Theoretical approaches towards the understanding of organic

Claudia Ambrosch-Draxl
Chair of Atomistic Modelling and Design of Materials
University of Leoben
Theoretical approaches
towards the understanding
of organic semiconductors:
from electronic and optical properties to film growth
Materials
Density Functional Theory in a Nutshell
Electronic structure and cohesive properties
Optical Properties
Excitonic effects
Cohesive and Surface Energies
Importance of van der Waals interactions
Interfaces
Organic molecules on metal substrates
Film Morphology
Energy barriers
Outline
Materials
Molecular crystals
Oligoacenes
b
2A, 3A, 4A, 5A
c
Oligothiophenes
2T, 4T, 6T
Oligophenylenes
2P, 3P, 4P, 6P
b
a
Materials
Density Functional Theory
The Kohn-Sham Equation
auxiliary
exact
with the effective potential
only approximation
external potential
DFT in a Nutshell
6P@Cu(110)(2x1)O
G. Koller, S. Berkebile, M. Oehzelt, P. Puschnig, C. Ambrosch-Draxl, F. P. Netzer,
and M. G. Ramsey, Science 317, 351 (2007).
The Band Structure
DFT versus ARUPS
Fourier transform
G. Koller, S. Berkebile, M. Oehzelt, P. Puschnig, C. Ambrosch-Draxl, F. P. Netzer,
and M. G. Ramsey, Science 317, 351 (2007).
The Band Structure
Optical Properties …
Molecular orientation
2.0
hν
Im(n)
1.5
1.0
polymer film
0.5
substrate
0.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
E [eV]
P. Puschnig and CAD, Adv. Eng. Mat. 8, 1151 (2006).
E. Zojer et al., PRB 61, 16538 (2000).
Optical Absorption
The random phase approximation
independent particle approximation
ck
E
S
Energy
=ω
=ω
vk
EF
wave vector
Light scattering
The Bethe-Salpeter Equation (BSE)
Two-particle wavefunction
KS states from GS calculation
Effective two-particle Schrödinger equation
matrix form
Beyond the RPA
EB=0.55 eV
7.8 nm
P. Puschnig and C. Ambrosch-Draxl, Phys. Rev. Lett. 89, 056405 (2002).
M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 82, 1959 (1999).
1D Polyacetylene
EB=0.05 eV
7.8 nm
1.7 nm
P. Puschnig and C. Ambrosch-Draxl, Phys. Rev. Lett. 89, 056405 (2002).
3D Polyacetylene
The Bethe-Salpeter Equation
Beyond the RPA
Polyacetylene
1D
3D
P. Puschnig and C. Ambrosch-Draxl, Phys. Rev. Lett. 89, 056405 (2002).
The BSE: 1D versus 3D
Higher pressure ...
@ smaller band gap
@ enhanced screening
@ wider extension of
e-h wavefunction
@ smaller exciton binding
energy
K. Hummer, P. Puschnig, and CAD,
Phys. Rev. Lett. 92, 147402 (2004).
Anthracene
Larger molecules ...
@ smaller band gap
@ enhanced screening
@ wider extension of
e-h wavefunction
@ smaller exciton binding
energy
K. Hummer and C. Ambrosch-Draxl,
Phys. Rev. B 71, 081202(R) (2005).
Oligoacenes
Energetics
The cohesive energy
vacuum
Ecoh = – ( Ebulk / nmol
–
Emolecule )
Energetics
Exchange – correlation functionals
Energetics
Non-local correlations
Rydberg et al., Phys. Rev. B 62, 6997 (2000).
Dion et al., Phys. Rev. Lett. 92, 246401 (2004).
Chakarova-Käck et al., Phys. Rev. Lett. 96, 146107 (2006).
Energetics
Various oligomers
D. Nabok, P. Puschnig, and CAD,
Phys. Rev. B 77, 245316 (2008).
