression. J Clin Psychopharmacol 2010; 30: 273–81. 59 Rush AJ, Sackeim HA, Marangell LB et al. Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biol Psychiatry 2005; 58: 355–63. 60 Marangell LB, Rush AJ, George MS et al. Vagus nerve stimulation (VNS) for major depressive episodes: one year outcomes. Biol Psychiatry 2002; 51: 280–7. 61 Dowlati Y, Herrmann N, Swardfager W et al. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010; 67: 446–57. 62 Lampert R, Bremner JD, Su S et al. Decreased heart rate variability is associated with higher levels of inflammation in middleaged men. Am Heart J 2008; 156: 759.e1–7. 63 Haensel A, Mills PJ, Nelesen RA, Ziegler MG, Dimsdale JE. The relationship between heart rate variability and inflammatory markers in cardiovascular diseases. Psychoneuroendocrinology 2008; 33: 1305–12. 64 Carney RM, Freedland KE, Stein PK et al. Heart rate variability and markers of inflammation and coagulation in depressed patients with coronary heart disease. J Psychosom Res 2007; 62: 463–7. 65 Janszky I, Ericson M, Lekander M et al. Inflammatory markers and heart rate variability in women with coronary heart disease. J Intern Med 2004; 256: 421–8. 66 Frasure-Smith N, Lesperance F, Irwin MR, Talajic M, Pollock BG. The relationships among heart rate variability, inflammatory markers and depression in coronary heart disease patients. Brain Behav Immun 2009; 23: 1140–7. 67 Soares-Miranda L, Negrao CE, Antunes-Correa LM et al. High levels of C-reactive protein are associated with reduced vagal modulation and low physical activity in young adults. Scand J Med Sci Sports 2010; July 6. [Epub ahead of Print]. 68 Sloan RP, Shapiro PA, Demeersman RE et al. Aerobic exercise attenuates inducible TNF production in humans. J Appl Physiol 2007; 103: 1007–11. 69 Marsland AL, Gianaros PJ, Prather AA, Jennings JR, Neumann SA, Manuck SB. Stimulated production of proinflammatory cytokines covaries inversely with heart rate variability. Psychosom Med 2007; 69: 709–16. Key Symposium: The pulse of inflammation: implications for therapy 36 Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T. RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med 2007; 13: 178–84. 37 Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996; 93: 1043–65. 38 Gaziano EP, Freeman DW. Analysis of heart rate patterns preceding fetal death. Obstet Gynecol 1977; 50: 578–82. 39 Sampson MB, Mudaliar NA, Lele AS. Fetal heart rate variability as an indicator of fetal status. Postgrad Med 1980; 67: 207–10, 213–15. 40 Lauersen NH, Wilson KH, Bilek A, Rao VS, Kurkulos M. A new modality in nonstress testing: evaluation of beat-to-beat fetal heart rate variability. Am J Obstet Gynecol 1981; 141: 521–6. 41 Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 1987; 59: 256–62. 42 La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998; 351: 478–84. 43 Schwartz PJ, La Rovere MT, Vanoli E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation 1992; 85: I77–91. 44 Garrard CS, Kontoyannis DA, Piepoli M. Spectral analysis of heart rate variability in the sepsis syndrome. Clin Auton Res 1993; 3: 5–13. 45 Schmidt H, Muller-Werdan U, Hoffmann T et al. Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 2005; 33: 1994–2002. 46 Aydemir M, Yazisiz V, Basarici I et al. Cardiac autonomic profile in rheumatoid arthritis and systemic lupus erythematosus. Lupus 2010; 19: 255–61. 47 Stojanovich L, Milovanovich B, de Luka SR et al. Cardiovascular autonomic dysfunction in systemic lupus, rheumatoid arthritis, primary Sjogren syndrome and other autoimmune diseases. Lupus 2007; 16: 181–5. 48 Sharma P, Makharia GK, Ahuja V, Dwivedi SN, Deepak KK. Autonomic dysfunctions in patients with inflammatory bowel disease in clinical remission. Dig Dis Sci 2009; 54: 853–61. 49 Lindgren S, Stewenius J, Sjolund K, Lilja B, Sundkvist G. Autonomic vagal nerve dysfunction in patients with ulcerative colitis. Scand J Gastroenterol 1993; 28: 638–42. 50 Bruchfeld A, Goldstein RS, Chavan S et al. Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis. J Intern Med 2010; 268: 94–101. 51 Goldstein RS, Bruchfeld A, Yang L et al. Cholinergic anti-inflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol Med 2007; 13: 210–5. 52 Jan BU, Coyle SM, Macor MA, Reddell M, Calvano SE, Lowry SF. Relationship of basal heart rate variability to in vivo cytokine responses after endotoxin exposure. Shock 2010; 33: 363–8. 53 Hoeger S, Bergstraesser C, Selhorst J et al. Modulation of brain dead induced inflammation by vagus nerve stimulation. Am J Transplant 2010; 10: 477–89. J. M. Huston & K. J. Tracey PLoS ONE | www.plosone.org Congestive heart failure (CHF) remains to be one of the major cardiovascular disorders in the world [1]. Despite its high expenditure in healthcare budgets [2], the mortality rate of CHF patients can be up to 8 times higher than the agematched control population [3]. The present treatment protocols of CHF patients, such as administrating angiotensin converting enzyme inhibitors (ACE-I) and b blockers, have been proven to lower the mortality and hospital admission rate [4]. Nevertheless, the residual risk for mortality and morbidity of CHF remains high even under such treatment protocols [5,6]. Therefore, further novel prognostic predictor is needed to strengthen the treatment strategy in addition to neurohormonal inhibition therapy. Conventional linear heart rate variability (HRV) analyses, including frequency and time domain analyses, have been reported as prognostic factors for CHF [7,8]. However, heart rate fluctuations have been recognized as complex behaviors Introduction * E-mail: [email protected] 1 April 2011 | Volume 6 | Issue 4 | e18699 originated from nonlinear processes and often with nonstationary property [9–11]. Applying linear algorithms to those seemingly irregular and ‘‘patchy’’ patterns of heart rate fluctuations [12] may cause the intrinsic computational errors of the linear algorithms [11,13,14]. Properly use of the analyses based on fractals and chaos theory [15–17] to qualify or quantify the characteristics of heart rate time series are suggested to serve as a more reliable index of physiological systems in many clinical studies [10,11,18]. As one of such mathematic methods, multiscale entropy (MSE) analysis has focused specifically on characterizing heterogeneous complexity [19]. Such complex structure is ‘‘breakdown’’ (loss of information richness) and points to poor prognosis in CHF patients [19,20]. We hypothesized that MSE could yield a prognostic marker which was not relevant to neurohormonal inhibition therapy in CHF patients. The aims of this study were 1) to evaluate the influences of b-blockers on parameters derived from MSE; 2) to assess the prognostic significance of parameters derived from MSE for CHF patients. Competing Interests: The authors have declared that no competing interests exist. Funding: M-T Lo was supported by NSC (Taiwan, ROC), Grant No 99-2627-B-008-003, joint foundation of CGH and NCU, Grant No CNJRF-99CGH-NCU-A3, VGHUST100-G1-4-3 and NSC support for the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan (NSC 99-2911-I-008100). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Copyright: ß 2011 Ho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Received December 31, 2010; Accepted March 8, 2011; Published April 13, 2011 Editor: Matjaz Perc, University of Maribor, Slovenia Citation: Ho Y-L, Lin C, Lin Y-H, Lo M-T (2011) The Prognostic Value of Non-Linear Analysis of Heart Rate Variability in Patients with Congestive Heart Failure—A Pilot Study of Multiscale Entropy. PLoS ONE 6(4): e18699. doi:10.1371/journal.pone.0018699 Conclusion: The area under the MSE curve for scale 6 to 20 is not relevant to b-blockers and could further warrant independent risk stratification for the prognosis of CHF patients. Methods and Results: Patients with systolic heart failure were enrolled in this study. One month after clinical condition being stable, 24-hour Holter electrocardiogram was recording. MSE as well as other standard parameters of heart rate variability (HRV) and detrended fluctuation analysis (DFA) were assessed. A total of 40 heart failure patients with a mea age of 56616 years were enrolled and followed-up for 6846441 days. There were 25 patients receiving b-blockers treatment. During follow-up period, 6 patients died or received urgent heart transplantation. The short-term exponent of DFA and the slope of MSE between scale 1 to 5 were significantly different between patients with or without b-blockers (p = 0.014 and p = 0.028). Only the area under the MSE curve for scale 6 to 20 (Area6–20) showed the strongest predictive power between survival (n = 34) and mortality (n = 6) groups among all the parameters. The value of Area6–20!21.2 served as a significant predictor of mortality or heart transplant (p = 0.0014). Aims: The influences of nonstationarity and nonlinearity on heart rate time series can be mathematically qualified or quantified by multiscale entropy (MSE). The aim of this study is to investigate the prognostic value of parameters derived from MSE in the patients with systolic heart failure. Abstract 1 Graduate Institute of Clinical Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, 2 Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, 3 Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, Taiwan, 4 Research Center for Adaptive Data Analysis, National Central University, Taoyuan, Taiwan, 5 Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan Yi-Lwun Ho1,2, Chen Lin3,4,5, Yen-Hung Lin2, Men-Tzung Lo3,4* The Prognostic Value of Non-Linear Analysis of Heart Rate Variability in Patients with Congestive Heart Failure—A Pilot Study of Multiscale Entropy PLoS ONE | www.plosone.org DFA is a modified root-mean-square analysis used to evaluate the fractal correlation beneath the heart rate fluctuation originated from the interacted regulatory mechanisms. The algorithm has Detrended fluctuation analysis (DFA) Nonlinear analysis enables the researchers to probe the fundamental characteristics of the signals. However, unwanted inferences such as noise and nonstationarity may introduce spurious features to the signals [24,25]. The underlying mechanisms of the irregular and unpredicted behavior of the signals can be misinterpreted and the reliability of the results of analysis can be compromised. Two methods had been chosen for their ability to evaluate the main properties of the signals [14,26]. Nonlinear methods Standard deviation of normal RR intervals (SDNN) and percentage of absolute differences in normal RR intervals greater than 50 ms (pNN50) were calculated to represent the total variance and vagal modulation of the HR. In addition, the spectrum analysis was carried out in accordance with the recommendations of the European Society of Cardiology and the North American Society of Pacing Electrophysiology [23]. The spectral density of each frequency band-high frequency (HF) (0.15–0.4 Hz), low frequency (LF) (0.04–0.15 Hz), and very low frequency (VLF) (0.003–0.04) were computed by average power spectrum. Time and frequency domain analysis Each digitalized 24-hour ECG data was annotated by an automated algorithm and the annotated file was then carefully inspected and corrected by technicians for extracting the RR intervals. The ectopic beats (including atrial or ventricular premature beats) were interpolated by its adjacent RR intervals. A four-hour period of RR intervals in daytime (between 9AM– 5PM) was selected from each recording to avoid confounding effects on nonlinear or linear analysis caused by different sleep stage or diurnal rhythm [21,22]. Only subjects consisted of more than 80% of qualified normal sinus beats were included for further analysis (the typical RR-interval tracings and the corresponding recurrent plots for survival and mortality groups (Figure S1) as well as all of the RR-interval data are provided as supplementary materials (Materials S1)). Data pre-processing Patients with manifestation of exertional dyspnea, leg edema and systolic heart failure (LVEF,45% by echocardiography) at