Comparative statics

c 2001 Michael Carter
โƒ
All rights reserved
Lecture notes based on
Foundations of Mathematical Economics
Comparative statics
1 The maximum theorems
max ๐‘“ (x, ๐œฝ)
xโˆˆ๐บ(๐œฝ)
Let
๐‘ฃ(๐œฝ) = max ๐‘“ (x, ๐œฝ)
๐œ‘(๐œฝ) = arg max ๐‘“ (x, ๐œฝ)
xโˆˆ๐บ(๐œฝ)
Objective
function
Constraint
correspondence
Value
function
Solution
correspondence
Monotone
maximum
theorem
Theorem 2.1
supermodular,
increasing
weakly
increasing
increasing
increasing
xโˆˆ๐บ(๐œฝ)
Continuous
maximum
theorem
Theorem 2.3
continuous
Convex
maximum
theorem
Theorem 3.10
concave
Smooth
maximum
theorem
Theorem 6.1
smooth
continuous,
compact-valued
continuous
convex
compact-valued
nonempty, uhc
convex-valued
smooth
regular
locally
smooth
locally
smooth
2 The envelope theorems
2.1 Envelope theorem 1
๐‘ฃ(๐œฝ) = max
๐‘“ (x, ๐œฝ)
โˆ—
๐‘ฅ โˆˆ๐บ
โˆ—
= ๐‘“ (x (๐œฝ), ๐œฝ)
so that
๐‘ฃ โ€ฒ (๐œฝ) = ๐‘“x
โˆ‚xโˆ—
+ ๐‘“๐œฝ
โˆ‚๐œฝ
The ๏ฌrst-order conditions determining xโˆ— are
๐‘“x = ๐œ†๐‘”x
1
concave
c 2001 Michael Carter
โƒ
All rights reserved
Lecture notes based on
Foundations of Mathematical Economics
Moveover, xโˆ— (๐œฝ) satis๏ฌes the constraint as a identity
๐‘”(xโˆ— (๐œฝ)) = 0 =โ‡’ ๐‘”x
โˆ‚xโˆ—
=0
โˆ‚๐œฝ
Substituting, we conclude that
๐‘ฃ โ€ฒ (๐œฝ) = ๐‘“๐œฝ
Example 1 (Chip producer) It is characteristic of microchip production technology that a proportion of output is defective. Consider a small producer for
whom the price of good chips ๐‘ is ๏ฌxed. Suppose that proportion 1 โˆ’ ๐œƒ of the
๏ฌrmโ€™s chips are defective and cannot be sold. Let ๐‘(๐‘ฆ) denote the ๏ฌrmโ€™s total
cost function where ๐‘ฆ is the number of chips (including defectives) produced.
Suppose that with experience, the yield of good chips ๐œƒ increases. How does this
a๏ฌ€ect the ๏ฌrmโ€™s production ๐‘ฆ? Does the ๏ฌrm compensate for the increased yield
by reducing production, or does it celebrate by increasing production?
The ๏ฌrmโ€™s optimization problem is
๐‘ฃ(๐œƒ) = max ๐œƒ๐‘๐‘ฆ โˆ’ ๐‘(๐‘ฆ)
๐‘ฆ
= ๐œƒ๐‘๐‘ฆ โˆ— โˆ’ ๐‘(๐‘ฆ โˆ—)
โˆ‚๐‘ฆ โˆ—
โˆ‚๐‘ฆ โˆ—
โˆ’ ๐‘โ€ฒ (๐‘ฆ โˆ—)
๐‘ฃ โ€ฒ (๐œƒ) = ๐‘๐‘ฆ โˆ— + ๐œƒ๐‘
โˆ‚๐œƒ
โˆ‚๐œƒ
โˆ—
โˆ‚๐‘ฆ
= ๐‘๐‘ฆ โˆ— + (๐œƒ๐‘ โˆ’ ๐‘โ€ฒ (๐‘ฆ โˆ— ))
โˆ‚๐œƒ
But the ๏ฌrst-order condition de๏ฌning ๐‘ฆ โˆ— (๐œƒ) is
๐œƒ๐‘ โˆ’ ๐‘โ€ฒ (๐‘ฆ โˆ— ) = 0
so that
๐‘ฃ โ€ฒ (๐œƒ) = ๐‘๐‘ฆ โˆ— > 0
Further, we can deduce that
๐‘ฆ โˆ— (๐œƒ) =
so that
๐‘ฃ โ€ฒ (๐œƒ)
๐‘
๐‘ฃ โ€ฒโ€ฒ (๐œƒ)
โˆ‚๐‘ฆ โˆ— (๐œƒ)
=
โ‰ฅ0
โˆ‚๐œƒ
๐‘
since the pro๏ฌt function is convex.