Cohesive Energies
The surface energy
vacuum
γ
= ( Eslab
–
Ebulk / 2A )
Energetics
Biphenyl
001
d
D. Nabok, P. Puschnig, and Claudia Ambrosch-Draxl, Phys. Rev. B 77, 245316 (2008).
Surface Energies
4A
(100)
4A
(010) 4A
(001)
4A
(110)
γ [mJ/m2]
Surface Energies
Equilibrium crystal shapes
Wulff's construction
D. Nabok, P. Puschnig,
and CAD,
PRB 77, 245316 (2008).
Jo et al., anthracene single crystal on graphite (0001), Surf. Sci. 592, 37 (2005).
Surface Energies
Organic / Metal Interface
1T@Cu(110)
P. Sony, P. Puschnig,
D. Nabok, and CAD,
PRL 99, 176203 (2007).
Organic / Metal Interface
1T@Cu(110)
γi = γCu(110) + γorganic - Eads / A
= 1.70
top view
+ 0.15 - 0.30 = 1.55 [J/m2]
charge density difference, side view
Organic / Metal Interface
Summary
γa << γi ≤ γs
γa is 10 – 50 times smaller than metal surface energy γs
Cu
D. Nabok et al., PRB 77, 245316 (2008).
M. Methfessel et al., PRB 46, 4816 (1992).
Δγ = γa + γi - γs = 2γa – Eads/A ≈ 0
Energetics
Film Morphology
Sexiphenyl on mica
Mound formation on disordered mica.
Separation unchanged after nucleation has stopped.
Mass transport between mounds must be supressed.
Ehrlich-Schwoebel barrier in organic film growth?
2.5nm
6P
AFM image
Experimental observations
The Ehrlich-Schwoebel Barrier
AFM image, film thickness 30nm
T. Michely and J. Krug, Springer 2004
ESB = 0.67 eV
G. Hlawacek, P. Puschnig, P. Frank, A. Winkler,
CAD, and Ch. Teichert, Science 321, 108 (2008).
6P on Mica
Computational details
Simulation cell of 31 6P molecules (1922 atoms)
Huge number of structural degrees of freedom
Transition state theory:
more than 5000 total energy & force calculations
Not feasible by ab-initio approaches within DFT
Empirical potentials: 5-10 seconds per configuration
local minimum #1
Eb = -1.28 eV
local minimum #2
Eb = -1.80 eV
Simulations
The nudged elastic band method
local minimum
local minimum
saddle point
Transition State Theory
Assuming a rigid molecule
ΔEESB=0.91eV
transition coordinate
Transition State Theory
www.borer-cartoon.ch/.../Deutscher.gif
The Barrier …
Bend your knees …
www.borer-cartoon.ch
The Barrier …
The step-edge barrier
3
2
ΔEESB=0.61eV
4
5
1
intermolecular interaction
bending energy
1
2
3
4
6
5
6
Transition State Theory
Alternative to measure the ESB
2nd layer nucleation experiment
island density
ESB = 0.26 eV
T. Michely and J. Krug, Islands, Mounds and Atoms, Springer 2004
6P on Mica
What is wrong?
ESB
0.26 eV
0.67 eV
6P on Mica
Level-dependent ESB?
6P on Mica
Dependence on the tilting angle
ΔEESB=0.26eV
2
1
3
4
5
intermolecular interaction
bending energy
1
2
3
4
6
5
6
The Potential Energy Surface
Level-dependent ESB
Summary
For organic molecular crystals
a variety of case studies has shown that …
DFT is a precise tool
for the energetics if vdW forces are included
Exciton binding energies
are suppressed by pressure or in long molecules
Surface Energies
are typically 10-50 times smaller than in metals
Interfaces
are dominated by van der Waals interaction
Film morphologies
depend on the complex nature of the molecules
Summary
Thanks to …
Dmitrii Nabok
Priya Sony
Kerstin Hummer
Gregor Hlawacek
Adi Winkler
Georg Koller
Paul Frank
Peter Puschnig
Christian Teichert
Steve Berkebile
Mike Ramsey
The Team
The END …
Thank You for Attention!