the National Taiwan University Hospital were enrolled after giving their inform consents. Baseline information, including age, sex, etiologies for heart failure,diabetes mellitus, hypertension, dyslipidemia (total cholesterol .220 mg/dl), and cardiovascular medication use (b-blockers, ACE-I, angiotensin-II receptor blockers, and spironolactone) was reviewed in medical records and charts. Patients with renal dysfunction (defined by creatine§2.0 mg/dl) were excluded. One month after clinical condition being stable, standard ambulatory 24-hour electrocardiogram (ECG) recorders were placed on all participants. The ECG signals were sampled at 250 Hz and stored in SD memory card for offline analysis on a microcomputer. Subsequently, these patients were followed up and mortality or heart transplantation will be noted as end-point for follow-up. The Ethics Committee of National Taiwan University Hospital approved the study and all patients provided written informed consent. Study Population Methods 2 April 2011 | Volume 6 | Issue 4 | e18699 Figure 1. Demonstrative graph of MSE derived parameters. The profile of MSE can be assessed by a) its linear-fitted slope between certain scales which represent the complexity behaviors of the signals. The negative slope may indicate a random-like structure over certain timescale. B) the area under curve between certain scales that may represent its quantitative feature of the underlying physiological mechanisms in certain time scales (ex. area under scale1,5 may respond to the ability of respiratory sinus arrhythmia). doi:10.1371/journal.pone.0018699.g001 Instead of simply using single time scale to estimate the complex pattern (irregularity) of a time series, MSE extended this concept to evaluate the complexity of physiological signals on multiple time scales. It comprises of two steps: 1) coarse-graining the signals into different time scales; 2) quantify the degree of irregularity in each coarse-grained time series using sample entropy (SpEn) [27]. Finally, the entropy is calculated as a function of scale, providing a measure of information richness embedded in different time scales. In addition, it has shown that different features of small and large scales in different groups of subjects may assist the clinical categorization [19] and thus three different parameters were derived from the MSE profile: the summations of quantitative values of scale 1–5 (Area5) or scale 6–20 (Area6–20) which represent the complexity exhibit in short and long time scales, respectively; and the linear-fitted slope of the first 5 scales (Slope5) (Figure 1). Although MSE was successfully applied in physiological signals [18,19,24], nonstationary artifacts especially trends can compromise the estimation of entropy-based analysis by increasing the standard deviation of the data. Hence, detrending process was used to attenuate the spurious influence caused by nonstationarity [24]. MSE analysis been described in detail elsewhere [14]. To briefly introduce this method, at first, it eliminates the environmental inferences by removing the linear-fitted ‘‘local’’ trend over different time scales (‘‘box sizes’’) in an integrated time series. Next, the root-meansquare fluctuation of this integrated and detrended time series is calculated. This procedure is repeated over different time scales and then the slope of the curve (a exponent) can be estimated on the log-log plot of fluctuations versus box sizes. In addition, a crossover phenomenon of a exponent in heart rate dynamics between short (4–11 beats) and long (11–64 beats) time scales has been proposed. The short-term (a1) as well as longterm (a2) fractal correlation exponents were calculated to provide better understanding of the fractal correlation property in physiological system [14]. Heart Failure and Multi-Scale Entropy 129685 185635 13.661.9 8.963.2 Triglyceride (mg/dl) Cholesterol (mg/dl) Hemoglobin (g/dl) Uric acid (mg/dl) 3 113647 Fasting sugar (mg/dl) PLoS ONE | www.plosone.org Among all parameters, Area5, Area6–20, and LF were significantly lower (p = 0.027, p = 0.021, and p = 0.004 respectively) in the mortality group. (Table 3) Moreover, the ROC of the Application of MSE in prognostic prediction There was no significant difference when any single sample entropy value of scales 1 to 20 was compared between patient groups with or without b-blockers. However, the value of Slope5 was not only significantly lower (p = 0.028) in patients without bblocker therapy but also exhibit a negative value (Table 2). Effect of b-blockers on the dynamical complexity assessed by the MSE analysis While the conventional HRV measurements showed no significant different between these two groups, DFAa1 showed significantly higher values (p = 0.014) in patients with b-blocker treatment (Table 2). Effect of b-blockers on autonomic activities and its fractal properties A total of 40 heart failure patients (30 males and 10 females) with a mean age of 56616 years were enrolled and followed-up for 6846441 days. Twenty-five patients received b-blockers (either carvedilol or metoprolol). Carvedilol was titrated from 3.25 mg per day and metoprolol was titrated from 12.5 mg per day to maximal tolerable doses. Six patients died or received heart transplantation during follow-up period of this study. The demographic and clinical data were showed in Table 1. No clinical variable was significantly different between these two groups (with or without b-blocker therapy). Characteristics of Patients Results 1.0760.25 Creatinine 25.665.3 5 0 25.465.2 IV 9 4 6 Non-coronary artery Diseases Hypertension Diabetes mellitus 10 9 6 Loop diuretics Digoxin Spironolactone 7 10 18 19 10 11 14 11 9 VLF p = 0.189 p = 0.845 p = 0.924 p = 0.929 April 2011 | Volume 6 | Issue 4 | e18699 Although the effects of b-blockers on HRV indices have been extensively studied [30–32], the effects of b-blockers on MSE are still unclear. The present study was the first study to assess the relationship between b-blockers and MSE in CHF patients. The main findings of this preliminary study were that the b-blocker therapy may change the short-term complexity (the slope of MSE between scale 1 to 5). But the most significant predictor of Discussion previously proposed predictors (LF, VLF, and DFAa1) and the new derived parameters (Area5 and Area6–20) were depicted in Figure 2. Area6–20 (AUC:0.85860.075) showed the best overall discriminative power than LF (AUC: 0.78460.087), VLF (AUC:0.73560.117), DFAa1 (AUC:0.7160.145) and Area5 (AUC:0.79460.108) in mortality or heart transplant prediction. Therefore, Area6–20 was adopted to perform the analysis of Kaplan-Meier survival curves. The value of Area6–20!21.2 was a significant predictor of mortality or heart transplant (p = 0.0014). (Figure 3) 13.163.0 5.361.2 20.0260.07 1.2760.09 0.9160.22 484.86321.7 56.3643.0 31.43620.91 0.9160.85 53.2617.8 14.362.7 5.561.1 0.0360.08 1.2660.18 1.1060.34 563.06462.9 90.96102.9 27.9635.3 0.7661.13 49.1626.9 b-blockers(+) (n = 25) p = .211 p = .719 p = .028 p = .679 p = .014 p = .956 p = .659 p = .088 p = .100 p = .332 p value pNN50 87.6690.1 575.46420.4 LF VLF 22.363.5 16.364.5 4.561.1 20.0360.11 1.1560.23 0.8460.45 297.46290.5 23.3622.6 12.669.9 0.4660.37 38.4622.9 Mortality group (n = 6) p = .004 P = .021 p = .197 p = .239 p = .127 p = .071 p = .027 p = .092 p = .939 p = .225 p value PLoS ONE | www.plosone.org Among all parameters, Area5, Area6–20, and LF were significantly lower (p = 0.027, p = 0.021, and p = 0.004 respectively) in the mortality group and those indices may potentially serve as outcome predictors. Slope5 = the linear-fitted slope of the first 5 scales, Area5 = the summations of quantitative values of scale 1–5, Area6–20 = the summations of quantitative values of scale 6–20. doi:10.1371/journal.pone.0018699.t003 5.661.0 Area5 Area6–20 Slope5 0.0260.07 1.2860.13 a2 Multiscale entropy 1.0660.27 a1 Detrended fluctuation analysis 32.1632.0 HF Frequency domain analysis 52.8623.5 0.8861.09 SDNN Time domain analysis Survival group (n = 34) Table 3. Prognostic value of parameters of HRV. mortality or heart transplantation was the long-term complexity (the area under the MSE curve for scale 6 to 20). Therefore, we found an alternative prognostic predictor of CHF in addition to While the conventional HRV measurements showed no significant different between these two groups, nonlinear indices, DFAa1 and the value of Slope5, were significantly lower in patients without b-blocker therapy. Slope5 = the linear-fitted slope of the first 5 scales, Area5 = the summations of quantitative values of scale 1–5, Area6–20 = the summations of quantitative values of scale 6–20. doi:10.1371/journal.pone.0018699.t002 Area6–20 Area5 Slope5 Multiscale entropy a2 p = 0.138 p = 0.660 a1 p = 0.712 Detrended fluctuation analysis LF p = 0.988 HF p = 0.280 p = 0.573 Frequency domain analysis pNN50 p = 0.684 SDNN p = 0.158 Time domain analysis b-blockers(2 2) (n = 15) Table 2. Effect of the b-blockers on the autonomic activities, fractal properties and MSE. p = 0.793 p = 0.073 A total of 40 heart failure patients (30 males and 10 females) were enrolled in this study. No clinical variable was significantly different between the patients with or without b-blocker therapy. NYHA = New York Heart Association; ACE-I = angiotensin converting enzyme inhibitor; ARB = angiotensin receptor blocker. doi:10.1371/journal.pone.0018699.t001 12 ACE-I/ARB Medication 6 Coronary artery disease Etiology of heart failure Body mass index 2 8 III 10 2 II 4 7.162.6 13.462.3 185665 1956177 122647 1.1860.35 35614 I NYHA functional class 33612 LVEF(%) For the independence of different nominal variables between groups, the chi-square test or Fisher exact test were performed. The continuous variables were represented as mean value 6 SD and the normality of those variables was evaluated by using the Shapiro-Wilk test. Then, the Mann-Whitney U test or Student’s t test was applied to the between-group comparison accordingly while the Wilcoxon sign test or Student’s paired t test was calculated for the intra-group comparison. The receiver operating characteristic curve (ROC) was constructed by the sensitivity and specificity of the continuous variable in predicting the end-point. Area under the ROC curve (AUCs) gave an estimate of the overall discriminate ability. Furthermore, the most predictive indexes will be selected to seek the optimal cut point within the 30th to 70th percentile for all patients in 5th-percentile step. The maximal hazards ratio and independent correlation of variables with event status (mortality) was determined by Cox regression analysis. Then, Kaplan-Meier event probability curves and log rank analysis of the dichotomized groups were obtained. The statistical significance was set at p,0.05. 87615 21/4 9/6 86613 Male/Female 51.8613.5 61.7614.7 2) b-blockers (+) b-blockers(2 (n = 15) (n = 25) p value Heart rate (bpm) Age (years) Patient characteristics Table 1. The clinical characteristics between patients with and without using b-blockers. Statistical analysis In this study, the empirical mode decomposition (EMD) method was adopted as an adaptive filter to eliminate the oscillations slower than VLF range in the original R-R interval signals [28]. The data subsequently evaluated by the MSE analysis after detrending. This algorithm, instead of removing trend with a priori mathematical formulas such as linear or polynomial functions [14,29], could evaluate the hidden dynamics of heart beat fluctuations better [9,10,29]. Heart Failure and Multi-Scale Entropy 4 April 2011 | Volume 6 | Issue 4 | e18699 Figure 3. Using MSE Area6–20!21.2 as a clinical predictor, significant difference in survival was noted from the KaplanMeier survival curve (P = 0.0014). doi:10.1371/journal.pone.0018699.g003 All linear HRV measurement showed no difference between patients with or without b-blocker treatment in the present study. Effect of b-blocker therapy on linear and nonlinear properties of HRV neurohormonal inhibition therapy by assessing the nonlinear characteristics of the heart rate fluctuations. Figure 2. Very-low-frequency component (VLF; black, solid line), low-frequency component (LF; black, dashed line), shortterm fractal exponent (DFAa1; black, dotted line), the summations of quantitative values of scale 1–5 (Area5; grey, dashed line), and the summations of quantitative values of scale 6–20 (Area6–20; grey, dash-dotted line) receiver operating characteristic (ROC) curves. The area under each ROC curves (AUC) was calculated for each parameters. The AUCs were 0.735 for VLF, 0.784 for LF, 0.701 for DFAa1, 0.794 for Area5, and 0.858 for Area6–20. doi:10.1371/journal.pone.0018699.g002 Heart Failure and Multi-Scale Entropy PLoS ONE | www.plosone.org 1. Wang TJ, Evans JC, Benjamin EJ, Levy D, LeRoy EC, et al. (2003) Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108: 977–982. 