2
c 2001 Michael Carter
โƒ
All rights reserved
Lecture notes based on
Foundations of Mathematical Economics
2.2 Envelope theorem 2
๐‘ฃ(๐œฝ) = โˆ—max ๐‘“ (x, ๐œฝ)
๐‘ฅ โˆˆ๐บ(๐œฝ)
= ๐‘“ (xโˆ— (๐œฝ), ๐œฝ)
โˆ‚xโˆ—
๐‘ฃ โ€ฒ (๐œฝ) = ๐‘“x
+ ๐‘“๐œฝ
โˆ‚๐œฝ
The ๏ฌrst-order conditions determining xโˆ— are
๐‘“x = ๐œ†๐‘”x
Moveover, xโˆ— (๐œฝ) satis๏ฌes the constraint as a identity
๐‘”(xโˆ— (๐œฝ), ๐œฝ) = 0 =โ‡’ ๐‘”x
or
โˆ‚xโˆ—
+ ๐‘”๐œฝ = 0
โˆ‚๐œฝ
โˆ‚xโˆ—
= โˆ’๐‘”๐œฝ
๐‘”x
โˆ‚๐œฝ
Substituting, we conclude that
๐‘ฃ โ€ฒ (๐œฝ) = ๐‘“๐œฝ โˆ’ ๐œ†๐‘”๐œฝ = ๐ฟ๐œฝ
Example 2 (Consumer problem)
๐‘ฃ(p, ๐‘š) = max ๐‘ข(x)
(1)
subject to p x = ๐‘š
(2)
xโˆˆ๐‘‹
๐‘‡
๐ฟ = ๐‘ข(x) โˆ’ ๐œ†(p๐‘‡ x โˆ’ ๐‘š)
โˆ‚๐‘ฃ
= ๐ฟ๐‘š = ๐œ†
โˆ‚๐‘š
โˆ‚๐‘ฃ
= ๐ฟ๐‘๐‘– = โˆ’๐œ†๐‘ฅโˆ—๐‘–
โˆ‚๐‘๐‘–
which leads immediately to Royโ€™s identity
xโˆ—๐‘– (p, ๐‘š)
3
=โˆ’
โˆ‚๐‘ฃ
โˆ‚๐‘๐‘–
โˆ‚๐‘ฃ
โˆ‚๐‘š
Lecture notes based on
Foundations of Mathematical Economics
c 2001 Michael Carter
โƒ
All rights reserved
2.3 Smooth envelope theorem (Corollary 6.1.1)
Assume that x0 is a strict local maximum of
max ๐‘“ (x, ๐œฝ)
xโˆˆ๐บ(๐œฝ)
where ๐บ(๐œฝ) = { x โˆˆ ๐‘‹ : g(x, ๐œฝ) โ‰ค 0 }. By the smooth maximum theorem,
there exists a neighbourhood ฮฉ around ๐œฝ 0 and function xโˆ— such that
๐‘ฃ(๐œฝ) = ๐‘“ (xโˆ— (๐œฝ), ๐œฝ) for every ๐œฝ โˆˆ ฮฉ
and ๐‘ฃ is di๏ฌ€erentiable. Applying the chain rule
๐ท๐œฝ ๐‘ฃ[๐œฝ] = ๐‘“x xโˆ—๐œฝ + ๐‘“๐œฝ
โ†‘
โ†‘
indirect direct
What do we know of the indirect e๏ฌ€ect?
