Slides

New and Improved
Key-Homomorphic Pseudorandom Functions
Abhishek Banerjee1
1 Georgia
Chris Peikert1
Institute of Technology
CRYPTO ’14
19 August 2014
Outline
1
Introduction
2
Construction, Parameters and Efficiency
3
Proof of Security (Idea)
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
1 / 11
Outline
1
Introduction
2
Construction, Parameters and Efficiency
3
Proof of Security (Idea)
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
1 / 11
Pseudorandom Functions
[GGM’84]
A family of functions F = {Fs : {0, 1}k → B} such that, given
adaptive query access,
Fs ← F
6
c
≈
?
xi Fs (xi )
Random U
6
xi
?
U (xi )
??
Lots of applications in symmetric key cryptography: encryption,
message authentication, friend or foe identification, . . .
(Thanks to Seth MacFarlane for the adversary)
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
2 / 11
Cooking a (Provably Secure) PRF
1
Goldreich-Goldwasser-Micali [GGM’84]
Based on any (doubling) PRG: Fs (x1 , . . . , xk ) = Gxk (· · · (Gx1 (s)) · · · )
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
3 / 11
Cooking a (Provably Secure) PRF
1
Goldreich-Goldwasser-Micali [GGM’84]
Based on any (doubling) PRG: Fs (x1 , . . . , xk ) = Gxk (· · · (Gx1 (s)) · · · )
2
Number-theoretic direct constructions [NR’97, NRR’00]
Framework: exponentiate to a product of (secret) exponents
Security from number-theoretic assumptions (DDH, factoring, . . . )
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
3 / 11
Cooking a (Provably Secure) PRF
1
Goldreich-Goldwasser-Micali [GGM’84]
Based on any (doubling) PRG: Fs (x1 , . . . , xk ) = Gxk (· · · (Gx1 (s)) · · · )
2
Number-theoretic direct constructions [NR’97, NRR’00]
Framework: exponentiate to a product of (secret) exponents
Security from number-theoretic assumptions (DDH, factoring, . . . )
3
Lattice-based direct constructions [BPR’12]
Framework: round a product of (secret) matrices/ring elements
Security from lattice assumptions (LWE, worst-case lattice problems)
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
3 / 11
Key-Homomorphic Pseudorandom Functions
Key Homomorphism
Can efficiently compute Fs+t (x) from Fs (x) and Ft (x)
Applications:
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
4 / 11
Key-Homomorphic Pseudorandom Functions
Key Homomorphism
Can efficiently compute Fs+t (x) from Fs (x) and Ft (x)
Applications: distribute the operation of a Key Distribution Center,
1
DDH-based construction [NPR’99]
Security in the random oracle model
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
4 / 11
Key-Homomorphic Pseudorandom Functions
Key Homomorphism
Can efficiently compute Fs+t (x) from Fs (x) and Ft (x)
Applications: distribute the operation of a Key Distribution Center,
symmetric-key proxy re-encryption, updatable encryption, and PRFs
secure against related-key attacks [BC’10,LMR’14]
1
DDH-based construction [NPR’99]
Security in the random oracle model
2
Lattice-based construction [BLMR’13]
Security in the standard model; construction and proof similar to
[BPR’12] rounded-subset-product construction
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
4 / 11
Key-Homomorphic Pseudorandom Functions
Key Homomorphism
Can efficiently compute Fs+t (x) from Fs (x) and Ft (x)
Applications: distribute the operation of a Key Distribution Center,
symmetric-key proxy re-encryption, updatable encryption, and PRFs
secure against related-key attacks [BC’10,LMR’14]
1
DDH-based construction [NPR’99]
Security in the random oracle model
2
Lattice-based construction [BLMR’13]
Security in the standard model; construction and proof similar to
[BPR’12] rounded-subset-product construction
Main drawback: has huge parameters, keys, and runtimes
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
4 / 11
Key-Homomorphic Pseudorandom Functions
Key Homomorphism
Can efficiently compute Fs+t (x) from Fs (x) and Ft (x)
Applications: distribute the operation of a Key Distribution Center,
symmetric-key proxy re-encryption, updatable encryption, and PRFs
secure against related-key attacks [BC’10,LMR’14]
1
DDH-based construction [NPR’99]