2. Stewart S, Jenkins A, Buchan S, McGuire A, Capewell S, et al. (2002) The current cost of heart failure to the National Health Service in the UK. Eur J Heart Fail 4: 361–371. 3. van Jaarsveld CH, Ranchor AV, Kempen GI, Coyne JC, van Veldhuisen DJ, et al. (2006) Epidemiology of heart failure in a community-based study of subjects aged . or = 57 years: incidence and long-term survival. Eur J Heart Fail 8: 23–30. 4. Flather MD, Yusuf S, Kober L, Pfeffer M, Hall A, et al. (2000) Long-term ACEinhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet 355: 1575–1581. 5. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, et al. (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For References Applying Fourier-based method to nonlinear or nonstationary signals may result in inaccurate estimations [9,29] and compromise the sensitivity of linear HRV measurements. Recently, DFAa1 has been proposed to be a better predictor for CHF patients [34]. In the present study, SDNN and DFAa1 failed to predict the prognosis of CHF patients. Makikallio et al. noticed that HRV indexes such as SDNN is less sensitive in CHF patient with NYHA.III [35]. Sixteen patients (40%) were classified as NYHA III–IV in our study and five out of them were in mortality group. Moreover, administration of beta-blockade has shown a reversal effect in either linear and nonlinear parameters such as SDNN, HF, LF and DFAa1 [30,32,33]. Half of the patients with poor outcome were treated with beta blocker which may potentially influence the parameters. SDNN and DFAa1 may be, therefore, Complexity analysis as a prognosis predictor Other researchers have proposed that the restoration of autonomic function can be assessed by HRV indices [30,31,33]. The discrepancy between our finding and previous studies could be due to several factors. The first, the b-blockers were titrated according to patients’ tolerance in our study. Therefore, the duration and dosage of b-blockers were variable. The second, the ECG was recorded 1 month after clinical condition being stable in our study. However, significant changes of most linear HRV parameters are found after 12 weeks of treatments. The short-term fractal scaling correlation index, DFAa1, was markedly higher in b-blocker group. The reversal of DFAa1 is also reported after administrating b-blocker in patients with CHF [33]. Our data showed similar results. The new nonlinear method, MSE, allows us to evaluate the information richness in heart beat time series over different time scales. Although the underlying mechanisms responsible for the quantitative feature of the MSE in different time scales are still unclear, previous studies have shown that the complexity decreased significantly during aging and further deteriorated in patients with CHF [19]. We applied three different parameters, Area5, Area6–20, and Slope5, to compare patients with or without b-blocker treatment. The summation of entropy values at different time scales may give the quantitative estimation of information richness over certain time scales. That is, Area5 and Area6–20 can probe the complexity structure of the heart rate dynamics in short (e.g., 1 to 5 heart beats) and longer (e.g., 6 to 20 heart beats) time scales, respectively. The Slope5 also outlined the structure of heart rate dynamics in short time scale [19]. The negative value of Slope5 indicates random-like patterns in short time scales. Therefore, the significant difference between b-blocker and non b-blocker groups might due to dysfunction of the short-term regulatory mechanisms coincided with the results assessed by DFAa1. 5 April 2011 | Volume 6 | Issue 4 | e18699 Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359: 995–1003. 6. Cohn JN, Tognoni G (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345: 1667– 1675. 7. Fauchier L, Babuty D, Cosnay P, Fauchier JP (1999) Prognostic value of heart rate variability for sudden death and major arrhythmic events in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 33: 1203–1207. 8. La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, et al. (2003) Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 107: 565–570. 9. Lo MT, Tsai PH, Lin PF, Lin C, Hsin YL (2009) The nonlinear and nonstationary properties in EEG signals: probing the complex fluctuations by Hilbert Huang Transform. Adv Adapt Data Anal 1: 461–482. 10. Peng CK, Costa M, Goldberger AL (2009) Adaptive data analysis of complex fluctuations in physiologic time series. Adv Adapt Data Anal 1: 61–70. Conceived and designed the experiments: YLH MTL. Performed the experiments: YHL CL. Analyzed the data: MTL CL. Contributed reagents/materials/analysis tools: YLH MTL. Wrote the paper: YLH CL. Author Contributions output in a one-column Ascii file and categorized into two groups according to their outcomes after 2.5 years follow up. All of the files were packed into a compressed RAR file. (RAR) Materials S1 The RR intervals of each patient was Figure S1 The 4-hour time tracings of RR intervals of survived patient (A) and patient who died after 1 year (B) and the return map traits of three-dimensional RR time series reconstruction (x-axis for RRn, y-axis for RRn++1 and z-axis for RRn+2) of survived patient (C) and expired patients (D). Note that the trait of the map in survival patient was similar to that in expired patient. (TIFF) Supporting Information First, our study had small sample size and no placebo-controlled group. Second, all ECG data were recorded in normal ‘‘freerunning’’ conditions with possible confounding factors (e.g., physical activities, different breathing patterns, and so on). The additive or dynamical noises may affect the properties of the signals. Although we examined and interpreted the results of the analysis cautiously and the differences characteristics of the patients were unlikely due to the noise, we did not assess the features or level of noise for more detailed information that may benefit the exploration of the underlying deterministic rules. Finally, some parameters related to possible physiological mechanisms of MSE were not collected, such as baroreflex sensitivity, catecholamine levels, and chemoreflex activities. In conclusions, the area under the MSE curve for scale 6 to 20 is not relevant to b-blockers and could further warrant independent risk stratification for the prognosis of CHF patients. Limitations of study insensitive to predict their prognosis. Area5 and Area6–20 derived from MSE were markedly lower in the mortality group. This phenomenon was in agreement with those found by Costa et al. in MUSIC study [19]. Although the underlying mechanisms were still unclear, this preliminary study provided a new insight for the prognosis of CHF by probing the dynamical complexity on the system level. It could potentially offer an alternative marker for the outcome of CHF in addition to neurohormonal inhibition therapy. Heart Failure and Multi-Scale Entropy PLoS ONE | www.plosone.org 11. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng CK, et al. (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 99 Suppl 1: 2466–2472. 12. Buchman TG (2002) The community of the self. Nature 420: 246–251. 13. Lombardi F (2000) Chaos theory, heart rate variability, and arrhythmic mortality. Circulation 101: 8–10. 14. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5: 82–87. 15. Jagric T, Marhl M, Stajer D, Kocjancic ST, Jagric T, et al. (2007) Irregularity test for very short electrocardiogram (ECG) signals as a method for predicting a successful defibrillation in patients with ventricular fibrillation. Transl Res 149: 145–151. 16. Perc M (2005) Nonlinear time series analysis of the human electrocardiogram. European Journal of Physics 26: 757–768. 17. Perc M (2005) The dynamics of human gait. European Journal of Physics 26: 525–534. 18. Yuan HK, Lin C, Tsai PH, Chang FC, Lin KP, et al. (2011) Acute increase of complexity in the neurocardiovascular dynamics following carotid stenting. Acta Neurol Scand 123: 187–192. 19. Costa M, Goldberger AL, Peng CK (2005) Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys 71: 021906. 20. Costa M, Cygankiewicz I, Zareba W, Bayes de Luna A, Goldberger AL, et al. (2006) Multiscale Complexity Analysis of Heart Rate Dynamics in Heart Failure: Preliminary Findings from the MUSIC Study. Comput Cardiol 33: 101–103. 21. Pikkujamsa SM, Makikallio TH, Sourander LB, Raiha IJ, Puukka P, et al. (1999) Cardiac interbeat interval dynamics from childhood to senescence: comparison of conventional and new measures based on fractals and chaos theory. Circulation 100: 393–399. 22. Vanoli E, Adamson PB, Ba L, Pinna GD, Lazzara R, et al. (1995) Heart rate variability during specific sleep stages. A comparison of healthy subjects with patients after myocardial infarction. Circulation 91: 1918–1922. 23. (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93: 1043–1065. 6 April 2011 | Volume 6 | Issue 4 | e18699 24. Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, et al. (2007) Noise and poise: Enhancement of postural complexity in the elderly with a stochasticresonance-based therapy. Europhys Lett 77: 68008. 25. Kantz H, Schreiber T (2004) Nonlinear Time Series Analysis. Cambridge: Cambridge University Press. 26. Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89: 068102. 27. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278: H2039–H2049. 28. Wu Z, Huang NE, Long SR, Peng CK (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci U S A 104: 14889–14894. 29. Lo MT, Novak V, Peng CK, Liu Y, Hu K (2009) Nonlinear phase interaction between nonstationary signals: a comparison study of methods based on HilbertHuang and Fourier transforms. Phys Rev E Stat Nonlin Soft Matter Phys 79: 061924. 30. Sanderson JE, Chan SK, Yip G, Yeung LY, Chan KW, et al. (1999) Betablockade in heart failure: a comparison of carvedilol with metoprolol. J Am Coll Cardiol 34: 1522–1528. 31. Mortara A, La Rovere MT, Pinna GD, Maestri R, Capomolla S, et al. (2000) Nonselective beta-adrenergic blocking agent, carvedilol, improves arterial baroflex gain and heart rate variability in patients with stable chronic heart failure. J Am Coll Cardiol 36: 1612–1618. 32. Sanderson JE, Yeung LY, Chan S, Tomlinson B, Kay R, et al. (1999) Effect of beta-blockade on baroreceptor and autonomic function in heart failure. Clin Sci (Lond) 96: 137–146. 33. Lin LY, Lin JL, Du CC, Lai LP, Tseng YZ, et al. (2001) Reversal of deteriorated fractal behavior of heart rate variability by beta-blocker therapy in patients with advanced congestive heart failure. J Cardiovasc Electrophysiol 12: 26–32. 34. Ho KK, Moody GB, Peng CK, Mietus JE, Larson MG, et al. (1997) Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96: 842–848. 