First If xโˆ— is optimal, it must satisfy the Kuhn-Tucker conditions
๐‘“x = ๐€๐‘‡0 gx and ๐€๐‘‡0 g(x, ๐œฝ) = 0
(3)
at (x0 , ๐€0 ) where ๐€0 is the unique Lagrange multiplier associated with
x0 .
Second The solution xโˆ— (๐œฝ) satis๏ฌes the constraint g(xโˆ— (๐œฝ), ๐œฝ) = 0 for all
๐œฝ โˆˆ ฮฉ. Another application of the chain rule gives
gx xโˆ—๐œฝ + g๐œฝ = 0 =โ‡’ ๐€๐‘‡0 gx xโˆ—๐œฝ = โˆ’๐€๐‘‡ g๐œฝ
(4)
Using (3) and (4), the indirect e๏ฌ€ect is ๐‘“x xโˆ—๐œฝ = ๐€๐‘‡0 ๐‘”x xโˆ—๐œฝ = โˆ’๐€๐‘‡ g๐œฝ and therefore
๐ท๐œฝ ๐‘ฃ[๐œฝ] = ๐‘“๐œฝ โˆ’ ๐€๐‘‡0 g๐œฝ = ๐ฟ๐œฝ
(5)
where ๐ฟ denotes the Lagrangean ๐ฟ(x, ๐œฝ, ๐€) = ๐‘“ (x, ๐œฝ)โˆ’๐€๐‘‡ g(x, ๐œฝ). This is the
envelope theorem, which states that the derivative of the value function
is equal to the partial derivative of the Lagrangean evaluated at the optimal
solution (x0 , ๐€0 ).
In the special case in which the feasible set ๐บ is independent of the parameters, g๐œฝ = 0 and (5) becomes
๐ท๐œฝ ๐‘ฃ[๐œฝ] = ๐‘“๐œฝ
The indirect e๏ฌ€ect is zero, and the only impact on ๐‘ฃ of a change in ๐œฝ is the
direct e๏ฌ€ect f๐œฝ .
4
Lecture notes based on
Foundations of Mathematical Economics
c 2001 Michael Carter
โƒ
All rights reserved
2.4 General envelope theorem (Theorem 6.2)
The assumptions required for Corollary 6.1.1 are stringent. Where the feasible set is independent of the parameters, a more general result can be given.
Let xโˆ— be the solution correspondence of the constrained optimization problem
max ๐‘“ (x, ๐œฝ)
xโˆˆ๐บ
in which ๐‘“ : ๐บ × ฮ˜ โ†’ โ„œ is continuous and ๐บ compact. Suppose that ๐‘“ is
continuously di๏ฌ€erentiable in ๐œƒ, that is ๐ท๐œฝ ๐‘“ [x, ๐œฝ] is continuous in ๐บ × ฮ˜.
Then the value function
๐‘ฃ(๐œƒ) = sup ๐‘“ (x, ๐œฝ)
๐‘ฅโˆˆ๐บ
is di๏ฌ€erentiable wherever xโˆ— is single-valued with ๐ท๐œฝ ๐‘ฃ[๐œƒ] = ๐ท๐œฝ ๐‘“ [x(๐œฝ), ๐œฝ].
Proof.