Security in the random oracle model
2
Lattice-based construction [BLMR’13]
Security in the standard model; construction and proof similar to
[BPR’12] rounded-subset-product construction
Main drawback: has huge parameters, keys, and runtimes
also gives (non-KH) PRFs having much better parameters,
with slightly worse (still polylog) depth
[BPR’12]
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
4 / 11
Key-Homomorphic Pseudorandom Functions
Key Homomorphism
Can efficiently compute Fs+t (x) from Fs (x) and Ft (x)
Applications: distribute the operation of a Key Distribution Center,
symmetric-key proxy re-encryption, updatable encryption, and PRFs
secure against related-key attacks [BC’10,LMR’14]
1
DDH-based construction [NPR’99]
Security in the random oracle model
2
Lattice-based construction [BLMR’13]
Security in the standard model; construction and proof similar to
[BPR’12] rounded-subset-product construction
Main drawback: has huge parameters, keys, and runtimes
also gives (non-KH) PRFs having much better parameters,
with slightly worse (still polylog) depth
[BPR’12]
Can we obtain similar tradeoffs for KH-PRFs?
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
4 / 11
Our Results
? New KH-PRFs (from lattices):
Polylog Õ(1) depth (still)
Quasi-optimal Õ(λ) key sizes
First sublinear-depth PRFs (KH or otherwise) with Õ(λ) key size!
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
5 / 11
Our Results
? New KH-PRFs (from lattices):
Polylog Õ(1) depth (still)
Quasi-optimal Õ(λ) key sizes
First sublinear-depth PRFs (KH or otherwise) with Õ(λ) key size!
Reference
Key
Pub Params
Time/Bit
[BLMR’13]
λ3 [λ3 ]
λ6 [λ4 ]
λ5 [λ3 ]
This work
λ [λ]
λ2 [λ]
λω [λ]
Figure : For input length λ with 2λ security under standard assumptions.
Log factors omitted. Ring-based constructions appear in [brackets].
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
5 / 11
Our Results
? New KH-PRFs (from lattices):
Polylog Õ(1) depth (still)
Quasi-optimal Õ(λ) key sizes
First sublinear-depth PRFs (KH or otherwise) with Õ(λ) key size!
Reference
Key
Pub Params
Time/Bit
[BLMR’13]
λ3 [λ3 ]
λ6 [λ4 ]
λ5 [λ3 ]
This work
λ [λ]
λ2 [λ]
λω [λ]
Figure : For input length λ with 2λ security under standard assumptions.
Log factors omitted. Ring-based constructions appear in [brackets].
? New proof technique that may be useful elsewhere
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
5 / 11
Our Results
? New KH-PRFs (from lattices):
Polylog Õ(1) depth (still)
Quasi-optimal Õ(λ) key sizes
First sublinear-depth PRFs (KH or otherwise) with Õ(λ) key size!
Reference
Key
Pub Params
Time/Bit
[BLMR’13]
λ3 [λ3 ]
λ6 [λ4 ]
λ5 [λ3 ]
This work
λ [λ]
λ2 [λ]
λω [λ]
Figure : For input length λ with 2λ security under standard assumptions.
Log factors omitted. Ring-based constructions appear in [brackets].
? New proof technique that may be useful elsewhere
Full version: http://eprint.iacr.org/2014/074
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
5 / 11
Outline
1
Introduction
2
Construction, Parameters and Efficiency
3
Proof of Security (Idea)
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
5 / 11
Boneh et al. KH-PRF Construction
[BLMR’13]
Secret key s ∈ Znq , pub params B0 , B1 ∈ {0, 1}n×n , input x ∈ {0, 1}k
$
Fs (x) = s ·
k
Y
i=1
Banerjee and Peikert (Georgia Tech)
'
Bxi
p
New and Improved KH-PRFs
CRYPTO ’14
6 / 11
Boneh et al. KH-PRF Construction
[BLMR’13]
Secret key s ∈ Znq , pub params B0 , B1 ∈ {0, 1}n×n , input x ∈ {0, 1}k
$
Fs (x) = s ·
k
Y
i=1
1
'
Bxi
0
p
2
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
6 / 11
Boneh et al. KH-PRF Construction
[BLMR’13]
Secret key s ∈ Znq , pub params B0 , B1 ∈ {0, 1}n×n , input x ∈ {0, 1}k
$
Fs (x) = s ·
k
Y
i=1
1
'
Bxi
0
p
2
“Somewhat key-homomorphic:” Fs (x) + Ft (x) ∈ Fs+t (x) + {0, ±1}n
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
6 / 11
Boneh et al. KH-PRF Construction
[BLMR’13]
Secret key s ∈ Znq , pub params B0 , B1 ∈ {0, 1}n×n , input x ∈ {0, 1}k
$
Fs (x) = s ·
k
Y
i=1
1
'
Bxi
0
p
2
“Somewhat key-homomorphic:” Fs (x) + Ft (x) ∈ Fs+t (x) + {0, ±1}n
Proof strategy: introduce “short” error which “rounds away”