35. Makikallio TH, Hoiber S, Kober L, Torp-Pedersen C, Peng CK, et al. (1999) Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. TRACE Investigators. TRAndolapril Cardiac Evaluation. Am J Cardiol 83: 836–839. Heart Failure and Multi-Scale Entropy (Second presenter) C2010 In infant and children with bradycardia that unresponsive to oxygenation and/or ventilation (P), does the use of atropine (I), as compared with epinephrine (C), improve patient outcome return to age-appropriate heart rate, subsequent pulseless arrest, survival) (O)? Worksheet identifier: Peds-052(B) Author: Sasa Kurosawa, MD Affiliation: 1) Research Inst., National Center for Child Health & Dev. 2) Shizuoka Children’s Hospital Taskforce: PEDS Other Worksheet Authors: Susan Fuchs, Masahiko Nitta(042) (Second Presenter) C 2010 Worksheet Specific Conflict Of Interest Disclosure ! Commercial/industry ! none ! Potential intellectual conflicts ! none (Second presenter) C2010 (Second presenter) C2010 Differences in supporting evidence Differences in COS Statement and Treatment Recommendation compared to first presenter Summary of evidence Evidence Supporting Clinical Question Good Fair ! I almost agree with first presenter (Susan Fuchs). Fullerton,1991(E ) Poor 1 2 3 Level of evidence 4 5 A = Return of spontaneous circulation C = Survival to hospital discharge E = Other endpoint B = Survival of event D = Intact neurological survival Italics = Animal studies denotes key article(s) (Second presenter) C2010 Differences in Neutral evidence (Second presenter) C2010 Differences in Opposing evidence Summary of evidence Summary of evidence Evidence Neutral to Clinical Question Evidence Opposing Clinical Question Good Tibballs, 2006 (ABCD) Guay, 2004 (ABCD) Reis, 2002 (ABCD) Good Brady, 1999, (E) Smith, 1994, (E) Chadda, 1977, (E) Fair Zimmerman, 1986(E) Poor 1 2 3 Level of evidence 4 Fair Coon, 1981 Poor (AC) 5 1 A = Return of spontaneous circulation C = Survival to hospital discharge E = Other endpoint B = Survival of event D = Intact neurological survival Italics = Animal studies denotes key article(s) 2 3 Level of evidence 4 5 A = Return of spontaneous circulation C = Survival to hospital discharge E = Other endpoint B = Survival of event D = Intact neurological survival Italics = Animal studies denotes key article(s) 1 (Second presenter) C2010 (Second presenter) C2010 Differences in interpretation of Key studies Differences in interpretation of Key studies Key study #1 Reis, Pediatrics 2002 Key study #2 Tibballs, Resuscitation 2006 (Second presenter) C2010 Summary Of 3 In-hospital Arrest Studies (Tibballs, Guay, Reis) Study # pts Tibballs 111 Rhythm 73 hypotension & bradycardia Epi used 97/111 (Second presenter) C2010 Differences in interpretation of Key studies Key study #3 Coon, Ann Emerg Med 1981 Survivors 38% at 1 yr Guay 203 102 bradycardia 101/203 30% at 1 yr Reis 129 43 bradycardia 86 arrest (55% asystole) 107/129 (atropine in 26) 33% brady at 24 hr 21 total to hosp d/c Table 3 PARAMETERS OF THERAPEUTIC EFFECACY Brady-Asystolic Rhythm Control Ca2+, Steroid, Isoproterenol HCO3, Epinephrine Intubation ABGs Pacemaker Pressors Atropine No Coltrol Atropine Rhythm 10/11 8/10 Pulse 6/11 4/10 Admit 2/11 2/10 Discharge 1/11 0/10 Atropine (1-2mg) New Rhythm ! Appropriate Drug Atropine may not affect the outcome of prehospital bradyasystolic cardiac arrest of primary cardiac etiology. Fig.2. Protocol for treating brady-asystolic rhythm. (Second presenter) C2010 Differences in interpretation of Key studies Key study (Fuchs) Horigome, Acta Paediatrica Japonica 1993 ! Atropine increased HR and mean blood pressure, but had no effect on left ventricular end diastolic dimension (LVEDD), or LV shortening fraction (LVSF). ! Myocardial depression caused by halothane was not improved by atropine But I think if atropine increase HR and mBP, it is effective to improve systemic circulation. (Second presenter) C2010 Different Consensus on Science statements ! Several adult studies and one pediatric study showed the efficacy of atropine for bradycardia caused by vagal stimulation, AV block, intoxication…(LOE 4, 5) [Brady, 1999, 47; Smith, 1994, 245; Zimmerman, 1986, 320; Chadda, 1977, 503]. ! However, in pediatrics, bradycardia is mainly caused by hypoxia poor perfusion. Bradycardia is a pre-arrest state. ! Large pediatric Utstein studies demonstrated the significant frequency of hypotension-bradycardia, in pediatrics (LOE 4) [Guey, 2004, 373; Tibballs, 2006, 310; Reis, 2002, 200]. In this context, epinephrine is the first line drug rather than atropine. 2 (Second presenter) C2010 Different Treatment Recommendations ! There is no supportive evidence to demonstrate that atropine is superior to epinephrine in the case of bradycardia unresponsive to oxygenation and/or ventilation (excluding the case with vagal stimulation). ! Epinephrine is the first line drug for poorly perfused infants and children with bradycardia (heart rate <60 beats/min) that is unresponsive to oxygenation and/or ventilation. The first thing start chest compressions! 3 Page 1 of 21 Date Submitted for review: December 25, 2009 Nitta (042B): Databases searched: MEDLINE, Cochrane, ECC EndNote Master Library Previous 2005 WS related to this question was reviewed and added several hand search. #1 "Heart Arrest"[Mesh] AND "Atropine"[Mesh] #2 "bradycardia"[Mesh] AND "Atropine"[Mesh] #3 #1 or #2 advanced search child: 0-18 years #4 #2 and (symptomatic bradycardia or resuscitation or shock or cardiopulmonary failure) #10 What is the optimal drug therapy for significant bradycardia?(WS91 Lim Swee Han, 20 Oct 2004) → 2 articles(#6, #7) #11 Additional hand search → 2 articles(#8, #9) #7 "Atropine"[Mesh] AND "Bradycardia"[Mesh] AND "Child"[Mesh] → hits 49 #8 "Epinephrine"[Mesh] AND "Bradycardia"[Mesh] AND "Child"[Mesh] → hits 5 #9 #7 OR #8 → hits 53, but there is no appropriate article. #1 Bradycardia, Atropine, Child → hits 122 #2 Bradycardia, Epinephrine, Child → hits 25 #3 #1 OR #2 → hits 136 → 1 article(#1) #4 Bradycardia, Resuscitation, Atropine → hits 81 #5 Bradycardia, Resuscitation, Epinephrine → hits 72 #6 #4 OR #5 → hits 119 → 4 article(#2 - #5) Kurosawa (052B): Databases searched: Medline, ECC EndNote Master Library Previous 2005 WS related to this question was reviewed and added several hand search. Hand searching references of articles Review of 2005 ILCOR worksheets on similar topic Recommendation from Dr Morley Search strategy (including electronic databases searched). Fuchs (052A): Embase: bradycardia, atropine, epinephrine: 47 articles- none useful Embase June 4, 2009: bradycardia, epinephrine, atropine : 11 articles from combined search-none useful, 21 from bradycardia and epinephrine- 1 useful-had already, 108 from bradycardia and atropine-1 useful-had already Pubmed: bradycardia (mesh), atropine(mesh), atropine derivative(mesh), epinephrine(mesh) 31 articles results- none were useful Cochrane library: bradycardia (mesh), epinephrine (mesh), atropine (mesh): 97 articles, 1 useful (epinephrine for the resuscitation of apparently stillborn or extremely bradycardic newborn infants AJA Zino, MW Davies, PG Davis Cochrane Database of Systemic Reviews 2002, Issue 3, Art no: CD003849. Cochrane library June 4, 2009- no additional information that previously Pubmed: bradycardia (mesh), atropine(mesh), atropine derivative(mesh), epinephrine(mesh) : 69 articles, 5 possibly useful Is this question addressing an intervention/therapy, prognosis or diagnosis? Intervention State if this is a proposed new topic or revision of existing worksheet: Conflict of interest specific to this question Do any of the authors listed above have conflict of interest disclosures relevant to this worksheet? No Nitta: In infants and children with cardiac arrest (out-of-hospital and in-hospital) or symptomatic bradycardia (P), does the use of atropine (I) compared with no atropine use (C), improve outcome (O) (eg. ROSC, survival)? Clinical question. Fuchs and Kurosawa: In infant and children with bradycardia that unresponsive to oxygenation and/or ventilation(P), does the use of atropine(I), as compared with epinephrine(C), improve patient outcome(return to age-appropriate heart rate, subsequent pulseless arrest, survival)(O)? Worksheet author(s) Susan Fuchs, Sasa Kurosawa, Masahiko Nitta WORKSHEET for Evidence-Based Review of Science for Emergency Cardiac Care C2010 Worksheet:Peds-052A 25-Dec-2009 .doc Page 2 of 21 #5 "Heart Arrest"AND "Atropine" #6 "symptomatic bradycardia" AND "Atropine" #7 #5 or #6 advanced search child: 0-18 years #8 Additional hand search • State inclusion and exclusion criteria Fuchs: None Kurosawa: Included all human clinical trials, meta-analysis, case reports, guidelines. English only. Review articles and animal experiments were excluded. Nitta: The following studies were excluded: Not true cardiac arrest cases. Included all human clinical trials, meta-analysis, and animal experiments. English Language limitations. Review articles were excluded. • Number of articles/sources meeting criteria for further review: Fuchs :12 Kurosawa: 9 articles relevant to the topic (from 308 hits and previous WS) were reviewed in detail Nitta: • Number of articles/sources meeting criteria for further review: #3 9 articles relevant to the topic (from 123 hits) #1 17 articles relevant to the topic (from 183 hits) #4 4 articles relevant to the topic (from 57 hits) #7 9 articles relevant to the topic (from 85 hits) #8 2 articles relevant to the topic #3 or #1 or #4 or #6 or #8 22 articles relevant to the topic and 12 articles were reviewed in detail C2010 Worksheet:Peds-052A 25-Dec-2009 .doc Summary of evidence Page 3 of 21 1 1 A = Return of spontaneous circulation B = Survival of event * Pediatric Study Poor Fair Good 2 C = Survival to hospital discharge D = Intact neurological survival 3 Level of evidence Meaney (C) Reis (B) 2 C = Survival to hospital discharge D = Intact neurological survival Lienhart A * Zimmerman (E) McNamara (E) Polin (E) Sacchetti (e) Rothrock (E) 3 4 Level of evidence 5 Brown –A,B,C,E (sinus rhythm) Stuevan A Sorensen (A) Stiell (B) Blecic (AE) E = Other endpoint Italics = Animal studies 5 Iseri AC Steuvan C Yilmaz (E) Redding (A) Chow E (histochemical studies) Brady (B,E) Smith (E) Chadda (E) Oshige (BE) Niemann (A) Angelos A Kaplan B McCaul B E = Other endpoint Italics = Animal studies 4 Fullerton E (prevent recurrence of bradycardia) * Thrush (E) Evidence Neutral to Clinical question A = Return of spontaneous circulation B = Survival of event * Pediatric Study Poor Fair Good Evidence Supporting Clinical Question Studies in Bold-Fuchs Studies in Normal font-Kurosawa Studies in Italics- Nitta Studies in Bold and Underlined-Fuchs and Kurosawa Studies in Bold & Italics- Fuchs and Nitta Studies in Italics and underlined-Kurosawa and Nitta Only study cited in all 3 (bold, italics and underlined)-Coon C2010 Worksheet:Peds-052A 25-Dec-2009 .doc 1 Horigome E * A = Return of spontaneous circulation B = Survival of event * Pediatric Study Poor Fair Good Page 4 of 21 2 C = Survival to hospital discharge D = Intact neurological survival 3 Level of evidence Herlitz 1994 (BCE) Herlitz 2003 (BCE) Engdahl (BCE) 5 DeBehnke (A) Coon (ABCE) E = Other endpoint Italics = Animal studies 4 Tibballs (ABCD) Guay (ABCD) Reis (ABCD) Evidence Opposing Clinical Question C2010 Worksheet:Peds-052A 25-Dec-2009 .doc Page 5 of 21 There were only 2 studies that opposed the use of atropine. The Coon study (LOE 5) evaluated atropine after epinephrine (and other drugs).Twenty one prehospital adults who suffered cardiac arrest and were then in asystole or pulseless idioventricular rhythm (PIVR) were studied. There was no difference between the 2 groups (control n=11) and atropine (N=10) with respect to rhythm changes, pulse, admission or hospital discharge, so atropine did not improve outcome. The other study to oppose the use of atropine was a randomized study by Horigome (LOE1), which involved 34 children undergoing halothane anesthesia for minor surgery. Echocardiographic recordings and indices were before, after induction of general anesthesia, and after IV atropine administration (either 0.01 mg/kg or 0.02 mg/kg). Following halothane anesthesia, heart rate and mean blood pressure fell from preinduction levels in both groups. The left systolic time interval ration (LSTI), and the left ventricular end-diastolic dimension (LVEDD/preload) were reduced, and the left ventricular shortening fraction (LVSF) was increased in both groups. After injection of atropine, the heart rate increased above baseline (more for the 0.02 mg/kg group), the mean blood pressure returned to baseline in both groups. The other parameters LSTI, LVEDD and LVSF remained unchanged in both groups, but the LSTI and LVEDD were larger and the LVSF smaller than pre-induction. What this research demonstrated was that atropine can counteract the bradycardia caused by halothane anesthesia, but myocardial contractility remains depressed. There was no advantage Most of the studies were neutral with respect to the question. Angelos (LOE 5) evaluated ROSC in a rat model utilizing epinephrine vs placebo, and found that as the duration of cardiac arrest increased, epinephrine is more important to attain ROSC, but there was greater post-ROSC myocardial,depression. Brady (LOE 5) was a study involving adult patients with hemodynamically compromising bradycardia or AVB with evidence of spontaneous circulation who received atropine delivered by EMS personnel, and in the hospital. 