To simplify the proof, assume that xโˆ— is single-valued for every
๐œฝ โˆˆ ฮ˜ Then
๐‘ฃ(๐œฝ) = ๐‘“ (xโˆ— (๐œฝ), ๐œฝ) for every ๐œฝ โˆˆ ฮ˜
For any ๐œฝ โˆ•= ๐œฝ 0 โˆˆ ฮ˜
)
(
)
(
๐‘ฃ(๐œฝ) โˆ’ ๐‘ฃ(๐œฝ 0 ) = ๐‘“ xโˆ— (๐œฝ), ๐œฝ โˆ’ ๐‘“ xโˆ— (๐œฝ 0 ), ๐œฝ0
)
(
)
(
โ‰ฅ ๐‘“ xโˆ— (๐œฝ 0 ), ๐œฝ โˆ’ ๐‘“ xโˆ— (๐œฝ 0 ), ๐œฝ0
= ๐ท๐œฝ ๐‘“ [xโˆ— (๐œฝ 0 ), ๐œฝ 0 ](๐œฝ โˆ’ ๐œฝ 0 ) + ๐œ‚(๐œฝ) โˆฅ๐œฝ โˆ’ ๐œฝ 0 โˆฅ
with ๐œ‚(๐œฝ) โ†’ 0 as ๐œฝ โ†’ ๐œฝ 0 . On the other hand, by the mean value theorem
¯ โˆˆ (๐œฝ, ๐œฝ 0 ) such that
(Theorem 4.1) there exist ๐œฝ
)
(
)
(
๐‘ฃ(๐œฝ) โˆ’ ๐‘ฃ(๐œฝ 0 ) = ๐‘“ xโˆ— (๐œฝ), ๐œฝ โˆ’ ๐‘“ xโˆ— (๐œฝ 0 ), ๐œฝ0
)
(
)
(
โ‰ค ๐‘“ xโˆ— (๐œฝ), ๐œฝ โˆ’ ๐‘“ xโˆ— (๐œฝ), ๐œฝ 0
¯
โˆ’ ๐œฝ0)
= ๐ท๐œฝ ๐‘“ [xโˆ— (๐œฝ), ๐œฝ](๐œฝ
Letting ๐œฝ โ†’ ๐œฝ 0
๐ท๐œฝ ๐‘“ [xโˆ— (๐œฝ 0 ), ๐œฝ 0 ](๐œฝ โˆ’ ๐œฝ 0 )
๐‘ฃ(๐œฝ) โˆ’ ๐‘ฃ(๐œฝ 0 )
๐ท๐œฝ ๐‘“ [xโˆ— (๐œฝ 0 ), ๐œฝ 0 ](๐œฝ โˆ’ ๐œฝ 0 )
โ‰ค lim
โ‰ค lim
lim
๐œฝโ†’๐œฝ0
๐œฝโ†’๐œฝ0
๐œฝโ†’๐œฝ0
โˆฅ๐œฝ โˆ’ ๐œฝ 0 โˆฅ
โˆฅ๐œฝ โˆ’ ๐œฝ 0 โˆฅ
โˆฅ๐œฝ โˆ’ ๐œฝ 0 โˆฅ
๐‘ฃ is di๏ฌ€erentiable (Exercise 4.3) and
๐ท๐‘ฃ[๐œƒ] = ๐ท๐œฝ ๐‘“ [xโˆ— (๐œฝ), ๐œฝ]
where ๐ท๐œฝ ๐‘“ [xโˆ— (๐œฝ), ๐œฝ] denotes the partial derivative of ๐‘“ with respect to ๐œฝ
โ–ก
holding x constant at x = xโˆ— (๐œฝ).
5
c 2001 Michael Carter
โƒ
All rights reserved
Lecture notes based on
Foundations of Mathematical Economics
โŠณ Note that there is no requirement in Theorem 6.2 that ๐‘“ is di๏ฌ€erentiable with respect to the decision variables x, only with respect to the
parameters. The practical importance of dispensing with di๏ฌ€erentiability with respect to x is that Theorem 6.2 applies even when the feasible
set is discrete (See Example 6.2).