$
'
t
k
k

Y
Y
s 

q q xk
Bxi ≈ (sBx1 + ex1 ) ·
Fs (x) = s ·
Bxi 
q
tx
|
{z
}

i=1
i=2

p
3
sx
1
t
p
x2
tx
1
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
6 / 11
Boneh et al. KH-PRF Construction
[BLMR’13]
Secret key s ∈ Znq , pub params B0 , B1 ∈ {0, 1}n×n , input x ∈ {0, 1}k
$
Fs (x) = s ·
k
Y
i=1
1
'
Bxi
0
p
2
“Somewhat key-homomorphic:” Fs (x) + Ft (x) ∈ Fs+t (x) + {0, ±1}n
Proof strategy: introduce “short” error which “rounds away”



$
'
t
k
k

Y
Y
s 

q q xk
Bxi ≈ (sBx1 + ex1 ) ·
Fs (x) = s ·
Bxi 
q
tx
|
{z
}

i=1
i=2

p
3
sx1
p
t
$
'
x2
k
Y
c
c
c
≈ s x1 ·
Bxi ≈ . . . ≈ bsx ep = U (x)
i=2
Banerjee and Peikert (Georgia Tech)
p
New and Improved KH-PRFs
CRYPTO ’14
6 / 11
Boneh et al. KH-PRF Construction
[BLMR’13]
Secret key s ∈ Znq , pub params B0 , B1 ∈ {0, 1}n×n , input x ∈ {0, 1}k
$
Fs (x) = s ·
k
Y
i=1
1
'
Bxi
0
p
2
“Somewhat key-homomorphic:” Fs (x) + Ft (x) ∈ Fs+t (x) + {0, ±1}n
Proof strategy: introduce “short” error which “rounds away”