86 patients had bradycardia and approximately onethird of patients who received atropine in the prehospital setting for bradycardia had either a partial or complete response to therapy. The Chow study (LOE 5) was a histiochemical and immunochemical analysis of the autonomic innervation of the human cardiac conduction system that demonstrated initial sympathetic dominance in infancy with gradual transition to sympathetic and parasympathetic innervation in adulthood. Kaplan (LOE 5) compared BG-9719, a selective A1AdoR antagonist to atropine or saline in a vagotomized, hypoxic rat model. Atropine and saline did not prolong survival or attenuate posthypoxic decreases in heart rate compared to BG-9719. McCaul (LOE 5) evaluated a brief asphyxial arrest rat model utilizing 10 or 30 mcg/kg of epinephrine vs saline, and demonstrated that epinephrine increased mortality, especially with the higher dose. The retrospective study by Iseri (LOE 5) evaluated adult patients in the prehospital setting in ventricular fibrillation or extreme bradycardia or asystole. Epinephrine or isoproterenol was given to 14 bradycardic patients, and atropine in 12 patients (either as treatment 1, 2 or 3), but results were inconsistent and only 1 patient survived to hospital day 12. Leinhart (LOE 4) was a case report on a 20 month old infant who suffered a near drowning. The first dose of epinephrine and atropine has no effect, but another dose of epinephrine and vasopressin resulted in ROSC. The only pediatric study to support the use of atropine involved 4 infants who had undergone cardiac surgery (Fullerton LOE 4). Three experienced hypotension, followed by bradycardia and asystole. Two did not respond to epinephrine, but all responded to atropine. One other infant had episodes of hypotension without bradycardia, and responded to atropine. It was thought that these episodes were secondary to the Bezold-Jarisch reflex. This reflex is initiated by activation of mechanical stretch receptors located mainly in the wall of the left ventricle, with afferents carried by the right vagus nerve. Activation of this reflex results in hypotension and bradycardia mediated by cholinergic vasodilatation and withdrawal of sympathetic tone. The continuous administration of atropine in all cases prevented the recurrence of this reflex in these patients. This concept may support the use of atropine in vagally mediated bradycardia, as the current PALS bradycardia algorithm suggests. The studies that were supportive of atropine in some aspect include the case series by Brown (LOE 5) which involved 8 adults in cardiac arrest, all whom were in asystole as the initial rhythm or as a result of defibrillation. Six failed to respond to epinephrine, but responded to atropine. And 50% of these patients were discharged from the hospital. In the prehospital study by Stueven (LOE 5), which was a retrospective review, there were 84 adult patients in asystole who remained in asystole after epinephrine (and sodium bicarbonate). Of these patients, 43 also received atropine, and 6 had successful resuscitation, which was defined as conveyance of a patient with a rhythm and pulse to an emergency department vs 0/41 of the epinephrine, sodium bicarbonate group, (P<.04). However, none of the patients who received atropine survived to hospital discharge. Therefore, this study is neutral with respect to survival to hospital discharge. Fuchs: There were no randomized controlled, quasi-randomized controlled trials or any study in children which looked at the specific question: In infants and children with bradycardia that is unresponsive to oxygenation and/or ventilation, dose the use of atropine as compared to epinephrine improve patient outcome. REVIEWER’S FINAL COMMENTS AND ASSESSMENT OF BENEFIT / RISK: C2010 Worksheet:Peds-052A 25-Dec-2009 .doc Page 6 of 21 There are one adult (Sorensen, LOE 5) and two pediatric case series (Fullerton, Thrush, both LOE 4), evaluating treatment of bradycardia presumed to be caused by vagal stimulation. Four cardiac surgical patients exhibited From the National Registry of Cardiopulmonary Resuscitation (NRCPR), Meany. (LOE 3) reported 464 pediatric ICU arrests The odds ratio (95% CIs) for survival to discharge with atropine was 2.38 (1.20-4.74) using multivariate logistic regression analysis. In a second NRCPR study, (Reis 2002) 129 pediatric patients who received cardiopulmonary resuscitation for cardiac arrest or symptomatic bradycardia were studied. The relative risk of death at 24 hours with atropine was 0.98 (0.58-1.90) using multivariate logistic regression analysis. These results suggest that atropine may be effective in cardiac arrest or resuscitated symptomatic bradycardia. But it was not clear whether atropine was given while CPR in progress. Stiell (LOE 5) reported a large observational cohort study of cardiac arrest in adult cases. 529 adult patients who suffered in-hospital and out-of-hospital cardiac arrest were studied. The odds ratio (95% CIs) for successful resuscitation with atropine, after multivariate adjustment for potential confounders, was 1.2 (1.0-1.3). There are few articles related to this topic in pediatrics which are supportive of atropine. The Stueven and Brown studies are mentioned above. Using a prospective, controlled, blinded, adult canine model of PEA induced by ventricular fibrillation followed by external defibrillation, Blecic (LOE 5) demonstrated that atropine increased survival and shortened CPR time compared to the control group treated with D5W. In treatment group, 91% (10/11) achieved of ROSC with atropine, but only 67% (8/12) with 5% dextrose, control. Additionally, the atropine treated group had higher arterial pressure, heart rate, cardiac output, stroke volume and decreased time to recovery. The administration of atropine with epinephrine enhanced the recovery in this experimental canine model. Nitta: Symptomatic bradycardia is the most common initial rhythm in pediatric cardiac arrest (asphyxial arrest). Epinephrine is the first line drug in this setting. In CoSTR 2005, there was no evidence to eliminate atropine for asystole in pediatrics. Atropine for asystole in adults was reviewed in two work sheets (W97A, W97B). There are some Utstein reports in pediatrics. In these reports (Tibballs, Guay, Reis, all LOE 4), the percentage of hypotensive bradycardia in all patients who received cardiopulmonary resuscitation was relatively high. And most of these patients received epinephrine rather than atropine during resuscitation. Tibballs (LOE 4) Resuscitation was attempted in total of 111 cases. Of these patients who had cardiac arrests, hypotensive-bradycardia was identified in 73 cases, which is two third of all cases, and epinephrine was used in around 90% (97/111) of all cases as the first line drug. Guay (LOE 4) Of all 203 cases, initial rhythm was bradycardia in 102 cases (50%), and 101 cases(50%) were received epinephrine. There was no mention of administration of atropine. Reis (LOE 4) Chest compressions and assisted ventilation were provided for total of 129 patients. Of all cases, bradycardia with hypoperfusion, unresponsive to oxygenation and ventilation, was noted in 43 cases which is one third of all cases. Most of the patients received epinephrine rather than atropine during resuscitation which is almost over 80% of all cases. Even in adults, one study (see Coon LOE 5 above) shows that atropine may not superior to epinephrine in pre-arrest state. Kurosawa: Some adult studies (Smith, Yilmaz ,Brady, Chadda, all LOE 5) and a pediatrics study ( Zimmerman LOE 4) indicated that iv atropine improved heart rate in symptomatic bradycardia. Atropine is effective for vagal stimulation, AV block, intoxication, etc. Zimmerman (LOE 4). As common causes of intraoperative bradycardia are hypoxia or vagal activity, such therapy should consist of ventilation with oxygen and iv atropine. Yilmaz (LOE 5) 66 patients were hospitalized with a variety of symptoms (nausea, vomiting, salivation, dizziness, weakness, hypotension, bradycardia and syncope) several hours after the ingestion of small amount of honey. All patients had hypotension, and majority had bradycardia. These features resolved completely in 24h with iv fluids and atropine. Brady (See above). Smith (LOE 5) 64 adult patients who received general anesthesia (sufentanyl + N2O + vecuronium) were allocated randomly to received either atropine, 5μg/kg(Group 1), glycopyrrolate, 2.5μg/kg(Group 2), or transesophageal atrial pacing (Group 3) after the onset of bradycardia, defined as a heart rate of < 50bpm ( or < 60bpm with concurrent of hypotension). Bradycardia occurred in 15 patients of each group. The therapeutic response was significantly more rapid in Group 3. But the therapy was effective in all groups and there is no great difference in incidence of side effects between the three groups. Chadda (LOE 5) The effect of 0.4 to 1.5 mg intravenously administered atropine were evaluated in 100 adult patients with a heart rate < 60/min following acute myocardial infarction. There was a statistically significant correlation between the dose of atropine and the increment in heart rate. of a dose of 0.02 mg/kg over 0.01 mg/kg. While this does not answer the question about if epinephrine is better than atropine in bradycardia, it is known that epinephrine increases the heart rate and myocardial contractility, so it could be of more benefit in bradycardia unresponsive to oxygenation and ventilation. C2010 Worksheet:Peds-052A 25-Dec-2009 .doc 042: There is extremely limited data on the use of atropine in pediatric cardiac arrest, and poor quality data supporting its use in adult cardiac arrest. Evidence from two LOE 3 studies of in-hospital pediatric cardiac arrest [Meany 2006, 2424, Reis 2002, 200] showed some improvement in survival to discharge, but another demonstrated no decrease in risk of death. Evidence from one LOE 4 study [Fullerton, 1991, 534] and one LOE 5 study in adults [Brown, 1979, 448] demonstrated the some efficacy of atropine in symptomatic bradycardia requiring resuscitation. Evidence from adults studies, one level 5 study [Stueven, 1984, 815], one level 5 study [Brown, 1979, 448] and one level 5 animal study [Blecic, 1992, 515] demonstrated the efficacy of atropine in cardiac arrest (ROSC). Evidence from one level 5 animal study [DeBehnke, 1995, 1034] demonstrated no improvement with atropine in canine asphyxial cardiac arrest. Large pediatric Utstein studies demonstrated the significant volumes of hypotensive-bradycardia, which is indicating this specific feature in pediatrics (LOE 4) [Tibballs, 2006, 310; Guay, 2004, 378; Reis, 2002, 200]. In this context, epinephrine is the first line drug rather than atropine. Even in adults, one study shows that atropine may not superior than epinephrine in pre-arrest state (LOE 5)(Coons, 1981, 462). Evidence from several adult studies (LOE 5: Brady 1999,47, Chow 2001,169, Coon 1981,462, Iseri 1978,741, Steuven 1984,815), animal studies (LOE 5: Angelos 2008,101, Kaplan 2003,923, McCaul 2006,102), and 1case series on a child (LOE 4: Lienhart 2005,486) demonstrate no benefit from the use of atropine after epinephrine. One randomized pediatric study (LOE 2: Horigome 1993,513) demonstrated that