โ„œ
๐‘ฃ(๐œƒ)
๐‘“ (๐‘ฅ1 , ๐œƒ)
๐‘“ (๐‘ฅ2 , ๐œƒ)
๐‘“ (๐‘ฅ3 , ๐œƒ)
๐œƒ
3 Comparative statics of optimization models
There are four di๏ฌ€erent approaches to comparative statics of optimization
models
โˆ™ Revealed preference approach
โˆ™ Envelope theorem approach
โˆ™ Monotone maximum theorem approach
โˆ™ Implicit function theorem approach
3.1 Revealed preference approach
A competitive ๏ฌrmโ€™s optimization problem is to choose a feasible production
plan y โˆˆ ๐‘Œ to maximize total pro๏ฌt
max p โ‹… y
yโˆˆ๐‘Œ
Consequently, if y1 maximizes pro๏ฌt when prices are p1 , then
p1 โ‹… y1 โ‰ฅ p โ‹… y for every y โˆˆ ๐‘Œ
Similarly, if y2 maximizes pro๏ฌt when prices are p2 , then
p2 โ‹… y2 โ‰ฅ p โ‹… y for every y โˆˆ ๐‘Œ
6
c 2001 Michael Carter
โƒ
All rights reserved
Lecture notes based on
Foundations of Mathematical Economics
In particular
p1 โ‹… y1 โ‰ฅ p1 โ‹… y2
and
p2 โ‹… y2 โ‰ฅ p2 โ‹… y1
Adding these inequalities
p1 โ‹… y1 + p2 โ‹… y2 โ‰ฅ p1 โ‹… y2 + p2 โ‹… y1
Rearranging
p2 โ‹… (y2 โˆ’ y1 ) โ‰ฅ p1 โ‹… (y2 โˆ’ y1 )
and therefore
(p2 โˆ’ p1 ) โ‹… (y2 โˆ’ y1 ) โ‰ฅ 0
or
๐‘›
โˆ‘
(๐‘1๐‘– โˆ’ ๐‘2๐‘– )(๐‘ฆ๐‘–2 โˆ’ ๐‘ฆ๐‘–2 ) โ‰ฅ 0
(6)
๐‘–=1
If prices change from p1 to p2 , the optimal production plan must change in
such a way as to satisfy the inequality (6). For a change in the price of a
single good ๐‘– (๐‘2๐‘— = ๐‘1๐‘— for every ๐‘— โˆ•= ๐‘–), (6) implies that
(๐‘2๐‘– โˆ’ ๐‘1๐‘– )(๐‘ฆ๐‘–2 โˆ’ ๐‘ฆ๐‘–1) โ‰ฅ 0
or
๐‘2๐‘– > ๐‘1๐‘– =โ‡’ ๐‘ฆ๐‘–2 โ‰ฅ ๐‘ฆ๐‘–1
3.2 The envelope theorem approach
Letting ๐‘“ (y, p) = p โ‹… y denote the objective function, the competitive ๏ฌrm
solves
max ๐‘“ (y, p)
yโˆˆ๐‘Œ
Note that ๐‘“ is di๏ฌ€erentiable with ๐ทp ๐‘“ [y, p] = y. Applying the envelope
theorem 6.2, the pro๏ฌt function
ฮ (p) = sup ๐‘“ (y, p)
yโˆˆ๐‘Œ
is di๏ฌ€erentiable wherever the supply correspondence yโˆ— is single-valued with
๐ทp ฮ [p] = ๐ทp ๐‘“ [yโˆ— (p), p] = yโˆ— (p)
or
(7)
yโˆ— (p) = โˆ‡ฮ (p)
which is known as Hotellingโ€™s lemma.
โŠณ The practical signi๏ฌcance of Hotellingโ€™s lemma is that, if we know the
pro๏ฌt function, we can calculate the supply function by straightforward
di๏ฌ€erentiation instead of solving a constrained optimization problem.
7
c 2001 Michael Carter
โƒ
All rights reserved
Lecture notes based on
Foundations of Mathematical Economics
โŠณ Its theoretical signi๏ฌcance is more important. Hotellingโ€™s lemma enables us to deduce the properties of the supply function yโˆ— from the
already established properties of the pro๏ฌt function. In particular, we
know that the pro๏ฌt function is convex (Example 3.42).
From Hotellingโ€™s lemma (7), we deduce that the derivative of the supply
function is equal to the second derivative of the pro๏ฌt function
๐ทyโˆ— [p] = ๐ท 2 ฮ [p]
or equivalently that the Jacobian of the supply function is equal to the Hessian of the pro๏ฌt function.
๐ฝyโˆ— (p) = ๐ปฮ  (p)
Since ฮ  is smooth and convex, its Hessian ๐ป(p) is symmetric (Theorem 4.2)
and nonnegative de๏ฌnite (Proposition 4.1) for all p. Consequently, the Jacobian of the supply function ๐ฝyโˆ— is also symmetric and nonnegative de๏ฌnite.