$
'
t
k
k

Y
Y
s 

q q xk
Bxi ≈ (sBx1 + ex1 ) ·
Fs (x) = s ·
Bxi 
q
tx
|
{z
}

i=1
i=2

p
3
sx1
p
t
$
'
x2
k
Y
c
c
c
≈ s x1 ·
Bxi ≈ . . . ≈ bsx ep = U (x)
i=2
p
7 LWE approx factor grows exponentially in input length k.
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
6 / 11
Gadget and Bit-Decomposition
“Gadget” Zq -matrix G [MP’12]:
A
=
G
Any
Zq -matrix
Banerjee and Peikert (Georgia Tech)
q
G−1 (A)
Square
{0, 1}-matrix
New and Improved KH-PRFs
CRYPTO ’14
7 / 11
Gadget and Bit-Decomposition
“Gadget” Zq -matrix G [MP’12]:
A
=
G
Any
Zq -matrix
q
G−1 (A)
Square
{0, 1}-matrix
A ubiquitous tool in lattice cryptography: FHE [BV’11,GSW’13,AP’14],
CCA/IBE/ABE/FHS [MP’12,BGG+ ’14,GVW’14]
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
7 / 11
Our Construction
For matrices A0 , A1 , full binary tree T and x ∈ {0, 1}|T | , define AT (x):
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
8 / 11
Our Construction
For matrices A0 , A1 , full binary tree T and x ∈ {0, 1}|T | , define AT (x):
T d
x
Banerjee and Peikert (Georgia Tech)
AT (x) := Ax
New and Improved KH-PRFs
for |T | = 1
CRYPTO ’14
8 / 11
Our Construction
For matrices A0 , A1 , full binary tree T and x ∈ {0, 1}|T | , define AT (x):
T d
x
T dH
A
A
T.l A
xl
AT (x) := Ax
HH
A
A
A
T.r A
for |T | = 1
AT (xl kxr ) := AT.l (xl ) · G−1 (AT.r (xr ))
xr
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
8 / 11
Our Construction
For matrices A0 , A1 , full binary tree T and x ∈ {0, 1}|T | , define AT (x):
T d
x
T dH
A
A
T.l A
xl
AT (x) := Ax
HH
A
A
A
T.r A
for |T | = 1
AT (xl kxr ) := AT.l (xl ) · G−1 (AT.r (xr ))
xr
New KH-PRF Construction
Public parameters: matrices A0 , A1 , full binary tree T
Function Fs on |T |-bit input x defined as
Fs (x) = bs · AT (x)ep
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
8 / 11
Our Construction
For matrices A0 , A1 , full binary tree T and x ∈ {0, 1}|T | , define AT (x):
T d
x
T dH
A
A
T.l A
xl
AT (x) := Ax
HH
A
A
A
T.r A
for |T | = 1
AT (xl kxr ) := AT.l (xl ) · G−1 (AT.r (xr ))
xr
New KH-PRF Construction
Public parameters: matrices A0 , A1 , full binary tree T
Function Fs on |T |-bit input x defined as
Fs (x) = bs · AT (x)ep
Somewhat KH just as in [BLMR’13]. Same applications!
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
8 / 11
Parameters and Parallelism
Sequentiality s(T ): the “right depth” of T
Circuit depth of PRF is proportional to s(T )
t
##cc
t#
ct
C
S
t Ct
t St
S
t
St
s=2
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
9 / 11
Parameters and Parallelism
Sequentiality s(T ): the “right depth” of T
Circuit depth of PRF is proportional to s(T )
Expansion e(T ): the “left depth” of T
LWE approx factor is exponential in e(T )
t
##cc
t#
ct
C
S
t Ct
t St
S
t
St
e=2
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
9 / 11
Parameters and Parallelism
Sequentiality s(T ): the “right depth” of T
Circuit depth of PRF is proportional to s(T )
Expansion e(T ): the “left depth” of T
LWE approx factor is exponential in e(T )
Max input length = max # leaves =
Banerjee and Peikert (Georgia Tech)
e+s
s
New and Improved KH-PRFs
t
##cc
t
#
ct
C
S
t Ct
t St
S
t
St
s = 2, e = 2
CRYPTO ’14
9 / 11
Parameters and Parallelism
Sequentiality s(T ): the “right depth” of T
Circuit depth of PRF is proportional to s(T )
Expansion e(T ): the “left depth” of T
LWE approx factor is exponential in e(T )
Max input length = max # leaves =
Banerjee and Peikert (Georgia Tech)
e+s
s
New and Improved KH-PRFs
t
##cc
t
#
ct
C
S
t Ct
t St
S
S
t
St t St
s = 2, e = 2
CRYPTO ’14
9 / 11
Parameters and Parallelism
Sequentiality s(T ): the “right depth” of T
Circuit depth of PRF is proportional to s(T )
Expansion e(T ): the “left depth” of T
LWE approx factor is exponential in e(T )
Max input length = max # leaves =
e+s
s
Instantiations
t
##cc
t
ct
#
C
S
t Ct
t St
S
S
t
St t St
s = 2, e = 2
“Left Spine”
e(T )
s(T )
Key
Params
λ−1
1
λ3
λ6
qt
qq A
t At
A xλ
t At
A x3
t At
x1 x2
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
9 / 11
Parameters and Parallelism
Sequentiality s(T ): the “right depth” of T
Circuit depth of PRF is proportional to s(T )
Expansion e(T ): the “left depth” of T
LWE approx factor is exponential in e(T )
Max input length = max # leaves =
e+s
s
t
##cc
t
ct
#
C
S
t Ct
t St
S
S
t
St t St
s = 2, e = 2
[BLMR’13]
Instantiations
Construction!
e(T )
s(T )
Key
Params
λ−1
1
λ3
λ6
qt
qq A
t At
A xλ
t At
A x3
t At
x1 x2
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
9 / 11
Parameters and Parallelism
Sequentiality s(T ): the “right depth” of T
Circuit depth of PRF is proportional to s(T )
Expansion e(T ): the “left depth” of T
LWE approx factor is exponential in e(T )
Max input length = max # leaves =
e+s
s
Instantiations
t
##cc
t
ct
#
C
S
t Ct
t St
S
S
t
St t St
s = 2, e = 2
“Right Spine”
e(T )
s(T )
Key
Params
λ−1
1
λ3
λ6
1
λ−1
λ
λ2
t
A
t At
x1 A
t At
x2 q q q
t t
x3 xλ
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
9 / 11
Parameters and Parallelism
Sequentiality s(T ): the “right depth” of T
Circuit depth of PRF is proportional to s(T )
Expansion e(T ): the “left depth” of T
LWE approx factor is exponential in e(T )
Max input length = max # leaves =
e+s
s
t
##cc
t
ct
#
C
S
t Ct
t St
S
S
t
St t St
s = 2, e = 2
Instantiations
6
e(T )
s(T )
Key
Params
λ−1
1
λ3
λ6
1
λ−1
λ
λ2
≈ log4 (λ)
≈ log4 (λ)
λ
λ2
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
9 / 11
Outline
1
Introduction
2
Construction, Parameters and Efficiency
3
Proof of Security (Idea)
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
9 / 11
Proof Idea
t
qA
q
q
t
A
A
A
t
A TdA
→
A
A −
x
d
T
A 2A
−
→
A x2
T1A
T
t
x0
−
→
x
1
Banerjee and Peikert (Georgia Tech)
→)) · · ·
Fs (x) = s · Ax0 · G−1 (AT1 (−
x
1
p