atropine only increased heart rate and mean blood pressure, but did not improve myocardial depression induced by halothane anesthesia. One LOE 5 adult study (Coon 1981,462) also demonstrated no benefit of atropine over epinephrine with respect to ROSC, survival or event or hospital discharge. Several adult studies and one pediatric study showed the efficacy of atropine for bradycardia caused by vagal stimulation, AV block, intoxication (LOE 5) Yalmaz, 2006, 405; Brady, 1999, 47; Smith, 1994, 245; Zimmerman, 1986, 320; Chadda, 1977, 503). One pediatric case series (LOE 4: Fullerton 1991,534) demonstrated a beneficial effect of atropine after epinephrine for children who developed hypotension after cardiac surgery (Bezold-Jarisch refllex mediated). CONSENSUS ON SCIENCE: 052: Evidence from 2 adults studies (LOE 5, Brown 1979,448-adult case series, Stueven 1984,815-adult retrospective control), demonstrated a change of cardiac rhythm from asystole after atropine, when there had been no change after epinephrine, however survival to hospital discharge was no different. Conclusion In pediatric patients, hypoxemia, hypothermia, acidosis, hypotension, hypoglycemia, central nervous system insults and excessive vagal stimulation may produce symptomatic bradycardia and asystole. Asystole can be exacerbated by excessive vagal tone and the administration of atropine is reasonable for its physiological effects. Two cohort studies of out-of-cardiac arrest showed no evidence that treatment with atropine increase the chance of survival among asystolic patients (Engdahl, 2000) and cardiac arrest patients (Herlitz, 2003). Although these studies included pediatric patients in cardiac arrest, they were not separated in the analysis. Citation List Atropine can have a place during cardiopulmonary resuscitation (CPR) in the management of asystole, where parasympathetic influence might be excessive. However, the beneficial effects of atropine in electromechanical dissociation (EMD) have not been clearly demonstrated. The authors studied the effects of atropine in combination with epinephrine on an experimental model of EMD in the closed-chested dog. In 15 pentobarbital-anesthetized, mechanically ventilated dogs (mean weight 20 kg), EMD was induced by ventricular fibrillation followed by an external countershock, and was observed for 2 minutes before CPR was started. After 5 minutes of chest compression using a CPR thumper, either atropine 0.5 mg or D5W was administered, and the same injection was repeated every 5 minutes until recovery. Epinephrine 1 mg was administered in alternans. Each dog was submitted to two successive episodes of CPR, using either atropine or D5W, in a randomized order. Of a total of 28 CPRs, five were successful with chest compression alone. In the treatment groups, 10 of 11 were successful with atropine, but only eight of 12 with D5W (P < .01). The duration of Blecic, S., C. Chaskis, et al. (1992). "Atropine administration in experimental electromechanical dissociation." Am J Emerg Med 10(6): 515-518. Comments: Level 5; good. Supportive Objective: Epinephrine (adrenaline) is widely used as a primary adjuvant for improving perfusion pressure and resuscitation rates during cardiopulmonary resuscitation (CPR). Epinephrine is also associated with significant myocardial dysfunction in the post-resuscitation period. We tested the hypothesis that the cardiac effects of epinephrine vary according to the duration of cardiac arrest. Methods and materials: Cardiac arrest (CA) was induced in SpragueDawley rats with an IV bolus of KCl (40 mug/g). Three series of experiments were performed with CPR begun after 2, 4, or 6 min of cardiac arrest. Epinephrine (0.01 mg/kg) IV or placebo was given immediately in the 2 and 4 min CA groups. In the 6 min group, CPR was started after 6 min CA and epinephrine was given at 15 min if no return of spontaneous circulation (ROSC) occurred. Time to ROSC was recorded in all groups. Cardiac function was determined with transthoracic echocardiography at baseline, 5, 30 and 60 min after ROSC. Results: After 2 min CA, 8/8 (100%) placebo animals and 8/8 (100%) epinephrine animals attained ROSC. Cardiac index was significantly increased during the first 60 min in the epinephrine group compared with the placebo group (p < 0.01). After 4 min of cardiac arrest, 14/29 (48%) placebo animals and 14/16 (88%) epinephrine animals attained ROSC (p < 0.01). Cardiac index after ROSC returned to baseline in both groups, although tended to be lower in the epinephrine group. After 6 min CA, 10/31 (32%) animals attained ROSC without epinephrine and 17/21 (81%) animals with epinephrine (p < 0.01). Post-ROSC depression of cardiac index was greatest in the epinephrine group (p < 0.05). Conclusions: As the duration of cardiac arrest increases, a paradoxical myocardial epinephrine response develops, in which epinephrine becomes increasingly more important to attain ROSC, but is increasingly associated with post-ROSC myocardial depression. Summary: Rat model study; epi vs placebo-as duration of cardiac arrest increases, a paradoxical myocardial epinephrine response develops, in which epi becomes more important to attain ROSC, but is associated with increasing post-ROSC myocardial depression. Angelos MG, Butke RL, Panchal AR et al. Cardiovascular response to epinephrine varies with increasing duration of cardiac arrest. Resuscitation 2008; 77:101-110. LOE 5, neutral. Animal (rat) study Quality of evidence good. Sponsored by Roessler Scholarship Fund, Ohio State Univ, SAEM Institutional Training Award, Ohio State Initiatives Grant and The American Heart Association, Ohio Affiliate. Acknowledgements: 042: Nitta (Atropine vs no atropine): There is insufficient evidence to support or refute the use of atropine for symptomatic bradycardia or pediatric cardiac arrest. If bradycardia is caused by increased vagal tone, cholinergic drug toxicity, or primary AV block, administer atropine rather than epinephrine. Epinephrine is the first line drug for poorly perfused infants and children with bradycardia (heart rate <60 beats/min) that is unresponsive to oxygenation and/or ventilation. Page 8 of 21 There are some studies which do not support the use of atropine The Coon study is mentioned above. A prospective, controlled, blinded canine asphyxial PEA model; pediatric asphyxial cardiac arrest model was used by DeBehnke(1995). After 10 minutes untreated PEA, the animals were block randomized to one of five groups and each group was treated with different dose of atropine. The standard dose of atropine did not improve ROSC rate compared with control group. Increasing dose of atropine tended to decrease ROSC rates compared with control group and standard dose group. C2010 Worksheet:Peds-052A 25-Dec-2009 .doc TREATMENT RECOMMENDATION: (052A: Combined Fuchs and Kurosawa): There is no supportive evidence to demonstrate that atropine is superior to epinephrine in the case of bradycardia unresponsive to oxygenation and/or ventilation (excluding those with vagal mediation). Page 7 of 21 cardiovascular collapse in early postoperative course and were resuscitated. The vaso-vagal reflex was suspected and treated with atropine (Fullerton). Severe hypertension with reflex bradycardia progressed to cardiac arrest caused by drug and treated with atropine and cardiopulmonary resuscitation (Thrush). These studies support atropine use for pediatric in-hospital asystolic cardiac arrest or symptomatic bradycardia caused by increased vagal activity. C2010 Worksheet:Peds-052A 25-Dec-2009 .doc Page 9 of 21 Chadda KD, Lichstein E, et al. Effects of atropine in patients with bradyarrhythmia complicating myocardial infarction. Usefulness of an optimum dose for overdrive. Am J Med 1977; 63(4): 503-10. Parasympathetic tone may be high during ventricular asystole because of reflex vagal stimulation from a number of sources. Eight patients in cardiac arrest were treated with cardiopulmonary resuscitation. All eight patients had ventricular asystole as the initial rhythm or as the result of defibrillation. Six patients failed to respond to 5 cc to 20 cc of 1:10,000 epinephrine intravenously (IV). In all eight cases a regular rhythm (sinus in seven, idioventricular in one) appeared within 30 seconds of administration of the last dose of atropine (1 mg to 2 mg IV). Five patients (62.5%) lived 12 hours, three (37.5%) were discharged from the hospital. These results suggest that atropine may be of value in the treatment of ventricular asystole. Summary: Case series in adults atropine better than epinephrine Brown DC, Lewis AJ, Criley JM. Asystole and its treatment: The possible role of the parasympathetic nervous system in cardiac arrest. JACEP1979; 8: 448-452. LOE 5, atropine better than epinephrine. Adult study. Quality of evidence poor. No industry funding. OBJECTIVE: To determine the efficacy of atropine therapy in patients with hemodynamically compromising bradycardia or atrioventricular block (AVB) in the prehospital and emergency department settings. METHODS: DESIGN: Retrospective review of prehospital, emergency department, and hospital records. PARTICIPANTS: Prehospital patients with hemodynamically compromising bradycardia or AVB with evidence of spontaneous circulation who received atropine as delivered by emergency medical services personnel (advanced life support level). SETTING: Urban/suburban fire department-based emergency medical service system with on-line medical control serving a population of approximately 1.6 million persons. DEFINITIONS: Hemodynamic instability was defined as the presence of any of the following: ischemic chest pain, dyspnea, syncope, altered mental status, and systolic blood pressure less than 90 mmHg. Bradycardia was defined as sinus bradycardia, junctional bradycardia, or idioventricular bradycardia (grouped as bradycardia) while AVB included first-, second- (types I and II), or third-degree (grouped as AVB). The response that occurred within one minute following each dose of atropine was defined as none, partial, complete, or adverse. MAIN RESULTS: Of 172 patients meeting entry criterion complete data was available for 131 (76.1%) and constitutes the study population. The mean age was 71 years. Fifty-one percent were female. Forty-five patients had AVB and 86 bradycardia. Patients with AVB were more likely to have a presenting systolic blood pressure less than 90 mmHg than those with bradycardia. In the 131 patients, responses to atropine were as follows: 26 (19.8%) = partial, 36 (27.5%) = complete, 65 (49.6%) = none, and 4 (2.3%) = adverse. Patients presenting with bradycardia (compared to AVB) more commonly: (1) received a single dose of atropine; (2) a lower total dose of atropine in the prehospital interval; (3) were more likely to arrive in the ED with a normal sinus rhythm; and (4) were less likely to receive additional atropine or isoproterenol in the ED. Those patients who achieved normal sinus rhythm over the total course of care were likely to have achieved that rhythm during the prehospital interval. There was no difference between groups in the likelihood of leaving the ED with a normal sinus rhythm achieved during the ED interval. Acute myocardial infarction was more common in patients presenting with AVB (55.5%) than with bradycardia (23.2%, P = 0.001). CONCLUSIONS: Approximately one-half of patients who received atropine in the prehospital setting for compromising rhythms had either a partial or complete response to therapy. Adverse responses were uncommon. Those patients who presented with hemodynamically unstable bradycardia to EMS personnel responded more commonly to a single dose and a lower total dose of atropine compared to similar patients with AVB. Those patients who achieve normal sinus rhythm by ED discharge were likely to have achieved it during the prehospital interval. Summary: Retrospective review of adult patients with hemodynamically compromising bradycardia or AVB with evidence of spontaneous circulation; approx 50% had complete or partial response to atropine Brady WJ, Swart G, DeBehnke DJ et