This implies for all goods ๐‘– and ๐‘—
๐ท๐‘๐‘– ๐‘ฆ๐‘–โˆ— [p] โ‰ฅ 0
๐ท๐‘๐‘– ๐‘ฆ๐‘—โˆ— [p] = ๐ท๐‘๐‘— ๐‘ฆ๐‘–โˆ—[p]
Nonnegativity
Symmetry
In a similar fashion, we can deduce
โˆ™ Shephardโ€™s lemma (Example 6.7)
โˆ™ Royโ€™s identity (Example 6.8)
From the latter, we can easily derive the Slutsky equation (Example 6.9).
3.3 The implicit function theorem approach
The ๏ฌrst-order conditions of an equality constrained optimization problem
constitute a system of equations.
๐‘„(x; ๐œฝ) = 0
Provided the Jacobian (๐ทx ๐‘„[x; ๐œฝ]) of this system is non-singular, we can use
the implicit function theorem to solve for xโˆ— in terms of ๐œฝ. We illustrate by
means of an example.
8
Lecture notes based on
Foundations of Mathematical Economics
c 2001 Michael Carter
โƒ
All rights reserved
Example Recall again the chip maker, whose optimization problem is
max ๐œƒ๐‘๐‘ฆ โˆ’ ๐‘(๐‘ฆ)
๐‘ฆ
The ๏ฌrst-order and second-order conditions for pro๏ฌt maximization are
๐‘„(๐‘ฆ, ๐œƒ, ๐‘) = ๐œƒ๐‘ โˆ’ ๐‘โ€ฒ (๐‘ฆ) = 0 and ๐ท๐‘ฆ ๐‘„[๐‘ฆ, ๐œƒ, ๐‘] = โˆ’๐‘โ€ฒโ€ฒ (๐‘ฆ) < 0
The second-order condition requires increasing marginal cost. Assuming ๐‘ is
๐ถ 2 , the ๏ฌrst-order condition implicitly de๏ฌnes a function ๐‘ฆ(๐œƒ). Di๏ฌ€erentiating
the ๏ฌrst-order condition with respect to ๐œƒ, we deduce that
๐‘ = ๐‘โ€ฒโ€ฒ (๐‘ฆ)๐ท๐œฝ โ„Ž๐‘’๐‘ก๐‘Ž๐‘ฆ
or
๐ท๐œƒ ๐‘ฆ =
๐‘
๐‘โ€ฒโ€ฒ (๐‘ฆ)
which is positive by the second-order condition. An increase in yield ๐œƒ is
analogous to an increase in product price ๐‘, inducing an increase in output
๐‘ฆ.
โŠณ Examples 6.15 and 6.16 apply the same technique to deduce the comparative statics of a competitive multi-input ๏ฌrm.
4 References
โˆ™ Milgrom, P., and I. Segal (2000), Envelope Theorems for Arbitrary
Choice Sets. Department of Economics, Stanford University: mimeo.
โˆ™ Silberberg, E. (1990), The Structure of Economics: A Mathematical
Analysis (2nd edition). New York, NY: McGraw-Hill.
9
c 2001 Michael Carter
โƒ
All rights reserved
Lecture notes based on
Foundations of Mathematical Economics
5 Homework
1. Prove Proposition 5.2, that is if ๐‘“ and g are ๐ถ 2 and ๐ท๐‘”[xโˆ— ] is of full
rank, then the value function
๐‘ฃ(c) = sup{ ๐‘“ (x) : g(x) = c }
is di๏ฌ€erentiable with โˆ‡๐‘ฃ(c) = ๐€, where ๐€ = (๐œ†1 , ๐œ†2 , . . . , ๐œ†๐‘š ) are the
Lagrange multipliers associated with xโˆ— .
2. Suppose that the cost function of a monopolist changes from ๐‘1 (๐‘ฆ) to
๐‘2 (๐‘ฆ) in such a way that
0 < ๐‘โ€ฒ1 (๐‘ฆ) < ๐‘โ€ฒ2 (๐‘ฆ) for every ๐‘ฆ > 0
Let ๐‘1 denote the pro๏ฌt maximizing price with the cost function ๐‘1 (๐‘ฆ)
and let ๐‘ฆ1 be the corresponding output. Similarly let ๐‘2 and ๐‘ฆ2 be the
pro๏ฌt maximizing price and output when the costs are given by ๐‘2 (๐‘ฆ).