s 
→)) · · ·
≈ (s · Ax0 + ex0 ) ·G−1 (AT1 (−
x

1
|
{z
}


ux0
p
c −
→
−1
≈ ux0 · G (AT1 (x1 )) · · · p
New and Improved KH-PRFs
CRYPTO ’14
10 / 11
Proof Idea
3 New Idea: u = s · G + v for uniform, independent s and v ∈ P(G).
t
qA
q
q
t
A
A
A
t
A TdA
→
A
A −
x
d
T
A 2A
−
→
A x2
T1A
T
t
x0
−
→
x
1
Banerjee and Peikert (Georgia Tech)
→)) · · ·
Fs (x) = s · Ax0 · G−1 (AT1 (−
x
1
p




s 
→)) · · ·
≈ (s · Ax0 + ex0 ) ·G−1 (AT1 (−
x

1
|
{z
}


ux0
p
c −
→
−1
≈ ux0 · G (AT1 (x1 )) · · · p
New and Improved KH-PRFs
CRYPTO ’14
10 / 11
Proof Idea
3 New Idea: u = s · G + v for uniform, independent s and v ∈ P(G).
t
qA
q
q
t
A
A
A
t
A TdA
→
A
A −
x
d
T
A 2A
−
→
A x2
T1A
T
t
x0
−
→
x
1
→)) · · ·
Fs (x) = s · Ax0 · G−1 (AT1 (−
x
1
p




s 
→)) · · ·
≈ (s · Ax0 + ex0 ) ·G−1 (AT1 (−
x

1
|
{z
}


ux0
p
c −
→
−1
≈ ux0 · G (AT1 (x1 )) · · · p
→) · G−1 (A (−
→
−
→
−1
= sx0 · AT1 (−
x
1
T2 x2 )) · · · + vx0 · G (AT1 (x1 )) · · · p
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
10 / 11
Proof Idea
3 New Idea: u = s · G + v for uniform, independent s and v ∈ P(G).
t
qA
q
q
t
A
A
A
A TdA
→
A
x
A −
d
T
T
1A 2A
T0
−
→
x
1
−
→
x
2
→)) · · ·
Fs (x) = s · Ax0 · G−1 (AT1 (−
x
1
p




s 
→)) · · ·
≈ (s · Ax0 + ex0 ) ·G−1 (AT1 (−
x

1
|
{z
}


ux0
p
c −
→
−1
≈ ux0 · G (AT1 (x1 )) · · · p
→) · G−1 (A (−
→
−
→
−1
= sx0 · AT1 (−
x
1
T2 x2 )) · · · + vx0 · G (AT1 (x1 )) · · · p
→k · · · k−
→) + v · G−1 (A (−
→
= sx0 · AT 0 (−
x
x
1
x0
T1 x1 )) · · · p
d
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
10 / 11
Proof Idea
3 New Idea: u = s · G + v for uniform, independent s and v ∈ P(G).
t
qA
q
q
t
A
A
A
A TdA
→
A
x
A −
d
T
T
1A 2A
T0
−
→
x
1
−
→
x
2
→)) · · ·
Fs (x) = s · Ax0 · G−1 (AT1 (−
x
1
p




s 
→)) · · ·
≈ (s · Ax0 + ex0 ) ·G−1 (AT1 (−
x

1
|
{z
}


ux0
p
c −
→
−1
≈ ux0 · G (AT1 (x1 )) · · · p
→) · G−1 (A (−
→
−
→
−1
= sx0 · AT1 (−
x
1
T2 x2 )) · · · + vx0 · G (AT1 (x1 )) · · · p
→k · · · k−
→) + v · G−1 (A (−
→
= sx0 · AT 0 (−
x
x
1
x0
T1 x1 )) · · · p
d
c s
→)) · · · + other v terms ≈
· · · ≈ sx + vx0 G−1 (AT1 (−
x
U (x).
1
p
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
10 / 11
Conclusions
Our main contributions
New KH-PRFs from lattices: quasi-optimal key sizes, polylog depth
New proof technique
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
11 / 11
Conclusions
Our main contributions
New KH-PRFs from lattices: quasi-optimal key sizes, polylog depth
New proof technique
The Last Word [Mun’07]
(Image source: http://xkcd.com/221/)
Banerjee and Peikert (Georgia Tech)
New and Improved KH-PRFs
CRYPTO ’14
11 / 11