al:. The efficacy of atropine in the treatment of hemodynamically unstable bradycardia and atrioventricular block: prehospital and emergency department considerations. Resuscitation 1999;41:4755. LOE 5, neutral. Adult population. Quality of evidence fair. No industry funding. CPR was also significantly shorter when atropine was used (9 minutes 56 seconds (plus or minus) 14 seconds versus 12 minutes 08 seconds (plus or minus) 43 seconds, P < .001). During the recovery period, atropine-treated animals had higher arterial pressure, heart rate, cardiac output and stroke volume. On this experimental model, the administration of high doses of atropine together with epinephrine enhances the recovery from EMD and results in a better cardiac function during recovery. Summary: This study is small prospective, controlled, blinded canine coutershock PEA model with higher dose of atropine (0.05 mg/kg) and adrenaline. C2010 Worksheet:Peds-052A 25-Dec-2009 .doc Page 10 of 21 The efficacy of atropine in treating prehospital cardiac arrest patients developing asystole slow pulseless idioventricular rhythms (PIVR) was evaluated in a controlled, prospective study. Twenty-one prehospital cardiac-arrested patients developing asystole or PIVR (less than 40) were divided into atropine-treated or non-atropine (control) groups. Control group patients received treatment including bicarbonate, epinephrine, calcium, isoproterenol, dexamethasone, and transthoracic pacing. Atropine-treated patients received 1 mg atropine intravenously with a repeat dose at one minute if no rhythm change occurred. These patients then received the same therapy as the control group. In both groups, rhythm changes were treated as appropriate for the specific circumstances. No differences in mortality or effected rhythm changes were observed. Ten of the 11 controls and eight of 10 atropine patients developed rhythms other than asystole Coon GA, Clinton JE, Ruiz E. Use of atropine for brady-asystolic prehospital cardiac arrest. Ann Emerg Med 1981;10:462-467. LOE 5: Controlled, prospective study in adults, neutral with respect to change in rhythm or survival. No industry funding. Quality of evidence good In order to study the changes in the pattern of autonomic innervation of the human cardiac conduction system m relation to age, the innervation of the conduction system of 24 human hearts (the age of the individuals ranged from newborn to 80 years), freshly obtained at autopsy, was evaluated by a combination of immunofluorescence and histochemical techniques. The pattern of distribution and density of nerves exhibiting immunoreactivity against protein gene product 9.5 (PGP), a general neural marker, dopamine beta-hydroxylase (DBH) and tyrosine hydroxylase (TH), indicators for presumptive sympathetic neural tissue, and those demonstrating positive acetylcholinesterase (AChE) activity, were studied. All these nerves showed a similar pattern of distribution and developmental changes. The density of innervation, assessed semiquantitatively, was highest in the sinus node, and exhibited a decreasing gradient through the atrioventricular node, penetrating and branching bundle, to the bundle branches. Other than a paucity of those showing AChE activity, nerves were present in substantial quantities in infancy. They then increased in density to a maximum in childhood, at which time the adult pattern was achieved and then gradually decreased in density in the elders to a level similar to or slightly less than that in infancy. In contrast, only scattered AChE-positive nerves were found in the sinus and atrioventricular nodes, but were absent from the bundle branches of the infant heart, whereas these conduction tissues themselves possessing a substantial amount of pseudocholinesterase. During maturation into adulthood, however, the conduction tissues gradually lost their content of pseudocholinesterase but acquired a rich supply of AChEpositive nerves, comparable in density to those of DBH and TH nerves. The decline in density of AChE-positive nerves in the conduction tissues in the elders was also similar to those of DBH and TH nerves. Our findings of initial sympathetic dominance in the neural supply to the human cardiac conduction system in infancy, and its gradual transition into a sympathetic and parasympathetic codominance in adulthood, correlate well with the physiologic alterations known to occur in cardiac rate during postnatal development. The finding of reduction in density of innervation of the conduction tissue with ageing is also in agreement with clinical and electrophysiological findings such as age-associated reduction in cardiac response to parasympathetic stimulation. Finally, our findings also support the hypothesis that, in addition to the para-arterial route, the parafascicular route of extension along the conduction tissue constitutes another pathway for the innervation of the conduction system of the human heart during development Summary: An interesting study which demonstrated increased sympathetic tone in infant hearts, as compared to child/adolescent and adult hearts which have increased parasympathetic tone. Cheung Chow TS, Ming Chow SS, Anderson RH at al. Autonomic innervation of the human cardiac conduction system: changes from infancy to senility-An immunohistochemical and histochemical analysis. Anat Rec 2001;264:169-182. LOE 5: Neutral. Mechanical model/histochemical analysis. Quality of evidence fair. No industry funding. The effects of 0.4 to 1.5 mg intravenously administered atropine were evaluated in 100 patients with a heart rate <60/min following acute myocardial infarction. Prior to the administration of atropine the mean heart rate was 45 + 7/min, the incidence of ventricular premature beats was 12 + 4/min, and two patients had angina Based on the maximum heart rate response to atropine, the patients were divided into two groups. Heart rate increased to <100/min in 70 patients (group 1) and >100/min in 21 patients (group II) Ventricular premature beats decreased significantly (p<0.01) in both groups (2 + 4/min in group I and 2.4 + 0.8 in group II). In only one patient in group II did ventricular premature beats first appear following the administration of atropine. Blood pressure did not change significantly after the administration of atropine in either group. In two patients (group I), angina disappeared and in two others (group II) angina appeared following the administration of atropine. Dose-heart rate analysis revealed that 70per cent of the patients in group II and only 17 percent of those in group I received >0.8 mg atropine (p<0.01). There was a statistically significant correlation between the dose of atropine and the increment in heart rate (r=0.41 p<0.01). Thus, a relatively lower dose of atropine (<0.8 mg) had a beneficial antiarrhythmic effect. Higher doses caused an inappropriate tachycardia, angina and ventricular premature beats and should be avoided. C2010 Worksheet:Peds-052A 25-Dec-2009 .doc Fullerton DA, St Cyr JA, Clarke DR, et al; Bezold-Jarisch reflex in postoperative pediatric cardiac surgical patients Ann Thorac Surg 1991;52:534-536. LOE 4, Case series. Atropine better than epinephrine. Quality of evidence poor. No industry funding We describe the epidemiology, prognosis, and circumstances at resuscitation among a consecutive population of patients with out-of-hospital cardiac arrest (OHCA) with asystole as the arrhythmia first recorded by the Emergency Medical Service (EMS), and identify factors associated with survival. We included all patients in the municipality of Goteborg, regardless of age and etiology, who experienced an OHCA between 1981 and 1997. There were a total of 4,662 cardiac arrests attended by the EMS during the study period. Of these, 1,635 (35%) were judged as having asystole as the first-recorded arrhythmia: 156 of these patients (10%) were admitted alive to hospital, and 32 (2%) were discharged alive. Survivors were younger (median age 58 vs 68 years) and had a witnessed cardiac arrest more often than nonsurvivors (78% vs 50%). Survivors also had shorter intervals from collapse to arrival of ambulance (3.5 vs 6 minutes) and the mobile coronary care unit (MCCU) (5 vs 10 min), and they received atropine less often on scene. There were also a greater proportion of survivors with noncardiac etiologies of cardiac arrest (48% vs 27%). Survivors to discharge also displayed higher degrees of consciousness on arrival to the emergency department in comparison to nonsurvivors. Multivariate analysis among all patients with asystole indicated age (p = 0.01) and witnessed arrest (p = 0.03) as independent predictors of an increased chance of survival. Multivariate analysis among witnessed arrests indicated short time to arrival of the MCCU (p < 0.001) and no treatment with atropine (p = 0.05) as independent predictors of survival. Fifty-five percent of patients discharged alive had none or small neurologic deficits (cerebral performance categories 1 or 2). No patients > 70 years old with unwitnessed arrests (n = 211) survived to discharge. Summary: 1635 patients were judged as having asystole as the first-recorded arrhythmia. Only 32 patients were survived. 16% of survivors and 34% of nonsurvivors received atropine. Multivariate analysis among witnessed arrests indicated no treatment with atropine (p=0.05) as independent predictors of survival. In this treatment algorithm, adrenaline is given before atropine. And 50% of survivors to discharge did not receive any prehospital intravenous medication at all. The author concluded that the survivors more often responded with rhythm changes after the initial adrenalin injection, and therefore, no longer needed atropine. This study did not show how many pediatric patients were included. Engdahl, J., A. Bang, et al. (2000). "Can we define patients with no and those with some chance of survival when found in asystole out of hospital?" Am J Cardiol 86(6): 610-4. Comments: Level 3; Poor. Opposing DeBehnke, D. J., G. L. Swart, et al. (1995). "Standard and higher doses of atropine in a canine model of pulseless electrical activity." Acad Emerg Med 2(12): 1034-41. Comments: Level 5; Good. Opposing Herlitz, J., A. Bang, et al. (2003). "Factors associated with survival to hospital discharge among patients hospitalised alive after out of hospital cardiac arrest: change in outcome over 20 years in the community of Goteborg, Sweden." Heart 89(1): 25-30. Comments: Level 3; Poor. Opposing BACKGROUND: A large proportion of patients who suffer out-of-hospital cardiac arrest have asystole as the initial recorded arrhythmia. Since they have a poor prognosis, less attention has been paid to this group of patients. AIM: To describe a consecutive population of patients with out-of-hospital cardiac arrest with asystole as the first recorded arrhythmia and to try to define indicators for an increased chance of survival in this population. SETTING: The community of Gothenburg. PATIENTS: All patients who suffered out-of-hospital cardiac arrest during 1981 to 1992 and were reached by our emergency medical service (EMS) system and where cardiopulmonary resuscitation (CPR) was attempted. RESULTS: In all there were 3434 cardiac arrests of which 1222 (35%) showed asystole as the first recorded arrhythmia. They differed from patients with ventricular fibrillation by being younger, including more women and having a longer interval between collapse and arrival of the first ambulance. In all 90 patients (7%) were hospitalized alive and 20 (2%) could be discharged from hospital. Independent predictors for an increased chance of survival were: (a) a short interval between the collapse and arrival of the first ambulance (P < 0.001) and the time the collapse occurred (P < 0.05). Initial treatment given in some cases with adrenaline, atropine and tribonate were not associated with an increased survival. CONCLUSIONS: Of all the patients with out-of-hospital cardiac arrest, 35% were found in asystole. Of these, 7% were hospitalized alive and 2% could be discharged from hospital. Efforts should be made to