(a) Show that
๐‘2 (๐‘ฆ1 ) โˆ’ ๐‘2 (๐‘ฆ2 ) โ‰ฅ ๐‘1 (๐‘ฆ1 ) โˆ’ ๐‘1 (๐‘ฆ2 )
(8)
(b) The โ€œFundamental Theorem of Calculusโ€ states: If ๐‘“ โ€ฒ (๐‘ฅ) is a
continuous function on [a,b], then
โˆซ ๐‘
๐‘“ โ€ฒ (๐‘ฅ)๐‘‘๐‘ฅ
๐‘“ (๐‘) โˆ’ ๐‘“ (๐‘Ž) =
๐‘Ž
Apply this to inequality (8) to deduce that ๐‘ฆ1 โ‰ฅ ๐‘ฆ2 and therefore
that ๐‘1 โ‰ค ๐‘2 .
(c) State concisely the proposition you have just proved.
3. Assume that a competitive ๏ฌrm produces a single output ๐‘ฆ from ๐‘›
inputs x = (๐‘ฅ1 , ๐‘ฅ2 , . . . , ๐‘ฅ๐‘› ) according to the production function ๐‘ฆ =
๐‘“ (x) so as to maximize pro๏ฌt
ฮ (w, ๐‘) = max ๐‘๐‘“ (x) โˆ’ w โ‹… x
x
Assume that there is a unique optimum for every ๐‘ and w. Show
that the input demand ๐‘ฅโˆ—๐‘– (w, ๐‘) and supply ๐‘ฆ โˆ— (w, ๐‘) functions have the
following properties:
๐ท๐‘ ๐‘ฆ๐‘–โˆ—[w, ๐‘] โ‰ฅ 0
๐ท๐‘ค๐‘– ๐‘ฅโˆ—๐‘– [w, ๐‘] โ‰ค 0
๐ท๐‘ค๐‘— ๐‘ฅโˆ—๐‘– [w, ๐‘] = ๐ท๐‘ค๐‘– ๐‘ฅโˆ—๐‘— [w, ๐‘]
๐ท๐‘ ๐‘ฅโˆ—๐‘– [w, ๐‘] = โˆ’๐ท๐‘ค๐‘– ๐‘ฆ โˆ—[w, ๐‘]
10
Upward sloping supply
Downward sloping demand
Symmetry
Reciprocity
c 2001 Michael Carter
โƒ
All rights reserved
Lecture notes based on
Foundations of Mathematical Economics
Solutions 7
1 The Lagrangean for this problem is
(
)
๐ฟ = ๐‘“ (x) โˆ’ ๐€๐‘‡ g(x) โˆ’ c
By Corollary 6.1.1
2
โˆ‡๐‘ฃ(c) = ๐ทc ๐ฟ = ๐€
(a) With cost function ๐‘1 (๐‘ฆ1 ), the ๏ฌrms pro๏ฌt is
ฮ  = ๐‘๐‘ฆ โˆ’ ๐‘1 (๐‘ฆ)
Since this is maximised at ๐‘1 and ๐‘ฆ1 (although the monopolist could
have sold ๐‘ฆ2 at price ๐‘2 )
๐‘1 ๐‘ฆ1 โˆ’ ๐‘1 (๐‘ฆ1 ) โ‰ฅ ๐‘2 ๐‘ฆ2 โˆ’ ๐‘1 (๐‘ฆ2 )
Rearranging
๐‘1 ๐‘ฆ1 โˆ’ ๐‘2 ๐‘ฆ2 โ‰ฅ ๐‘1 (๐‘ฆ1 ) โˆ’ ๐‘1 (๐‘ฆ2 )
Similarly
(1)
๐‘2 ๐‘ฆ2 โˆ’ ๐‘2 (๐‘ฆ2 ) โ‰ฅ ๐‘1 ๐‘ฆ1 โˆ’ ๐‘2 (๐‘ฆ1 )