improve still further the interval between collapse and arrival of the first ambulance. Summary: 3434 patients who suffered OHCA was attempted CPR during 1981 to 1992. Initial treatment given in some cases with adrenaline, atropine and tribonate were not associated with increased chance of survival. Only 24% of asystolic patients received atropine. In multivariate analysis the administration of atropine were worse of discharged alive. This study did not show how many pediatric patients were included. Herlitz, J., L. Ekstrom, et al. (1994). "Predictors of early and late survival after out-of-hospital cardiac arrest in which asystole was the first recorded arrhythmia on scene." Resuscitation 28(1): 27-36. Comments: Level 3; Poor. Opposing PURPOSE: Evaluate the efficacy of advanced life support interventions using the pediatric Utstein guidelines. METHODS: Charts from all patients for whom a cardiorespiratory arrest code was called during a six-year period in a university affiliated centre were reviewed. Data were recorded according to the pediatric Utstein guidelines and a P < 0.05 was considered significant. RESULTS: Of the 234 calls, 203 were retained for analysis. The overall survival rate at one year was 26.0% of which 10% had deterioration of their neurologic status compared to the pre-cardiorespiratory arrest evaluation. Time to achieve sustained return of spontaneous circulation (ROSC; P < 0.0001) and sustained measurable blood pressure (P = 0.002), to perform endotracheal intubation (P = 0.04) and the dose of sodium bicarbonate (P < 0.0001) were indicators of long-term survival. Two patients were alive at one year with unchanged neurologic status despite a time to achieve sustained ROSC longer than 30 min (38 and 44 min). The mean first epinephrine dose of patients for whom ROSC was achieved but unsustained was higher than those for whom ROSC was achieved and sustained (0.038 +/- 0.069 mg*kg(-1) vs 0.011 +/- 0.006 mg*kg(-1); P = 0.004). Survival rate and mean first epinephrine dose of patients who received their first epinephrine dose endotracheally (13.3%; 0.011 +/- 0.004 mg*kg(-1)) were comparable to those of patients who received their first epinephrine dose intravenously (7%; 0.015 +/- 0.027 mg*kg(-1)). CONCLUSIONS: For intravenously administered epinephrine, a dose of 0.01 mg*kg(-1) seems appropriate as the first dose. The endotracheal route is a valuable alternative for epinephrine administration and, for infants, the dose does not need to be increased. A minimal resuscitation duration time of 30 min can be misleading if ROSC is used as the indicator. Guay J, Lortie L. An evaluation of pediatric in-hospital advanced life support interventions using the pediatric Utstein guidelines: a review of 203 cardiorespiratory arrests. Can J Anaesth 2004; 51(4): 373-8. Page 12 of 21 OBJECTIVE: To determine whether standard or increased doses of atropine improve the return of spontaneous circulation (ROSC) rate in a canine model of pulseless electrical activity (PEA). METHODS: A prospective, controlled, blinded laboratory investigation was performed using an asphyxial canine cardiac arrest model. After the production of asphyxial PEA, 75 dogs remained in untreated PEA for 10 minutes and then were randomized to receive placebo (group 1) or one of four doses of atropine (group 2, 0.04 mg/kg; group 3, 0.1 mg/kg; group 4, 0.2 mg/kg; group 5, 0.4 mg/kg). All the animals received mechanical external CPR and epinephrine (0.02 mg/kg every 3 minutes) throughout resuscitation. RESULTS: The ROSC rates were not significantly different between the groups (group 1, 73%; group 2, 67%; group 3, 40%; group 4, 47%; group 5, 27%; p = 0.06). The heart rates and hemodynamics during resuscitation were not significantly different between the groups. CONCLUSION: In this canine model of asphyxial PEA cardiac arrest, standard-dose atropine did not improve ROSC rates, compared with placebo. Increasing doses of atropine tended to decrease ROSC rates, compared with placebo and standard-dose atropine. Summary: This animal model may be more representative of pediatric asphyxial cardiac arrest than adult PEA. In their previous study of canine asphyxial PEA model, they had found that vagotomized animals had better ROSC rate. But this study shows conflicting results. They suggest the pharmacologic actions of atropine on vagal afferent activity. C2010 Worksheet:Peds-052A 25-Dec-2009 .doc The Bezold-Jarisch reflex is an inhibitory reflex that originates from the heart, is mediated by the vagus nerve, and is manifested by hypotension and bradycardia. We present 4 pediatric cardiac surgical patients, aged 1 day to 9 months, who exhibited cardiovascular collapse in their early postoperative course. In each patient, cardiovascular deterioration was marked by an insidious decrease in arterial blood pressure without an associated change in heart rate, central venous pressure, or airway pressure. Bradycardia followed the decrease in blood pressure. The Bezold-Jarisch reflex was suspected and atropine was administered, first as a bolus injection at 0.01 mg/kg, and later, as a continuous infusion at 0.01 mg.kg-1.h-1. Atropine prevented recurrent episodes of hypotension and bradycardia. We believe the BezoldJarisch reflex is more prevalent than previously suspected in postoperative pediatric cardiac surgical patients. Summary: Case series in children; developed hypotension followed by bradycardia-all responded to atropine (2 had epi first); all were being ventilated (so not hypoxic) Page 11 of 21 or PIVR less than 40. However, only two patients in each group were successfully resuscitated in the emergency department and only one control group patient was discharged alive. Our findings are not in agreement with those of previous authors who have advocated the use of atropine in cardiac arrest patients with these arrhythmias. We question the usefulness of atropine in this setting. More study is necessary in order to clearly define its role in the resuscitation of patients who have sustained brady-asystolic arrests. Summary: Prospective, controlled study in adults: epinephrine=atropine C2010 Worksheet:Peds-052A 25-Dec-2009 .doc Page 13 of 21 Of 133 persons with spontaneous cardiac arrest attended by paramedics within 10 minutes, 100 (75%) had ventricular fibrillation as the initial rhythm and 33 (25%) had extreme bradycardia or asystole. The latter group of arrhythmias was characterized by sinus arrest or severe sinus bradycardia (90%) and complete A-V block (10%). Junctional escape rhythm was also absent or markedly retarded. Despite cardiopulmonary resuscitation and the administration of epinephrine, atropine, isoproterenol, and sodium bicarbonate, recovery of the sinus and junctional tissues was infrequent. Ventricular fibrillation developed in 11 cases (33%). One patient lived 12 days, but all others were dead on arrival or died Iseri LT, Humphrey SB, Siner EJ. Prehospital brady-asystolic cardiac arrest. Ann Int Med 1978;88:741-745. LOE 5. Neutral. Adult study. Quality of evidence poor. NHLBI funded The aims of this study were to define the antagonistic effects of atropine sulfate to halothane-induced cardiovascular depression in children, and to clarify whether or not a larger dose of atropine is more effective in attenuating the cardiovascular depression. Thirty-four children aged 1-12 years who had undergone minor surgery, free from cardiac or pulmonary disease, were assigned at random to two groups. M-mode echocardiographic evaluation of left ventricular function in each patient was performed at three points (before induction, point A; after induction, point B; and following administration of atropine, point C). Results were compared between points A and B, B and C and C and A, and between the two study groups with different doses of atropine (0.01 mg/kg vs 0.02 mg/kg). Heart rate (HR), mean blood pressure (MBP) and left ventricular shortening fraction (LVSF) decreased, and left ventricular end-diastolic dimension (LVEDD) were increased significantly by halothane induction. Although HR and MBP recovered following atropine, LVSF and LVEDD remained unchanged. There were no differences found between the values after vagolysis in both study groups, except for HR and mean velocity of circumferential fiber shortening (mVcf). Heart rate increased above that of preinduction, even following the smaller dose of atropine. The myocardial depression cannot be necessarily attenuated by vagolysis regardless of the dosage of atropine. The smaller dose (i.e. 0.01 mg/kg) seems to be sufficient only to antagonize the bradycardia and hypotension during halothane anesthesia in children. Summary: Randomized study of children undergoing halothane anesthesia. Monitored HR, Mean BP left ventricular end diastolic dimension (LVEDD), LV shortening fraction(LVSF) with 2 doses of atropine (0.01 mg/kg and 0.02 mg/kg). Atropine only increased HR and MBP, but had no effect on LVSF (which was decreased by halothane), or LVEDD (which was increased by halothane). Conclusion-atropine does not improve the myocardial depression caused by halothane, and a dose o 0.02 mg/kg is no better than 0.01 mg/kg. Horigome H, Tsuji M, Yamashita M, et al. Echocardiographic evaluation of vagolytic effects of atropine sulfate during pediatric halothane anesthesia. Acta Paediatrica Japonica 1993;35:513-517. LOE 1, randomized, controlled study in children. Against the use of atropine to improve myocardial depression caused by halothane anesthesia. Quality of evidence good. No industry funding OBJECTIVE: To describe the change in survival and factors associated with survival during a 20 year period among patients suffering from out of hospital cardiac arrest and being hospitalised alive. PATIENTS: All patients hospitalised alive in the community of Goteborg after out of hospital cardiac arrest between 1 October 1980 and 1 October 2000 were included. METHODS: Patient data were prospectively computerised with regard to factors at resuscitation. Data on medical history and hospitalisation were retrospectively recorded. Patients were divided into two groups (the first and second 10 year periods). SETTING: Community of Goteborg, Sweden. RESULTS: 5505 patients suffered from cardiac arrest during the time of the survey. Among them 1310 patients (24%) were hospitalised alive. Survival (discharged alive) was 37.5% during the first part and 35.1% during the second part (NS). The following were independent predictors of an increased chance of survival: ventricular fibrillation/tachycardia as the first recorded rhythm (odds ratio (OR) 3.46, 95% confidence interval (CI) 2.36 to 5.07); witnessed arrest (OR 2.50, 95% CI 1.52 to 4.10); bystander initiated cardiopulmonary resuscitation (OR 2.00, 95% CI 1.42 to 2.80); the patient being conscious on admission to hospital (OR 6.43, 95% CI 3.61 to 11.45); sinus rhythm on admission to hospital (OR 1.53, 95% CI 1.12 to 2.10); and treatment with lidocaine in the emergency department (OR 1.64, 95% CI 1.16 to 2.31). The following were independent predictors of a low chance of survival: age > 70 years (median) (OR 0.65, 95% CI 0.47 to 0.88); atropine required in the emergency department (OR 0.35, 95% CI 0.16 to 0.75); and chronic treatment with diuretics before hospital admission (OR 0.59, 95% CI 0.43 to 0.81). CONCLUSION: There was no improvement in survival over time among initial survivors of out of hospital cardiac arrest during a 20 year period. Major indicators for an increased chance of survival were initial ventricular fibrillation/tachycardia, bystander cardiopulmonary resuscitation, arrest being witnessed, and the patient being conscious on admission. Major indicators for a lower chance were high age, requirement for atropine in the emergency department, and chronic treatment with diuretics before cardiac arrest. Summary: They suggested that the patients who require atropine are those in whom the resuscitation attempt was not immediately successful. This study did not show how many pediatric patients were included. C2010 Worksheet:Peds-052A 25-Dec-2009 .doc
© Copyright 2024 Paperzz