which can be rearranged to yield
๐‘2 (๐‘ฆ1 ) โˆ’ ๐‘2 (๐‘ฆ2 ) โ‰ฅ ๐‘1 ๐‘ฆ1 โˆ’ ๐‘2 ๐‘ฆ2
Combining the previous inequality with (1) yields
๐‘2 (๐‘ฆ1 ) โˆ’ ๐‘2 (๐‘ฆ2 ) โ‰ฅ ๐‘1 (๐‘ฆ1 ) โˆ’ ๐‘1 (๐‘ฆ2 )
(b) Applying the Fundamental Theorem of Calculus to both sides, this
implies
โˆซ ๐‘ฆ1
โˆซ ๐‘ฆ1
โ€ฒ
๐‘2 (๐‘ฆ)๐‘‘๐‘ฆ โ‰ฅ
๐‘โ€ฒ1 (๐‘ฆ)๐‘‘๐‘ฆ
or
๐‘ฆ2
โˆซ
๐‘ฆ1
๐‘ฆ2
๐‘โ€ฒ2 (๐‘ฆ)
๐‘โ€ฒ2 (๐‘ฆ)๐‘‘๐‘ฆ
โˆซ
โˆ’
๐‘ฆ2
๐‘ฆ1
๐‘ฆ2
๐‘โ€ฒ1 (๐‘ฆ)๐‘‘๐‘ฆ
๐‘โ€ฒ1 (๐‘ฆ)
โˆซ
=
๐‘ฆ1
๐‘ฆ2
(๐‘โ€ฒ2 (๐‘ฆ) โˆ’ ๐‘โ€ฒ1 (๐‘ฆ))๐‘‘๐‘ฆ โ‰ฅ 0
โˆ’
โ‰ฅ 0 for every ๐‘ฆ (by assumption), this implies that
Since
๐‘ฆ2 โ‰ค ๐‘ฆ1 . Assuming the demand curve is downward sloping, this implies
๐‘2 โ‰ฅ ๐‘1 .
1
Lecture notes based on
Foundations of Mathematical Economics
c 2001 Michael Carter
โƒ
All rights reserved
(c) There is an implicit requirement to utilize the Fundamental Theorem of
Calculus, namely that ๐‘โ€ฒ (๐‘ฆ) is continuous. With this proviso, we have
shown that the monopoly price is increasing in marginal cost. Specifically we have shown: Assuming that a monopolistโ€™s cost function is
continously di๏ฌ€erentiable (in output), the pro๏ฌt maximizing monopoly
price is an increasing (i.e. nondecreasing) function of marginal cost.
3 By Theorem 6.2
๐ทw ฮ [w, ๐‘] = โˆ’xโˆ— and ๐ท๐‘ ฮ [w, ๐‘] = ๐‘ฆ โˆ—
and therefore
2
๐ท๐‘ ๐‘ฆ(๐‘, w) = ๐ท๐‘๐‘
ฮ (๐‘, w) โ‰ฅ 0
๐ท๐‘ค๐‘– ๐‘ฅ๐‘– (๐‘, w) = โˆ’๐ท๐‘ค2 ๐‘– ๐‘ค๐‘– ฮ (๐‘, w) โ‰ค 0
๐ท๐‘ค๐‘— ๐‘ฅ๐‘– (๐‘, w) = โˆ’๐ท๐‘ค2 ๐‘– ๐‘ค๐‘— ฮ (๐‘, w) = ๐ท๐‘ค๐‘– ๐‘ฅ๐‘— (๐‘, w)
๐ท๐‘ ๐‘ฅ๐‘– (๐‘, w) = โˆ’๐ท๐‘ค2 ๐‘– ๐‘ ฮ (๐‘, w) = โˆ’๐ท๐‘ค๐‘– ๐‘ฆ(๐‘, w)
since ฮ  is convex and therefore ๐ปฮ  (w, ๐‘) is symmetric (Theorem 4.2) and
nonnegative de๏ฌnite (Proposition 4.1).
2